An Algebra of Layered Complex Preferences

Bernhard Möller Patrick Roocks

Institut für Informatik, Universität Augsburg
September 18, 2012

Motivation

Our work is based on:

- Preferences for Database queries
- Abstract Relation Algebra

Motivation

Our work is based on:

- Preferences for Database queries
- Abstract Relation Algebra

What are database preferences?

- Strict partial orders expressing user wishes, e.g.
- "I like x more than y "
- Soft constraints in database queries, e.g.
- if no tuples with " $X \leq 0$ " exist, return those with lowest X
- Used for personalised information systems, e.g.
- queries are extended by personalised preferences
\longrightarrow Introductory example

Motivation

Figure: Skyline of hotels which are cheap and near to the beach

Motivation

- Preference relations are irreflexive and transitive (strict orders)
- Some are additionally negatively transitive (strict weak orders)
- Complex preferences (e.g. "cheap and near to the beach")...
- ... are no weak orders in general!

Motivation

- Preference relations are irreflexive and transitive (strict orders)
- Some are additionally negatively transitive (strict weak orders)
- Complex preferences (e.g. "cheap and near to the beach")...
- ... are no weak orders in general!

Strict weak orders:

- Induce a total order of equivalence classes
- Useful for constructing complex preferences

Motivation

- Preference relations are irreflexive and transitive (strict orders)
- Some are additionally negatively transitive (strict weak orders)
- Complex preferences (e.g. "cheap and near to the beach")...
- ... are no weak orders in general!

Strict weak orders:

- Induce a total order of equivalence classes
- Useful for constructing complex preferences

The challenge:

- Transform arbitrary complex preferences to weak orders \rightarrow "Layered Complex Preferences"
- Show that many properties are preserved

Outline

The basic work was done in our first paper
"An Algebraic Calculus of Database Preferences" (at MPC 2012)
Therein we presented:

- Typed relational algebra to represent preference terms
- Maximal element algebra to formalize preference selections

Outline

The basic work was done in our first paper
"An Algebraic Calculus of Database Preferences" (at MPC 2012)
Therein we presented:

- Typed relational algebra to represent preference terms
- Maximal element algebra to formalize preference selections

The talk is structured as follows:
1 Recapitulation of the basics
2 Extensions of our calculus
3 Transformation: General preferences \rightarrow Layered preferences
4 Application: The "Pareto-regular" preference

Types

Motivation for typing:

- Handling compositions of preferences on different attributes
- e.g. "Lower price" and "Lower distance"
- Mathematically, both are ordered sets $(\mathbb{R},<)$ on the same domain

Types

Motivation for typing:

- Handling compositions of preferences on different attributes
- e.g. "Lower price" and "Lower distance"
- Mathematically, both are ordered sets $(\mathbb{R},<)$ on the same domain

We introduce types of relations according to their attribute names.
Thereby we define:

- \mathcal{A} : set of attribute names (e.g. set of column names)
- D_{A} for all $A \in \mathcal{A}$: The type domain of the attribute, e.g. \mathbb{R}, \mathbb{N}, strings,... (int, float, varchar,...)
- A subset $T \subseteq \mathcal{A}$ is a type with the type domain D_{T}

Typed semirings

Basic structure:

- Consider an idempotent semiring with choice " + " and composition "." with neutral element 1
- Preference relations are general elements therein with choice " \cup " and composition ";" with \varnothing and identity relation as neutral elements
- Sets are represented as elements ≤ 1 (algebraically: tests)

Typed semirings

Basic structure:

- Consider an idempotent semiring with choice " + " and composition "." with neutral element 1
- Preference relations are general elements therein with choice " \cup " and composition ";" with \varnothing and identity relation as neutral elements
- Sets are represented as elements ≤ 1 (algebraically: tests)

Special elements:

- 0_{T} : smallest element
- 1_{T} : identity relation
- T_{T} : greatest element

Type assertions

$$
\begin{gathered}
a:: T^{2} \quad \Leftrightarrow_{d f} \quad a=1_{T} \cdot a \cdot 1_{T} \\
p:: T \quad \Leftrightarrow_{d f} \quad p \leq 1_{T}
\end{gathered}
$$

Type assertions

$$
\begin{gathered}
a:: T^{2} \quad \Leftrightarrow_{d f} \quad a=1_{T} \cdot a \cdot 1_{T} \\
p:: T \quad \Leftrightarrow_{d f} \quad p \leq 1_{T}
\end{gathered}
$$

In the concrete relational instances:

$$
\begin{aligned}
a:: T^{2} & \Leftrightarrow a \subseteq D_{T} \times D_{T} \\
p:: T & \Leftrightarrow p \subseteq D_{T}
\end{aligned}
$$

Type assertions

$$
\begin{gathered}
a:: T^{2} \quad \Leftrightarrow_{d f} \quad a=1_{T} \cdot a \cdot 1_{T} \\
p:: T \quad \Leftrightarrow_{d f} \quad p \leq 1_{T}
\end{gathered}
$$

In the concrete relational instances:

$$
\begin{aligned}
a:: T^{2} & \Leftrightarrow a \subseteq D_{T} \times D_{T} \\
p:: T & \Leftrightarrow p \subseteq D_{T}
\end{aligned}
$$

For $r:: T$ (i.e. $r \leq 1_{T}$) the r-induced sub-type of T is defined as:

$$
\begin{aligned}
& p:: T[r] \Leftrightarrow p \leq r \\
& a:: T[r]^{2} \Leftrightarrow a \leq r \cdot a \cdot r \\
& \text { with } 1_{T[r]}=d f r
\end{aligned}
$$

- We introduce the join operator ("凶") to represent relational compositions of preferences.

$$
a:: T_{a}^{2}, b:: T_{b}^{2} \quad \Longrightarrow \quad a \bowtie b::\left(T_{a} \bowtie T_{b}\right)^{2}
$$

- Join is required to be associative, commutative, distributes over " + ", diamond distributes over join, etc.
- In the concrete instances $T_{a} \bowtie T_{b}$ is the Cartesian product $D_{T_{a}} \times D_{T_{b}}$.

Abstract relation algebra

- We also need the converse and the complement

Definition (Abstract relation algebra)

- Idempotent semiring
- Additional operators: converse (... $)^{-1}$ and complement $\overline{(\ldots)}$

Abstract relation algebra

- We also need the converse and the complement

Definition (Abstract relation algebra)

- Idempotent semiring
- Additional operators: converse (... $)^{-1}$ and complement $\overline{(\ldots)}$
- Axiomatised by the Schröder equivalences and Huntington's axiom:

$$
x \cdot y \leq z \Leftrightarrow x^{-1} \cdot \bar{z} \leq \bar{y} \Leftrightarrow \bar{z} \cdot y^{-1} \leq \bar{x}, \quad x=\overline{\bar{x}+y}+\overline{x+\bar{y}} .
$$

Abstract relation algebra

- We also need the converse and the complement

Definition (Abstract relation algebra)

- Idempotent semiring
- Additional operators: converse (...) ${ }^{-1}$ and complement $\overline{(. . .)}$
- Axiomatised by the Schröder equivalences and Huntington's axiom:

$$
x \cdot y \leq z \Leftrightarrow x^{-1} \cdot \bar{z} \leq \bar{y} \Leftrightarrow \bar{z} \cdot y^{-1} \leq \bar{x}, \quad x=\overline{\bar{x}+y}+\overline{x+\bar{y}} .
$$

We additionally stipulate the Tarski rule

$$
a \neq 0_{a} \Rightarrow T_{a} \cdot a \cdot T_{a}=T_{a},
$$

where $T_{a}=\overline{0_{a}}$.

We assume: For $x:: T^{2}$ we have also $x^{-1}, \bar{x}:: T^{2}$

Derived relational operations

- Meet of two elements (intersection)

$$
x \sqcap y=d f \overline{\bar{x}+\bar{y}}
$$

- Relative complement

$$
x-y=d f x \sqcap \bar{y}
$$

- For tests $p, q \leq 1$ these are:

$$
p \sqcap q=p \cdot q, \quad p-q=p \cdot \neg q
$$

Preferences

Definition ((Layered) preferences)

A relation a is a preference if and only if it is irreflexive and transitive, i.e.
$1 a \sqcap 1_{a}=0_{a}$,
$2 a \cdot a \leq a$.
a is a layered preference if additionally negative transitivity holds:

$$
\bar{a} \cdot \bar{a} \leq \bar{a}
$$

Preferences

Definition ((Layered) preferences)

A relation a is a preference if and only if it is irreflexive and transitive, i.e.
$1 a \sqcap 1_{a}=0_{a}$,
$2 a \cdot a \leq a$.
a is a layered preference if additionally negative transitivity holds:

$$
\bar{a} \cdot \bar{a} \leq \bar{a}
$$

Layered preferences induce a "layered structure", i.e. for a $:: T^{2}$ with finite D_{T} there is always a function $f: D_{T} \rightarrow \mathbb{N}$ s.t.

$$
t_{1} a t_{2} \Leftrightarrow f\left(t_{1}\right)<f\left(t_{2}\right)
$$

Complex preferences

The prioritisation, also known as lexicographical order:

$$
a \& b=a \bowtie T_{b}+1_{a} \bowtie b
$$

This means:

- Better w.r.t. a, and if equal w.r.t. a then better w.r.t. b

But does this meet the user expectation?

Complex preferences

The prioritisation, also known as lexicographical order:

$$
a \& b=a \bowtie T_{b}+1_{a} \bowtie b
$$

This means:

- Better w.r.t. a, and if equal w.r.t. a then better w.r.t. b

But does this meet the user expectation?

- For a being layered:
- Incomparable tuples form equivalence classes
- Instead of "equal w.r.t. a"
\longrightarrow "equal w.r.t. these equivalence classes"
- Formal basis: SV-Semantics (substitutable values)

Definition (SV relation)

For $a:: T_{a}^{2}$ we call $s_{a}:: T_{a}^{2}$ an $S V$ relation for a, if:
1 The relation s_{a} is an equivalence relation

Substitutable values

Definition (SV relation)

For $a:: T_{a}^{2}$ we call $s_{a}:: T_{a}^{2}$ an SV relation for a, if:
1 The relation s_{a} is an equivalence relation
$2 s_{a}$ is compatible with a :
$1 s_{a} \sqcap a=0_{a}$,
$2 s_{a} \cdot a \leq a$,
$3 a \cdot s_{a} \leq a$.
Default SV relation: $s_{a}=1_{a}$.

Substitutable values

Definition (SV relation)

For $a:: T_{a}^{2}$ we call $s_{a}:: T_{a}^{2}$ an $S V$ relation for a, if:
1 The relation s_{a} is an equivalence relation
$2 s_{a}$ is compatible with a :
$1 s_{a} \sqcap a=0_{a}$,
$2 s_{a} \cdot a \leq a$,
$3 a \cdot s_{a} \leq a$.
Default SV relation: $s_{a}=1 a$.

Lemma

If $a:: T^{2}$ is a layered preference then $s_{a}=\overline{a+a^{-1}}$ is an SV relation.

Complex preferences

Definition (Prioritisation and Pareto composition with SV)

For $a:: T_{a}^{2}$ and $b:: T_{b}^{2}$ with $S V$ relations $s_{a}:: T_{a}^{2}$ and $s_{b}:: T_{b}^{2}$:

- Prioritisation:

$$
\begin{aligned}
& a \& b::\left(T_{a} \bowtie T_{b}\right)^{2} \\
& a \& b=a \bowtie T_{b}+s_{a} \bowtie b
\end{aligned}
$$

- Pareto composition:

$$
\begin{aligned}
& a \otimes b::\left(T_{a} \bowtie T_{b}\right)^{2} \\
& a \otimes b=a \bowtie\left(s_{b}+b\right)+\left(s_{a}+a\right) \bowtie b
\end{aligned}
$$

We say that $a \& b$ or $a \otimes b$ is SV-preserving if

$$
s_{a \& b}=s_{a} \bowtie s_{b} \text { or } s_{a \otimes b}=s_{a} \bowtie s_{b}
$$

Maximal elements

- The preference selection returns maximal elements!

Definition (Maximal elements)

For $a:: T^{2}$ and a set $p:: T$ we define

$$
a \triangleright p={ }_{d f} p-\langle a\rangle p .
$$

- $\langle a\rangle p$ consists of all elements having an a-successor.

Maximal elements

- The preference selection returns maximal elements!

Definition (Maximal elements)

For $a:: T^{2}$ and a set $p:: T$ we define

$$
a \triangleright p={ }_{d f} p-\langle a\rangle p .
$$

- $\langle a\rangle p$ consists of all elements having an a-successor.

Example

- Let $p=t_{0}+\ldots+t_{3}$
- $\langle a\rangle p=t_{0}+t_{1}$
- $a \triangleright p=t_{2}+t_{3}$

A first example

Example

Consider the following dataset r and preference a:

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

$$
a=\underbrace{(\operatorname{LOWEST}(\text { fuel }) \otimes \operatorname{HIGHEST}(\text { power }))}_{b} \& \underbrace{\operatorname{POS}(\text { color },\{\text { black }}_{c}\})
$$

A first example

Example

Consider the following dataset r and preference a :

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

$$
a=\underbrace{(\operatorname{LOWEST}(\text { fuel }) \otimes \operatorname{HIGHEST}(\text { power }))}_{b} \& \underbrace{\operatorname{POS}(\text { color },\{\text { black }}_{c}\})
$$

A first example

Example

Consider the following dataset r and preference a :

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

$$
a=\underbrace{(\operatorname{LOWEST}(\text { fuel }) \otimes \operatorname{HIGHEST}(\text { power }))}_{b} \& \underbrace{\operatorname{POS}(\text { color },\{\text { black }\}}_{c})
$$

Pareto: Not a weak order

Example

- Let $a:: A^{2}, b:: B^{2}$ with $D_{A}=D_{B}=\{0,1,2\}$ be the $<-$ order on \mathbb{N}
- Consider the incomparability relation $s_{\text {inc }}={ }_{d f} \overline{(a \otimes b)+(a \otimes b)^{-1}}$.

$\Rightarrow s_{\text {inc }}$ is not transitive
\Rightarrow It is no equivalence relation, hence no SV relation

Transforming general preferences to weak orders

- $a \otimes b$ is in general not layered!
- Can we construct a layered preference from it?

Transforming general preferences to weak orders

- $a \otimes b$ is in general not layered!
- Can we construct a layered preference from it?

The strategy: For a dataset r and a preference a we calculate:

- The maxima set: $q_{0}=a \triangleright r$
- The remainder: $r_{1}=r-q_{0}$
- The maxima therein: $q_{1}=a \triangleright r_{1}, \ldots$
\Rightarrow This yields a layered preference by construction

Transforming general preferences to weak orders

- $a \otimes b$ is in general not layered!
- Can we construct a layered preference from it?

The strategy: For a dataset r and a preference a we calculate:

- The maxima set: $q_{0}=a \triangleright r$
- The remainder: $r_{1}=r-q_{0}$
- The maxima therein: $q_{1}=a \triangleright r_{1}, \ldots$
\Rightarrow This yields a layered preference by construction

Definition (Layer-i Elements)

For $i=0,1,2, \ldots$ we define the tests q_{i} and r_{i} :

$$
q_{i}=d f \quad a \triangleright r_{i} \text { where } r_{i}=d f r-\sum_{j=0}^{i-1} q_{j} .
$$

By convention, the empty sum is 0_{a}.

Visualisation

Figure: Visualisation for a Pareto preference on $[0,3] \times[0,2] \quad$ (Preisinger09)

Properties of Iterated Maxima

- The q_{i} are calculated recursively:

$$
q_{i}=d f \quad a \triangleright r_{i} \text { where } r_{i}=d f \quad r-\sum_{j=0}^{i-1} q_{j}
$$

- Is there a non-recursive formula for the q_{i} ?

Properties of Iterated Maxima

- The q_{i} are calculated recursively:

$$
q_{i}=d f \quad a \triangleright r_{i} \text { where } r_{i}=d f r-\sum_{j=0}^{i-1} q_{j}
$$

- Is there a non-recursive formula for the q_{i} ?

Lemma (Closed formula for layer-i elements)

For $i \in \mathbb{N}$ we have:
$1(r a)^{i+1} \leq(r a)^{i}$
$2\left\langle(r a)^{i+1}\right\rangle r \leq\left\langle(r a)^{i}\right\rangle r$,
$3 r_{i}=\left\langle(r a)^{i}\right\rangle r$.

Lemma

1 Let r be finite. Then the calculation of the r_{i} becomes stationary, i.e.

$$
\exists N \in \mathbb{N} \text { with } N=\max \left\{k \in \mathbb{N} \mid r_{k} \neq 0_{a}\right\}
$$

2 The q_{i} form a partition:

- The q_{i} cover r, i.e., $\sum_{i=0}^{N} q_{i}=r$.
- The q_{i} are pairwise disjoint, i.e., for $i \neq j$ we have $q_{i} \cdot q_{j}=0_{a}$.

Induced layered preference

Definition (Induced layered preference)

Let a be a preference and r a basic set, q_{i} and N as before. We define:

$$
b_{i j}=q_{i} \cdot T_{a} \cdot q_{j} \text { for } i, j \in[0, N]
$$

and the induced layered preference $m(a, r):: T_{a}[r]^{2}$

$$
m(a, r)=d f \sum_{i>j} b_{i j}
$$

$T_{a}[r]$ is a sub-type of T_{a} with identity r and greatest element $r \cdot T_{a} \cdot r$.

Induced layered preference

Definition (Induced layered preference)

Let a be a preference and r a basic set, q_{i} and N as before. We define:

$$
b_{i j}=q_{i} \cdot T_{a} \cdot q_{j} \text { for } i, j \in[0, N]
$$

and the induced layered preference $m(a, r):: T_{a}[r]^{2}$

$$
m(a, r)=d f \sum_{i>j} b_{i j}
$$

$T_{a}[r]$ is a sub-type of T_{a} with identity r and greatest element $r \cdot T_{a} \cdot r$.
A corresponding SV relation $s_{m(a, r)}$ is defined as

$$
s_{m(a, r)}=d f \sum_{i} b_{i i}
$$

Well-definedness and useful properties

Lemma (Well-definedness)
1 The relation $m(a, r)$ from the previous definition is a layered preference.
$2 s_{m(a, r)}$ is an SV relation for $m(a, r)$.

Well-definedness and useful properties

Lemma (Well-definedness)

1 The relation $m(a, r)$ from the previous definition is a layered preference.
$2 s_{m(a, r)}$ is an SV relation for $m(a, r)$.

Lemma (Useful properties)

- The original preference is still contained in $m(a, r)$:

$$
r \cdot a \cdot r \leq m(a, r)
$$

- The induced SV relation is part of the incomparability relation:

$$
s_{m(a, r)} \leq r \cdot \overline{\left(a+a^{-1}\right)} \cdot r
$$

Proof of the well-definedness Lemma

Proof (Well-definedness).

- Strict order property of $m(a, r)$ is quite clear
- We show negative transitivity of $m(a, r)$:

$$
(\overline{m(a, r)})^{2}=\left(\sum_{i \leq j} b_{i j}\right) \cdot\left(\sum_{k \leq 1} b_{k l}\right)=\sum_{i \leq j \leq 1} b_{i j} \cdot b_{j l} \leq \sum_{i \leq 1} b_{i l}=\overline{m(a, r)}
$$

Proof of the well-definedness Lemma

Proof (Well-definedness).

- Strict order property of $m(a, r)$ is quite clear
- We show negative transitivity of $m(a, r)$:

$$
(\overline{m(a, r)})^{2}=\left(\sum_{i \leq j} b_{i j}\right) \cdot\left(\sum_{k \leq 1} b_{k l}\right)=\sum_{i \leq j \leq 1} b_{i j} \cdot b_{j l} \leq \sum_{i \leq 1} b_{i l}=\overline{m(a, r)}
$$

- We show that $s_{m(a, r)}$ is the incomparability relation of $m(a, r)$:

$$
\overline{m(a, r)+m(a, r)^{-1}}=\overline{\sum_{i>j} b_{i j}+\sum_{i<j} b_{i j}}=\overline{\sum_{i \neq j} b_{i j}}=\sum_{i} b_{i i}=s_{m(a, r)}
$$

- This shows that $s_{m(a, r)}$ is an SV relation (by a previous lemma)

Application: Pareto-regular preference

- We apply $m(\ldots)$ to the Pareto preference
- This yields a weak order
- "regular": SV relation is the incomparability relation

Application: Pareto-regular preference

- We apply $m(\ldots)$ to the Pareto preference
- This yields a weak order
- "regular": SV relation is the incomparability relation

Definition (Pareto-regular preference)

Let $a:: T_{a}^{2}, b:: T_{b}^{2}$ and $r:: T_{a} \bowtie T_{b}$.

$$
\begin{aligned}
& a \otimes_{\mathrm{reg}} b::\left(T_{a} \bowtie T_{b}\right)^{2} \\
& a \otimes_{\mathrm{reg}} b=m(a \otimes b, r) \\
& s_{a \otimes_{\mathrm{reg}} b}=s_{m(a \otimes b, r)} \quad\left(=\overline{\left(a \otimes_{\mathrm{reg}} b\right)+\left(a \otimes_{\mathrm{reg}} b\right)^{-1}}\right)
\end{aligned}
$$

The difference in practice

Example

Consider again the following dataset r and preference a :

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

$$
a=\underbrace{\left(\operatorname{LOWEST}(f u e l) \otimes_{\text {reg }} \operatorname{HIGHEST}(\text { power })\right)}_{b} \& \underbrace{\operatorname{POS}(\text { color },\{\text { black }\}}_{c})
$$

The difference in practice

Example

Consider again the following dataset r and preference a :

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

$$
a=\underbrace{\left(\operatorname{LOWEST}(\text { fuel }) \otimes_{\text {reg }} \operatorname{HIGHEST}(\text { power })\right)}_{b} \& \underbrace{\operatorname{POS}(\text { color },\{\text { black }\}}_{c})
$$

The difference in practice

Example

Consider again the following dataset r and preference a :

Model	Fuel	Power	Color
BMW 5	11.4	230	silver
Mercedes E	12.1	275	black
Audi 6	12.7	225	red

\Rightarrow (Mercedes) and (BMW) are equivalent according to s_{b}
\Rightarrow Preference c decides for (Mercedes)
$\Rightarrow a \triangleright r=$ (Mercedes)

Aspects of implementation

- $\otimes_{\text {reg }}$ is not associative!

Aspects of implementation

- $\otimes_{\text {reg }}$ is not associative!
- We decided to implement a regularised prioritisation $\&_{\text {reg }}$:

$$
a \&_{\mathrm{reg}} b={ }_{d f} m(a, r) \& b
$$

- Thus we have

$$
(a \otimes b) \& \&_{\mathrm{reg}} c=\left(a \otimes_{\mathrm{reg}} b\right) \& c
$$

Aspects of implementation

- $\otimes_{\text {reg }}$ is not associative!
- We decided to implement a regularised prioritisation $\&_{\text {reg }}$:

$$
a \&_{\mathrm{reg}} b={ }_{d f} m(a, r) \& b
$$

- Thus we have

$$
(a \otimes b) \&_{\mathrm{reg}} c=\left(a \otimes_{\mathrm{reg}} b\right) \& c
$$

- For the calculation of maxima:

$$
\left(a \&_{\text {reg }} b\right) \triangleright r=b \triangleright a \triangleright r
$$

Aspects of implementation

- $\otimes_{\text {reg }}$ is not associative!
- We decided to implement a regularised prioritisation $\&_{\text {reg }}$:

$$
a \&_{\mathrm{reg}} b={ }_{d f} m(a, r) \& b
$$

- Thus we have

$$
(a \otimes b) \&_{\mathrm{reg}} c=\left(a \otimes_{\mathrm{reg}} b\right) \& c
$$

- For the calculation of maxima:

$$
\left(a \&_{\text {reg }} b\right) \triangleright r=b \triangleright a \triangleright r
$$

- Note that for MAX-Queries (i.e. (...) $\triangleright(\ldots))$ only q_{0} is relevant
- For TOP-k querys the situation is more complex!

Conclusion and Outlook

What was done in this paper:

- Extended our calculus to preferences with SV-Semantics
- Introduced the Pareto-regular preference
- Point-free proofs for useful properties of it

Conclusion and Outlook

What was done in this paper:

- Extended our calculus to preferences with SV-Semantics
- Introduced the Pareto-regular preference
- Point-free proofs for useful properties of it

This work is part of a larger project:

- An advanced formalisation of "preference algebra"
- A toolbox for constructing preference evaluation algorithms
- A comprehensive algebraic description of "preference algebra"

Conclusion and Outlook

What was done in this paper:

- Extended our calculus to preferences with SV-Semantics
- Introduced the Pareto-regular preference
- Point-free proofs for useful properties of it

This work is part of a larger project:

- An advanced formalisation of "preference algebra"
- A toolbox for constructing preference evaluation algorithms
- A comprehensive algebraic description of "preference algebra"

The next steps:

- Formalising projections, e.g. $\left.(a \bowtie b)\right|_{T_{a}}=a$
- Applying the calculus at a larger scale using machine assistance

