Static Analysis for JavaScript-Style Eval

Dr Martin Lester

University of Oxford

2016-08-08



Motivation

Web applications written in the dynamically typed language
JavaScript regularly handle sensitive data.

> Reasoning about their behaviour is an important security
problem.

» JavaScript is a difficult language to reason about.

Why is JavaScript difficult?

» Many features, including eval, which is widely used.

> eval takes a string, interprets it as a piece of code, then
executes that code.

» We can think of eval as a form of metaprogramming.

What can we do about eval?



Analysing Eval

Analysing eval is hard!
> The eval construct takes a string and executes it as code.

» |ts behaviour can be so variable that static analysis seems
utterly hopeless.

» Metaprogramming is in general poorly understood.

Naive approach:

» Use a string analysis to work find out all the string values that
might be evaled, then analyse the code strings.

» Fine if you only have finitely many code strings.

» Otherwise doomed.

x="2"
while (())
x="2x%x" +x

eval x



Staged Metaprogramming

How can we make eval easier to analyse statically?
» A code string is difficult to analyse because it has no structure.

> In practice, programs construct evaled code mainly by splicing
together code templates.

The staged metaprogramming formalism introduces three
primitives to capture this:

» box — turns an expression into a code value;

» unbox — marks a hole in a code value that can be filled by
another code value;

» run — executes a code value as code.



The Boxing Algorithm
The Boxing Algorithm provides an automated transformation from
eval to staged metaprogramming.
The basic idea is that we transform:
» code constants into box expressions;
» concatenation of code strings into splicing using unbox;

» eval into run.

For example: becomes:

let x ="y" in let x =box y in

eval x run x

while: becomes:

let f =fun(z){3 %z} in let f = fun(z){3 %z} in
let y ="2" in let y = box 2 in

let x="£("+y+")"in let x = box(f(unbox y)) in
eval x run x



Outline
The basic idea is simple enough:

>
>

>
>

Assume eval does nothing.

Use a string analysis to work out which strings get evaled or
concatenated to form new code values.

Parse the strings and replace with box expressions.

Replace concatenation with use of unbox.

However, there are many complications:

>
>

Concatenation can change how a string is lexed /parsed.
We need to be able to parse “incomplete” expressions
containing holes.

The evaled code could introduce new uses of eval, or new
code strings . ..

...s0 we need to repeat the analysis with the transformed
program

> ... (until we eventually reach a fixed point or get stuck)

...which means the string analysis needs to work with staged
metaprogramming.



Outline
The basic idea is simple enough:

>
>

>
>

Assume eval does nothing.

Use a string analysis to work out which strings get evaled or
concatenated to form new code values.

Parse the strings and replace with box expressions.

Replace concatenation with use of unbox.

However, there are many complications:

>
>

vy

Concatenation can change how a string is lexed /parsed.

We need to be able to parse “incomplete” expressions
containing holes.

The evaled code could introduce new uses of eval, or new
code strings . ..

...s0 we need to repeat the analysis with the transformed
program

... (until we eventually reach a fixed point or get stuck)
...which means the string analysis needs to work with staged
metaprogramming.

Thanks for listening. Any questions?



