
Static Analysis for JavaScript-Style Eval

Dr Martin Lester

University of Oxford

2016–08–08



Motivation

Web applications written in the dynamically typed language
JavaScript regularly handle sensitive data.

I Reasoning about their behaviour is an important security
problem.

I JavaScript is a difficult language to reason about.

Why is JavaScript difficult?

I Many features, including eval, which is widely used.

I eval takes a string, interprets it as a piece of code, then
executes that code.

I We can think of eval as a form of metaprogramming.

What can we do about eval?



Analysing Eval

Analysing eval is hard!

I The eval construct takes a string and executes it as code.

I Its behaviour can be so variable that static analysis seems
utterly hopeless.

I Metaprogramming is in general poorly understood.

Naive approach:

I Use a string analysis to work find out all the string values that
might be evaled, then analyse the code strings.

I Fine if you only have finitely many code strings.

I Otherwise doomed.

x = ”2”
while (f ())

x = ”2 ∗ ” + x
eval x



Staged Metaprogramming

How can we make eval easier to analyse statically?

I A code string is difficult to analyse because it has no structure.

I In practice, programs construct evaled code mainly by splicing
together code templates.

The staged metaprogramming formalism introduces three
primitives to capture this:

I box — turns an expression into a code value;

I unbox — marks a hole in a code value that can be filled by
another code value;

I run — executes a code value as code.



The Boxing Algorithm
The Boxing Algorithm provides an automated transformation from
eval to staged metaprogramming.
The basic idea is that we transform:

I code constants into box expressions;
I concatenation of code strings into splicing using unbox;
I eval into run.

For example: becomes:

let x = "y" in let x = box y in

eval x run x

while: becomes:

let f = fun(z){3 ∗ z} in let f = fun(z){3 ∗ z} in

let y = "2" in let y = box 2 in

let x = "f(" + y + ")" in let x = box(f (unbox y)) in

eval x run x



Outline
The basic idea is simple enough:

I Assume eval does nothing.
I Use a string analysis to work out which strings get evaled or

concatenated to form new code values.
I Parse the strings and replace with box expressions.
I Replace concatenation with use of unbox.

However, there are many complications:
I Concatenation can change how a string is lexed/parsed.
I We need to be able to parse “incomplete” expressions

containing holes.
I The evaled code could introduce new uses of eval, or new

code strings . . .
I . . . so we need to repeat the analysis with the transformed

program
I . . . (until we eventually reach a fixed point or get stuck)
I . . . which means the string analysis needs to work with staged

metaprogramming.

Thanks for listening. Any questions?



Outline
The basic idea is simple enough:

I Assume eval does nothing.
I Use a string analysis to work out which strings get evaled or

concatenated to form new code values.
I Parse the strings and replace with box expressions.
I Replace concatenation with use of unbox.

However, there are many complications:
I Concatenation can change how a string is lexed/parsed.
I We need to be able to parse “incomplete” expressions

containing holes.
I The evaled code could introduce new uses of eval, or new

code strings . . .
I . . . so we need to repeat the analysis with the transformed

program
I . . . (until we eventually reach a fixed point or get stuck)
I . . . which means the string analysis needs to work with staged

metaprogramming.

Thanks for listening. Any questions?


