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Let’s do theory



Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Homogeneous generative meta-programming (HGMP) is the
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Meta-programming is simple if you don’t care about
convenient handling of programs as data. Just use strings.
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History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).



History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).



History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).



History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).



History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).



And then there is ...

Uber lormal unentscheidbare S~tze der Principia 
Mathematica und verwandter Systeme I~). 

Von Kur~ GSdel in Wien. 

i t  
Die Entwicklung der Mathematik in der Richtung zu grS~erer 

Exakthei t  hat bekanntlich dazu geftihrt ,  dal~ weite Gebiete yon ihr 
foi'malisiert wurden~ in der Art~ daft d a s  Beweisen nach einigen 
wenigen mechanischen Regeln vollzogen werden kann. Die umfas- 
sendsten derzeit aufgestellten formalen Systeme sind das System der 
Principia Mathematica (PM)~) einerseits~ das Z e r m e l o - F r a e n k e l -  
sche (yon J. v. N e u m a n n  welter ausgebildete) Axiomensystem der 
~engenlehre~) andererseits. Diese beiden Systeme sind so weir, da~ 
alle heute in der Mathematik angewendeten Beweismethoden in ihnen 
formalisiert, d .h .  auf einige wenige ~ Axiome uad Schlultregeln zuriiek- 
geftihrt sind. Es liegt daher die Vermutung nahe, da~ diese Axiome 
und Sehlultregeln dazu ausreichen, a l l e  mathematisehen Fragen~ die 
sich in den betreffenden Systemen tiberhaupt formal ausdriicken 
lassen: aueh zu entscheiden. Im folgenden wird gezeigt~ da~ dies 
nieht der Fall ist, sondern dait es in den beiden angefiihrten 
Systemen sogar relativ einfache Probleme aus der Theorie der ge- 
wShnliehen ganzen Zahlen g ib t4 ) /d i e  sich aus den Axiomen nicht 

1) Vgl. die im Anzeiger der Akad. d. Wiss. in Wien (math.-naturw. KI.) 1930, 
Nr. 19 erschienene Zusammenfassung der Resultate dieser Arbeit. 

3) A. Whi tehead  und B. Russel l ,  Principia Mathematica, 2. Aufl., 
Cambridge 1925. Zu den Axiomen des Systems PM rechnen wir insbesondere 
aueh: Das Unendlichkeitsaxiom (in der Form: es gibt genau abziihlbar viele 
Individuen), das ReduzibilitAts- und das Auswahlaxiom (ftir alle Typen). 

~) Vgl. A. Fraenkel ,  Zehn Vorlesungen iiber die Grundlegung der Men- 
genlehre, Wissensch. u. Hyp. Bd. XXXI. J,v. Neumann, Die Axiomatisierung 
der Mengenlehre. Math. Zeitschr. 27, 1928. Journ. f. reine u. angew. Math. 154 
(1925), 160 (1929). Wir bemerken, daii man zu den in der angeftihrten Literatur 
gegebenen mengentheoretisehen Axiomen noeh die Axiome und Schh~regeln des 
Logikkalktils hinzufiigen muir, um die Formalisierung zu vollenden. - -  Die 
naehfolgenden Oberlegungen gelten aueh ftir die in den letzten Jahren yon 
D. H ilb e r t und seinen Mitarbeitern aufgestellten formalen Systeme (soweit diese 
bisher vorliegen). Vgl. D. Hi lber t ,  Math. Ann. 88, Abh. aus d. math. Sem. der 
Univ. Hamburg I (1922), VI (1928). P. B ernay s, Math. Ann. 90. J.v.Neumann, 
Math. Zeitsehr. 26 (1927). W. Aekermann,  Math. Ann. 93... 

4) D.h. genauer, es gibt unentseheidbare Shtze, in denen aul]er den logi- 
sehen Konstanten: - -  (nieht), V (0der), (x) (far alle), = (identiseh mit) keine 
anderen Begriffe vorkomfnen als + (Addition), . (Multip!ikation), beide bezogen 
auf nattirliehe Zahlen, wobei aueh die Pri~fixe (x) sich nur auf nattlrliehe Zahlen 
beziehen dtirfen. 
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Arithmetisation of syntax

O b~r formal tmen~scheidbare Siitze der Principia Mathematica etc. 179 

,,0" . . .  1 , , V " . . -  7 , , ( ~ . . .  l l  

,,f~ . . . 3  ,~II" . : . 9  71)".- .  13 
~c~" . . . 5 

ferner den Variablen n-ten Typs die Zahlen der Form p'~ (wo p 
eine Primzahl > 13 ist). Dadureh entsprieht jeder endliehen Reihe 
yon Grundzeiehen (also aueh jeder Formel) in sineindeutiger Weise 
eine endlishe Rsihe nattirlieher Zahlsn. Die sndlishen Reihen natiir- 
licher Zahlen bilden wir nun (wieder eineindeutig) auf nattirliche 
Zahlen ab, indem wir der Reihs nl,  n , ~ . . ,  nk dis Zahl 2 , 1 . 3 , 3 . . . p k  ~k 
sntsprechen lassen, wo pk dis k-ts Yrimzahl (der GrSl]e hash) be- 

dentet.  Dadurch ist nicht nur jedem Grundzsichen, sondern auch 
jeder endlichen Re ihe  yon solchsn in eineindeutiger Wsise eine 
nattirliche Zahl zugeordnet. Aih-e dem Grundzeichen b~_ , .A .~  Grup~nd- 
zeichenre.ihs)__a zugeordnete Zahl bezeich-nen--w~r-n{it (P (a). Sci ntiS-" 

zeishen oder Reihen yon solchen gegeben. Wir ordnen ihr diejsnige 
Klasse (Relation) /~' (x,, x ~ . . .  x=) zwisehen natiirliehen Zahlen z u ,  
welche dann und nur dann zwischen x~, x o . . .  x~ besteht, wenn 
es solehs a~, a ~ . . .  a,~ gibt, daf~ x ~ =  (P(a~) ( i :  1, 2 , . . .  n) und 
1/(a~, a~ . . . a.) gilt. Diejenigen Klassen nnd Relationen natiirlicher 
Zahlen, welehe auf diese Weise den bisher dsfinierten mstamathema- 
tisshen Begriffen, z.B. ,Variable", ,Formel", ,,SatzformeV, ,,Axiom", 
,beweisbare Formel '~ usw. zugeordnst sind, bezeichnen w i r  mit 
denselben Worten in Kursivschriff. Der Satz, dag es im System P 
unentseheidbare Probleme gibt, lautet z. B. fo]genderma$en: Es gibt  
Satzformeln a, so dal~ weder a noch dis _Negation yon a beweis- 
bare 2Vormeln sind. 

Wir sehalten nun sine Zwisehenbetrashtung sin, die mit ~-cm-! 
formalen System P vorderhand niehts zu tun hat, nnd geben zuniichsr 
folgende Definition: Eine zahlentheoretische Funktion 2~) ~0 (X~, x: . . .  x,~) 
heist r e k u r s i v  d e f i n i e r t  aus  den zahlentheoretischen Funktionen 
5 (xi, x~ . . .  x~_~) und y. (x~, x2 . . .  x,~+~), wenn fiir alle x2 . . .  x,,  /~ ~.6) 
folgendss gilt: 

'v (o, ~ .  : .  x~) = `5 (x~ . . .  ~ )  
~ (2) 

? (]r + 1, x~ . . .  x . )  = ~. (]~, ~ (~, x~ . . .  x . ) ,  x~ . . .  x . ) .  

Eine zahlentheoretische Funktion ? hsi~t r e k u r s i v ,  wenn cs 
eine sndliche Reihe yon * zahlentheor.Fnnktmnen ~ ,  ~72... % gibt, wslehe 
mit ~ endet and dis Eigensehaft hat, dal~ jeds  Funktion ~ der Reihs 
entwedsr aus zwsi dsr vorhergchsnden rskursiv definiert ist oder 

"~) D. h. ihr Definitionsbereieh ist die Klasse der nieht negativen ganzen 
Zahlen (bzw. der n-tupel yon solchen) und ihre Werte sind nicht negative ganze 
Zahlen. 

~) Kleine lateinische Buchstaben (ev. mit Indizes) sind im folgenden 
immer Variable far nicht negative ganze Zahlen (falls nicht ausdrticklieh dus 
Gegenteil bemerkt ist). 
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Arithmetisation of syntax has been
investigated in detail and led to powerful
proof principles like logical reflection
which strengthens the logic and
computational reflection which makes
proofs shorter.

Much work done by proof theorists and the dependent types
community, connection with ’our’ meta-programming not clear
to me. See J. Harrison, Metatheory and Reflection in Theorem
Proving: A Survey and Critique (1995) for more.
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Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.
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Research hypothesis

The foundation of meta-programming is the function HGMP(·):

λ-calculus
Functional programming

=
HGMP(·)

Meta-programming



Note that HGMP(·) is a theoretical tool, it’s not intended to give
nice result, e.g. good looking syntax.
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Strings

Example, selector function that chooses the i-the component
from an n-tuple.

let pi_1_0 = fun ( x ) -> x;;
let pi_2_0 = fun ( x, _ ) -> x;;
let pi_2_1 = fun ( _, x ) -> x;;
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I Easy to do for basic MP.
I Ubiquitous support.
I Not restricted to a single target language.
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I No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

We reject strings in our foundational approach.
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case class Eq () extends Binop
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case class Lam ( x : Int, m : Term ) extends Term
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case class If ( c : Term, m : Term, n : Term ) extends Term

We call this representation AST (abstract syntax tree), the
workhorse of HGMP.
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DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
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UpML and DownML in Racket

Welcome to Racket v6.5.
> (quasiquote (+ 2 3))
’(+ 2 3)

> (eval (quasiquote (+ 2 3)))
5

> (define f (lambda (x) (quasiquote (* (unquote x) (unquote x)))))

> (f 5)
’(* 5 5)

> (eval (f 5))
25

> (define g (lambda (x) (quasiquote (* 8 (unquote (f x))))))

> (g 3)
’(* 8 (* 3 3))

> (eval (g 3))
72

racket.r
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UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

We will strictly separate both concepts, i.e. our upMLs are not
hygienic.
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HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

I At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.
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HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ... 3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.
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Modern languages and HGMP

Language Strings ASTs UpMLs CT-HGMP RT-HGMP

Converge • • • • •
JavaScript • ◦ ◦ ◦ •
Lisp • • • • •
MetaML ◦ ◦ • ◦ •
Haskell ◦ • • • ◦
Scala ◦ • • • •
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HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.
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HGMP(λ): examples

astvar(”x”) is the AST representation of the variable x

astint(3) is the AST representation of the constant 3

astlam(aststring(”x”),astvar(”x”)) is the AST of λx .x
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Notice something?

Adding ASTs mirrors the syntax of the language. We make a
’copy’ of the base language.

This is not λ-specific, we’d do the same for any other base.
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HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds
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Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program
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⇓ct

Idea: ⇓ct scans for ↓{·} and eliminates them by evaluation and
splicing.

x ⇓ct x VAR CT
M ⇓ct A N ⇓ct B

MN ⇓ct AB APP CT
M ⇓ct N

λx .M ⇓ct λx .N LAM CT

c ⇓ct c CONST CT
M ⇓ct A N ⇓ct B
M + N ⇓ct A + B ADD CT

Mi ⇓ct Ni
astt(M̃) ⇓ct astt(Ñ)

ASTc CT
M ⇓ct A A ⇓λ B B ⇓dl C

↓{M} ⇓ct C DOWNML CT



⇓dl

Idea: ⇓dl removes one layer of ASTs, i.e. goes down a
meta-level.

astvar(”x”) ⇓dl x VAR DL
M ⇓dl M ′ N ⇓dl N ′

astapp(M,N) ⇓dl M ′N ′ APP DL

M ⇓dl ”x” N ⇓dl N ′

astlam(M,N) ⇓dl λx .N ′ LAM DL astint(n) ⇓dl n INT DL

aststring(”x”) ⇓dl ”x” STRING DL
M ⇓dl M ′ N ⇓dl N ′

astadd(M,N) ⇓dl M ′ + N ′ ADD DL

Note that non-ASTs have no ⇓dl rules, they are stuck.
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Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

I λx . ↓{astvar(”x”)} ⇓ct λx .x .
I λy . ↓{astvar(”x”)} ⇓ct λy .x .
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Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.
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Enriching the calculus: higher-order ASTs

What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)
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AST with a tag M and parameters Ñ to be promoted up a
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meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)



Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
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Operational semantics of higher-order ASTs

tagt ⇓dl tagt
PROMOTE TAG

L ⇓dl tagt t 6= promote ... Mi ⇓dl Ni ...

astpromote(L, M̃) ⇓dl astt(Ñ)
PROMOTE DL 1

L ⇓dl tagpromote M ⇓dl tagt ... Ni ⇓dl N ′
i ...

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, Ñ ′)
PROMOTE DL 2

⇓λ and ⇓ct are unchanged as rules, but work on larger set of
programs.



Operational semantics of higher-order ASTs

tagt ⇓dl tagt
PROMOTE TAG

L ⇓dl tagt t 6= promote ... Mi ⇓dl Ni ...

astpromote(L, M̃) ⇓dl astt(Ñ)
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UpMLs (aka quasi-quotes)

We have now finished, and obtained a λ-calculus with CTMP
and RTMP.



UpMLs (aka quasi-quotes)

ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.
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A subtlety

Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))
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Operational semantics for ↑{M}

We introduce a new reduction relation ⇓ul :

M ⇓ul A
↑{M} ⇓ct A UPML CT

M ⇓ct A
↓{M} ⇓ul A DOWNML UL

”x” ⇓ul aststring(”x”) STRING UL
M ⇓ul A N ⇓ul B

MN ⇓ul astapp(A,B)
APP UL

M ⇓ul A
λx .M ⇓ul astlam(aststring(”x”),A) LAM UL tagt ⇓ul tagt

TAG UL

M ⇓ul A
eval(M) ⇓ul asteval(A)

EVAL UL
M ⇓ul A A ⇓ul B
↑{M} ⇓ul B UPML UL

x ⇓ul astvar(”x”) VAR UL
... Mi ⇓ul Ai ...

astt(M̃) ⇓ul astpromote(tagt, Ã)
AST UL



The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Thus RT-HGMP and CT-HGMP are neatly connected as two
facets of the same AST-coin.
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Other features

We can easily add other features, like

I Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) ⇓λ astint(3).

I Cross-level variable scoping.
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Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)
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Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.
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Nothing in the HGMPification of λ-calculus depended on
λ-calculus being the source language. The process was
completely generic.
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HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.
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HGMP(·) semi-formally

Assume C is the set of L ’s program constructors, Lmp’s
constructors and tags then:

T = C ∪ {eval,promote}

Cmp = C ∪ {eval, ↓{_}, ↑{_}} ∪ {astt | t ∈ T} ∪ {tagt | t ∈ T}

The arities and binders of the new syntax are as follows:
I If c ∈ C then its arity and binders are unchanged in Cmp.
I astc has the same arity as c ∈ C and no binders.
I astpromote has variable arity, or, equivalently has arity 2,

with the second argument being of type list. There are no
binders.

I asteval has arity 1 and no binders.
I tagt has arity 0 and no binders for t ∈ T .
I eval, ↓{_}, and ↑{_} have arity 1 and no binders.
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HGMP(·)

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

t ∈ T
t ⇓λ t

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′

... Mi ⇓λ Ni ... t ∈ T
astt(M̃) ⇓λ astt(Ñ)

Constructors with binders are most easily explained by
example. If c has arity 2, with the first argument being a binder,
the following rule must be added:

M ⇓dl ”x” N ⇓dl N ′

astc(M,N) ⇓dl c(x ,N ′)
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The following rules must be added for higher-order ASTs:

L ⇓dl tagt Mi ⇓dl Ni t ∈ T
astpromote(L, M̃) ⇓dl astc(Ñ)

L ⇓dl tagpromote M ⇓dl tagt Ni ⇓dl Ri

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, R̃)
t ∈ T

tagt ⇓dl tagt
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HGMP(·)

Assuming we wish to enable compile-time HGMP, a ⇓ct relation
must be added:

M ∈ {x , ”x”} ∪ {tagt | t ∈ T}
M ⇓ct M

M ⇓ct N
eval(M) ⇓ct eval(N)

Mi ⇓ct Ni c ∈ C
c(M̃) ⇓ct c(Ñ)

Mi ⇓ct Ni t ∈ T
astt(M̃) ⇓ct astt(Ñ)

t ∈ T
tagt ⇓ct tagt

M ⇓ct A A ⇓λ B B ⇓dl C
↓{M} ⇓ct C



Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?
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Conclusion

HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?
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