Foundations of meta-programming

Martin Berger

Cambridge, 9 August 2016

Based on joint work with Laurie Tratt and Christian Urban.

Research programme

A-calculus m”?

Functional programming ~ Meta-programming

Research programme

A-calculus m”?

Functional programming ~ Meta-programming

| want to convince you that the answer is not a calculus.

Research programme

A-calculus m”?

Functional programming ~ Meta-programming

| want to convince you that the answer is not a calculus.

To set the scene, let's remember why A-calculus is good, and
how meta-programming came about.

Why is A-calculus so useful?

Why is A-calculus so useful?

M := x| MM | \Xx.M (AX.M)N — M[N/x]

Why is A-calculus so useful?

M := x| MM | \>x.M (AX.M)N — M[N/x]

Why is A-calculus so useful?

M := x| MM | \>x.M (AX.M)N — M[N/x]

The point of theory is to simplify, to focus on essence.

Real-world programming languages:

Real-world programming languages:

» Strings

» Unicode

» FFI

» Backwards compatibility
» Modules

» Performance

» Ergonomics

In other words a real programming language is:

71/
I

’)' 6/"""“"}’;':! ?“

Let’s do theory

Meta-programming: L-programs as data in L'.

Meta-programming: L-programs as data in L'.

Homogeneous meta-programming: MP where L = L'.

Meta-programming: L-programs as data in L'.
Homogeneous meta-programming: MP where L = L'.

Homogeneous generative meta-programming (HGMP) is the
generation of programs by a program as the latter is being
either compiled or executed.

Meta-programming is simple if you don’t care about
convenient handling of programs as data. Just use strings.

Research on meta-programming is about convenient,
principled, general purpose and safe handling of programs
as data.

Research on meta-programming is about convenient,
principled, general purpose and safe handling of programs
as data.

But first ...

History

| META

History

Quine invents quasi-quote and splicing (1940).

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

History

Quine invents quasi-quote and splicing (1940).
Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

History {METR

Quine invents quasi-quote and splicing (1940).
Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

And then there is ...

| META |

{
i

And then there is ...

Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme IV.
Von Kurt Gddel in Wien.

1.

Die Entwicklung der Mathematik in der Richtung zu groferer
Exaktheit hat bekanntlich dazu gefiihrt, daB weite Gebiete von ihr
formalisiert wurden, in der Art, dal das Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)?) einerseits, das Zermelo-Fraenkel-
sche (von J.v. Neumann weiter ausgebildete) Axiomensystem der
Mengenlehre s) andererseits. Diese beiden Systeme sind so weit, daf
alle heute in der Mathematik angewendeten Beweismethoden in ihnen
formalisiert, d. h. auf einige wenige Axiome und Schlufiregeln zuriick-
gefiihrt sind. Es liegt daher die Vermutung nahe, daf diese Axiome
und Schlufiregeln dazn ausreichen, alle mathematischen Fragen, die
sich in den betreffenden Systemen iiberhaupt formal ausdriicken

s 1 %1 T N e

L D

Arithmetisation of syntax | META |

Uber formal uncnischeidbare Sitze der Principia Mathematica etc. 179

S0¢ .1 ST oL 11
WS .8 L4009 nee .13
S SRR]

”»

ferner den Variablen n-ten Typs die Zahlen der Form p* (wo p
eine Primzahl > 13 ist). Dadurch entspricht jeder endlichen Reihe
von Grundzeichen (also auch jeder Formel) in eineindeutiger Weise
eine endliche Reihe natiirlicher Zahlen. Die endlichen Reihen natiir-
licher Zahlen bilden wir nun (wieder eineindeutig) auf natiirliche
Zahlen ab, indem wir der Reihe n,, ny, . . . 7; die Zahl 27 . 372, ., p,»*
enhprechen lassen, wo p; die k-te Primzahl (der Grofie nach) be-
dentet. Dadurch ist nicht nur jedem Grundzeichen, sondern aunch
jeder endlichen Reibe von solchen in eineindeutiger Weise eine
nattirliche Zahl zngeordnet. Die dem Grundzejchen (bzw. der Grund-

zeichenreihe) a_zugeordnete Zahl bezelc]fnen wir mit P (¢). Sei nun
1m€lKla§§e “oder Relation R{(a,, ay ... @tn) zwischen Grund-
zelehen oder Reihen von solchen gegeben. Wir ordnen ihr diejenige
Klasse (Relation) R’ (z,, @, . . . 2,) zwischen natiirlichen Zahlen zu, .
welche dann und nur dann zwischen #,, a, ...z, besteht, wenn
es solche a,, a5 ... a, gibt, daB ;=P (@) (i=1, 2,... n) und
R (a,a, . .. a,) gilt. Digjenigen Klassen und Relationen natiirlicher '

Arithmetisation of syntax J ETA.

Arithmetisation of syntax has been
investigated in detail and led to powerful
proof principles like logical reflection
which strengthens the logic and
computational reflection which makes
proofs shorter.

Arithmetisation of syntax 1ME,Ti\J

Arithmetisation of syntax has been
investigated in detail and led to powerful
proof principles like logical reflection
which strengthens the logic and
computational reflection which makes
proofs shorter.

Much work done by proof theorists and the dependent types
community, connection with ’our’ meta-programming not clear
to me. See J. Harrison, Metatheory and Reflection in Theorem
Proving: A Survey and Critique (1995) for more.

Meta-programming, circa August 2016 P“Ej’q

ri Z“

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

| \
————

—— t
| META |
|

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.

Is it a solved problem in practise?

Is it a solved problem in practise?

Is it a solved problem in practise? | META

Scala just gutted it’s original HGMP approach, to be replaj:ed
by scala.meta.

Is it a solved problem in practise? KMET—A'
Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.

C++ template meta-programming is not pretty.

1} i
s it a solved problem in practise? :—MEJ—“ J

Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Is it a solved problem in practise? (HAETR

Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.
MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

s it a solved problem in practise? | META |

Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.
MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Is it a solved problem in practise? | META |
Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.
MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Is it a solved problem in practise? tMETA

Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.
MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Is it a solved problem in practise? tMETA

Scala just gutted it’s original HGMP approach, to be replaced

by scala.meta.
C++ template meta-programming is not pretty.
MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in theory?

Is it a solved problem in theory?

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

Is it a solved problem in theory? ETA |

No convincing theory of HGMP program equality.
No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

Is it a solved problem in theory?

No convincing theory of HGMP program equality.
No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

Is it a solved problem in theory?

No convincing theory of HGMP program equality.
No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Not a solved problem, but ...

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Good news 3: problems look fairly tractable, no P Z NP-like
difficulties. Lot’s of theory ready to go, e.g. nominal techniques,
proof assistants.

Why are these problems still open? P“Ej’q

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Why are these problems still open? ,,,f’,ﬂ:

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

Why are these problems still open? %ME,T?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open? }ME,TK

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

Why are these problems still open? %ME’TA/J

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

| have +his brond
new idea

Why are these problems still open? ,,fj

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

| have +his brond
new idea

Adding HGMP is deceptively easy to the untrained eye ...

Why are these problems still open?

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

| have +his brond
new idea

Adding HGMP is deceptively easy to the untrained eye ... just
add a data type representing programs ...

How hard can it be?

How hard can it be?

How hard can it be?
Remember: real programming languages are a mess

How hard can it be? ﬂ ETA.
Remember: real programming languages are a mess

Adding HGMP to mess, means we need to create meta-mess,
meta-meta-mess ... and think about how mess, meta-mess,
meta-meta-mess ... relate.

|META |

Time for theory

Let’s simplify

Let’s simplify

A-calculus m”?

Functional programming Meta-programming

Let’s simplify

A-calculus 77?7

Functional programming Meta-programming

... that means we focus on the essential features of HGMP,
and nothing else.

v

Language representation (code as data)
Language levels (base, meta, meta-meta ...)
Navigation between language levels
Computation is driven by the base-language

v

v

v

Let’s simplify

We ignore:

>

>

v

v

v

Hygiene

Types

Notions of equality
Beauty of syntax
Efficiency, performance

Let’s simplify

We ignore:

>

>

v

v

v

But:

Hygiene

Types

Notions of equality
Beauty of syntax
Efficiency, performance

Let’s simplify

We

>

>

v

v

v

But

ignore:

Hygiene

Types

Notions of equality
Beauty of syntax
Efficiency, performance

: What base language?

What base language?

The PL research community will likely say A-calculus.

What base language?

The PL research community will likely say A-calculus.

This is not a bad choice.

What base language?

The PL research community will likely say A-calculus.
This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages.

What base language? {META |

The PL research community will likely say A-calculus.
This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages. l.e. an explicit function HGMP(-):

L— L'

taking a programming language L as input and returning as
output a language L' that is the HGMPified version of L.

Why arbitrary base language? PLE.T’,q

Why arbitrary base language?

Remember real-world programming languages:

Why arbitrary base language? ﬁ ETA

Remember real-world programming languages:

We want the transition
mess — meta-mess

automatised ...

Why arbitrary base language? | META |

Remember real-world programming languages:

We want the transition
mess — meta-mess

automatised ...

... SO we can experiment with languages without being drowned
in uninteresting minutiae.

Research hypothesis %ME,TA

The foundation of meta-programming is the function HGMP(-):

A-calculus B HGMP(-)
Functional programming ~ Meta-programming

Note that HGMP(-) is a theoretical tool, it’s not intended to give
nice result, e.g. good looking syntax.

But ...

Does HGMP(-) exist at all (as a computable algorithm)?

But |meTa]

Does HGMP(-) exist at all (as a computable algorithm)?

If HGMP(-) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

But ...

Does HGMP(-) exist at all (as a computable algorithm)?

If HGMP(-) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but |
want to sketch why | think HGMP(-) is essentially generic in the
choice of base.

But ...

Does HGMP(-) exist at all (as a computable algorithm)?

If HGMP(-) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but |
want to sketch why | think HGMP(-) is essentially generic in the
choice of base.

| will look at the special case of HGMP(\), and then generalise.

But ...

Does HGMP(-) exist at all (as a computable algorithm)?

If HGMP(-) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but |
want to sketch why | think HGMP(-) is essentially generic in the
choice of base.

| will look at the special case of HGMP(\), and then generalise.

But first: PL empiricism: the HGMP design space

PL empiricism: the HGMP design space PiE.tq

PL empiricism: the HGMP design space

» What kind of MP?
» When is MP executed?
» How are programs represented as data?

} — i
| META |
E

HGMP design space: What kind of MP?

» Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Converge).

» In heterogeneous MP object- and the meta-language are
different (example: compiler written in C from Java to x86).

} — i
| META |
|

HGMP design space: What kind of MP?

» Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Converge).

» In heterogeneous MP object- and the meta-language are
different (example: compiler written in C from Java to x86).

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP? h"1‘E,Tn

» Generative MP: where an object-program is generated
(put together) by a meta-program.

» Intensional MP: where an object-program is analysed
(taken apart) by a meta-program, e.g. reflection.

HGMP design space: What kind of MP? hME,Tn

» Generative MP: where an object-program is generated
(put together) by a meta-program.

» Intensional MP: where an object-program is analysed
(taken apart) by a meta-program, e.g. reflection.

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: How are programs ﬂ ETA
represented as data?

» Using strings.
» ADTs (algebraic data types).

» Higher-level language support, e.g. upMLs, downMLs,
quasi-quotes, inserts and splices.

HGMP design space: How are programs ‘i“‘iEJi‘/,
represented as data?

» Using strings.
» ADTs (algebraic data types).

» Higher-level language support, e.g. upMLs, downMLs,
quasi-quotes, inserts and splices.

Let’s look at them briefly. Consider the following criteria:

» Syntactic overhead
» Support for generating only ‘valid’ programs
» Expressivity

Strings

Strings

Example, selector function that chooses the i-the component
from an n-tuple.

let
let
let
let
let
let
let
let
let
let
let
let
let
let
let

selector.ml

pi 1.0 =

'O ‘s 'O 'O 'O ‘T 'O 'O

e A A O g A A

o I I R A A
IUI IU-I IU-I Im Im Ib Ib Ib Iu> Iw Iw Iw

S W Nk O wNhDEr OoONDRE O

fun
fun
fun
fun
fun
fun
fun
fun
fun
fun
fun
fun
fun
fun
fun

-> X;;
) —-> Xi7
-> X;;
—) -> X;;
—) -> Xj;
X) => x;;
) > x5
T .
X, _) => X;;
s X)) T> X5
—r) —> x5
—r —r —) -> X;
X, _, _) > x;
Xy) > x5
o X)) T> X;;

Advantages of string-based MP

v

Flexible, expressive.

Easy to do for basic MP.

Ubiquitous support.

Not restricted to a single target language.

v

v

v

Disadvantages of string-based MP %ME,TA/’

» No language support for constructing syntactically correct
programs.

» No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

Disadvantages of string-based MP

» No language support for constructing syntactically correct
programs.

» No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

Disadvantages of string-based MP

» No language support for constructing syntactically correct
programs.

» No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

We reject strings in our foundational approach.

ADTs

ADTs

sealed abstract class Binop

case
case
case
case
case

class
class
class
class
class

Add () extends Binop
Sub () extends Binop
Mul () extends Binop
Div () extends Binop
Eq () extends Binop

sealed abstract class Term

case
case
case
case
case
case
case

class
class
class
class
class
class
class

CInt (n : Int) extends Term

Op2 (m : Term, op : Binop, n : Term) ext
Var (x Int) extends Term

App (m Term, n : Term) extends Term
Lam (x Int, m : Term) extends Term

Rec (£ : Int, x : Int, m : Term) extends
If (¢ : Term, m : Term, n : Term) extend

We call this representation AST (abstract syntax tree), the
workhorse of HGMP.

Advantages and disadvantages of ADTs

Advantages and disadvantages of ADTs

Advantage:

Advantages and disadvantages of ADTs &

Advantage:

» ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

Advantages and disadvantages of ADTs &

Advantage:

» ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

» Verbose.

Advantages and disadvantages of ADTs

Advantage:

» ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

» Verbose.

» No support for “hygiene”, i.e. sane management of free
and bound variables. But hygiene is easy to add.

{J Z“

| \
————

What we really want is ...

What we really want is ... | META

... to combine the terseness of strings with the guarantees of
syntactic correctness that ASTs offer.

UpMLs and downML

UpMLs and downML | META

Enter upMLs and downMLs, another good idea from logic, first
introduced in Lisp.

UpMLs (AKA quasi-quotes, backquotes) are quotes with holes.
In the holes we can execute arbitrary programs that produces
code.

DownMLs (AKA splices or inserts) are the corresponding
un-quotation mechanism.

UpMLs and downML

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term 'upMLs’ to highlight an important relationship with
downMLs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term 'upMLs’ to highlight an important relationship with
downMLs.

2+ 3}

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term 'upMLs’ to highlight an important relationship with
downMLs.

2+ 3}

is short for

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term 'upMLs’ to highlight an important relationship with
downMLs.

2+ 3}

is short for

aoStaldd (aStint (2) ’ aStint(S))

UpMLs and downML kM ji"’/’jﬂ

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term 'upMLs’ to highlight an important relationship with
downMLs.

2+ 3}

is short for

aStaldd (aStint (2) ’ aStint(S))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpMLs and downML |META |

ﬁ
DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the

evaluation of an upML. That computation must yield an AST.

UpMLs and downML (METR
DownML (Down Metalevel) indicate “holes” in upMLs. Inside

the holes, arbitrary computation takes place during the

evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

UpMLs and downML (METR
DownML (Down Metalevel) indicate “holes” in upMLs. Inside

the holes, arbitrary computation takes place during the

evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

N2+ M 4}}

b————7
| META |

UpMLs and downML |

DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

N2+ M 4}}
M2+ [H{astin(4 — 1)}}

b————7
| META |

UpMLs and downML |

DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

N2+ UM 4}}
M2+ [H{astin(4 — 1)}}
2+ {astin(3)}}

b————7
| META |

UpMLs and downML |
DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

M2+ {M 4}}
M2+ [H{astin(4 — 1)}}
N2+ {astin(3)}}

™2+ 3}

|y T
| META |

UpMLs and downML |

DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

M2+ {M 4}}

M2+ [H{astin(4 — 1)}}

N2+ {astin(3)}}

™2+ 3}

astada(astini(2), astint(3))

b1
| META |

UpMLs and downML |

DownML (Down Metalevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = Ax.astipi(x — 1):

M2+ {M 4}}

M2+ [H{astin(4 — 1)}}

N2+ {astin(3)}}

™2+ 3}

astada(astini(2), astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpML and DownML in Racket

UpML and DownML in Racket

Welcome to Racket v6.5.
> (quasiquote (+ 2 3))
T(+ 2 3)

> (eval (quasiquote (+ 2 3)))

5

> (define f (lambda (x) (quasiquote (x (unquote x) (unquote x)))))
> (£ 5)

"(x 55)

> (eval (f 5))

25

> (define g (lambda (x) (quasiquote (* 8 (unquote (f x))))))

> (g 3)

T(x 8 (x 3 3))

> (eval (g 3))
72

racket.r

UpMLs and hygiene

UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

b———7
} META |

|

UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

We will strictly separate both concepts, i.e. our upMLs are not
hygienic.

HGMP design space: When is MP executed? 1ME,T“‘

» At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

» At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

—

HGMP design space: When is MP executed? hMEJ“

» At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

» At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

HGMP design space: When is MP executed? MEJ“

i

» At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

» At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

The difference is subtle. The result of CTMP is ‘frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed? %3"1;[4

Example.

print (1) ;
print (2 + eval (print (3); ASTInt (4)))

HGMP design space: When is MP executed? %M-Eli‘f

Example.

print (1) ;
print (2 + eval (print (3); ASTInt (4)))

Evaluates code at run-time using eval and prints ...

HGMP design space: When is MP executed? %M-Eli‘f

Example.

print (1) ;
print (2 + eval (print (3); ASTInt (4)))

Evaluates code at run-time using eval and prints ... 1 3 6

HGMP design space: When is MP executed? E“‘QEJ’/‘:J

Example.

print (1) ;
print (2 + eval (print (3); ASTInt (4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print (1) ;
print (2 + [{print(3); ASTInt (4)})

yields ...

HGMP design space: When is MP executed? h"i T3

Example.

print (1) ;
print (2 + eval (print (3); ASTInt (4)))

Evaluates code at run-time using eval and prints ... 1 3 6
Replacing the eval with a downML to get compile-time
evaluation:

print (1) ;
print (2 + [{print(3); ASTInt (4)})

yields...3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

Modern languages and HGMP P“Ej’q

Modern languages and HGMP

Language Strings ASTs UpMLs CT-HGMP RT-HGMP

Converge . ° ° ° °
JavaScript . o o o .
LiSp ° ° ° ° °
MetaML o o ° o °
Haskell ¢} ° ° ° o
Scala o ° ° . .

HGMP()\) = A-calculus with CTMP and RTMP }N_ETLA{

HGMP()) = A-calculus with CTMP and RTMP %\Eli‘f'

We start with the untyped A-calculus, and CBV.

HGMP()\) = A-calculus with CTMP and RTMP %MEA

We start with the untyped \-calculus, and CBV.

M = x| MN | XM]|c| M+N/| ..

HGMP()) = A-calculus with CTMP and RTMP | META]

We start with the untyped A-calculus, and CBV.

M = x| MN | XM]|c| M+N/| ..

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

 —
I

HGMP()\) = A-calculus with CTMP and RTMP iM,,TiX;
We start with the untyped A-calculus, and CBV.

M = x| MN | XM]|c| M+N/| ..

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M = .. | ast(M)
t == var | app | lam | int | string | add | ...

4

HGMP()) = \-calculus with CTMP and RTMP | MET2,
We start with the untyped A-calculus, and CBV.

M = x| MN | XM]|c| M+N/| ..

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M = .. | ast(M)
t == var | app | lam | int | string | add | ...

An AST constructor asti(M) takes |[M| 4+ 1 arguments. Tag ¢
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP()): examples

HGMP()): examples

astvar("x") is the AST representation of the variable x

HGMP()\): examples

astvar("x") is the AST representation of the variable x

astini(3) is the AST representation of the constant 3

HGMP()\): examples

astvar("x") is the AST representation of the variable x
astini(3) is the AST representation of the constant 3

ast|am(aststr|ng (” X”), aStvar(” X”)) |S the AST Of)\XX

Notice something?

Notice something?

Adding ASTs mirrors the syntax of the language. We make a
‘copy’ of the base language.

This is not A-specific, we'd do the same for any other base.

HGMP()\): adding CTMP

HGMP()\): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

HGMP()\): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o= ..

HGMP()\): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o= ..

Meaning of [{M} is

HGMP()\): adding CTMP ':mME,Ti\fj

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o=

Meaning of [{M} is
» M must be evaluated (= run) at compile-time

HGMP()): adding CTMP | meTA]

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o=

Meaning of [{M} is
» M must be evaluated (= run) at compile-time
» CT-evaluation of M yields an AST

HGMP()\): adding CTMP | meTA]

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o=

Meaning of [{M} is
» M must be evaluated (= run) at compile-time
» CT-evaluation of M yields an AST
» AST gets 'spliced into’ the rest of the AST the compiler is
constructing

HGMP()\): adding CTMP hM

We add downMLs, to indicate compile-time HGMP should
occur.

M = .| {M} t o=

Meaning of [{M} is

>

v

v

v

M must be evaluated (= run) at compile-time
CT-evaluation of M yields an AST

AST gets ’spliced into’ the rest of the AST the compiler is
constructing

Compilation proceeds

Operational semantics of the foundational % ETA |
calculus

We keep the usual |, from A-calculus, but now add a second
phase:

M ﬂct A UA v
~—~— S~~~
compile-time run-time

Ed
i

Operational semantics of the foundational }
calculus

We keep the usual |, from A-calculus, but now add a second
phase:

M ﬂct A UA v
~—~— S~~~
compile-time run-time

How does |} work?

Operational semantics of the foundational ELMEJA

calculus
We keep the usual |, from A-calculus, but now add a second
phase:

compile-time run-time

How does |} work?

» ot 'searches’ through code for |{M} to eliminate them.

Operational semantics of the foundational E[METAJ

calculus
We keep the usual |, from A-calculus, but now add a second
phase:
compile-time run-time

How does |} work?

» ot 'searches’ through code for |{M} to eliminate them.
» For every [{M} is found:

Operational semantics of the foundational
calculus

We keep the usual |, from A-calculus, but now add a second
phase:

compile-time run-time

How does |} work?

» ot 'searches’ through code for |{M} to eliminate them.
» For every [{M} is found:
» M is recursively scanned for downMLs, yielding M’

Operational semantics of the foundational %—MEJA'S

calculus

We keep the usual |, from A-calculus, but now add a second
phase:

compile-time run-time

How does |} work?

» ot 'searches’ through code for |{M} to eliminate them.
» For every [{M} is found:

» M is recursively scanned for downMLs, yielding M’
» then M’ is evaluated using |, the usual CBV evaluation of
A-calculus, giving an AST A

F—— [
| META |
|

Operational semantics of the foundational
calculus

We keep the usual |, from A-calculus, but now add a second
phase:

compile-time run-time

How does |} work?

» ot 'searches’ through code for |{M} to eliminate them.

» For every [{M} is found:
» M is recursively scanned for downMLs, yielding M’
» then M’ is evaluated using |, the usual CBV evaluation of
A-calculus, giving an AST A
» Then |4 de-ASTifies A, and splice into rest of program

IMET A
U’Cf ;l L L

Idea: |}¢ scans for [{-} and eliminates them by evaluation and
splicing.

<~ 1T < VARCT M ‘Ucl‘ A N UCt B APP CT —M UCT N Lam cT

T A CONSTCT M Uct A N lLCt B ADD CT
CclctC M+Nlg¢A+B

Mi uCt Ni ~— AST¢ CT M UCT A A U/\ B B Ud/ C DowNML cT
ast,(M) o ast(N) WM} det ©

la | mMeTA]

Idea: |4 removes one layer of ASTs, i.e. goes down a
meta-level.

MigM NUygN
astapp(M, N) »U/d/ M/N/

VAR DL

astyar("x") Yo x

Mig"x" NigN
astiam(M, N) Ug Ax.N' astini(n) Yar n

INT DL

MygM NigN

STRING DL

aststring ("x") bar " x"

astaaa(M, N) g M+ N" "™

la | meTA]

Idea: |4 removes one layer of ASTs, i.e. goes down a
meta-level.

MigM NUygN
astapp(M, N) »Ud/ M/N/

VAR DL

astyar("x") Yo x

Mig"x" NigN
astiam(M, N) Ug Ax.N' astini(n) Yar n

INT DL

MigM NUygN
astaga(M, N) g M' + N’

STRING DL

aststring ("x") bar " x"

Note that non-ASTs have no |}y rules, they are stuck.

Scoping

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not a-converted.

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not a-converted.

> Ax. {astyar("X")} Yot AX.X.

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not a-converted.

> Ax. {astyar("X")} Yot AX.X.
» Ay. H{astyar("Xx")} Yot Ay.X.

Run-time HGMP

Run-time HGMP

It is now easy to add run-time HGMP:

Run-time HGMP

It is now easy to add run-time HGMP:

M= .. | eval(M)

t=.. | eval

Run-time HGMP ':AME,Ti\fT

It is now easy to add run-time HGMP:

M= .. | eval(M) t=.. | eval

We add the following rules to ¢, |, and | 4.

Run-time HGMP hM

It is now easy to add run-time HGMP:

M= .. | eval(M) t:=.. | eval
We add the following rules to ¢, |, and | 4.

M Uct N EvALCT M Udl N EvAL DL
eval(M) ¢ eval(N) asteval(M) | o eval(N)

LM MygN NN
eval(L) §, N’

EVAL RT

Run-time HGMP kM

It is now easy to add run-time HGMP:

M= .. | eval(M) t:=.. | eval
We add the following rules to ¢, |, and | 4.

M UCt N EvALCT M Udl N EvAL DL
eval(M) ¢ eval(N) asteval(M) | o eval(N)

LM MygN NN
eval(L) §, N’

EVAL RT

Note that eval is not 'disappeared’ at compile-time.

Enriching the calculus: higher-order ASTs P‘-E-T;q

Enriching the calculus: higher-order ASTs %ME}/‘:'

What about e.g. [{]{M}}, i.e. meta-meta-programming?

Enriching the calculus: higher-order ASTs &
What about e.g. [{{{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

2

Enriching the calculus: higher-order ASTs
What about e.g. [{{{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

{J Z“

| \
————

Enriching the calculus: higher-order ASTs
What about e.g. [{{{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:
M := .. | tag, t = ... | promote

Hence AST datatype astpromote(M, N) which allows an arbitrary
AST with a tag M and parameters N to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing |4 relation. E.g.:

Enriching the calculus: higher-order ASTs
What about e.g. [{{{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:
M := .. | tag, t = ... | promote

Hence AST datatype astpromote(M, N) which allows an arbitrary
AST with a tag M and parameters N to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing |4 relation. E.g.:

astpromote (String, aststring ("x")) bar aStstring ("x")

Operational semantics of higher-order ASTs }\M—E-T;q

\

r“‘:‘
m

Operational semantics of higher-order ASTs T“‘

W PROMOTE TAG
L gtag; t#promote .. M g N,
aStpromote(Lv M) Jg asti(N)

PROMOTE DL 1

L g tagpromote M Vartagy ... Nila N
astpromote (L, M, N) g/ @stpromote (tagy, N')

PROMOTE DL 2

A and |}¢ are unchanged as rules, but work on larger set of
programs.

UpMLs (aka quasi-quotes) J ETA

We have now finished, and obtained a \-calculus with CTMP
and RTMP.

UpMLs (aka quasi-quotes)

b
| META |

UpMLs (aka quasi-quotes)

——

ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

b
| META |

UpMLs (aka quasi-quotes)

——

ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

b
| META |

UpMLs (aka quasi-quotes)

——

ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:
M = .| N{M} t o=

UpMLs (aka quasi-quotes) ';}MEJ—Af
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to

represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:
M = .. | M} t o=

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

N2}t e astin(2)

UpMLs (aka quasi-quotes) tMETA
i
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to

represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:
M = .. | M} t o=

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

N2}t e astin(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

A subtlety

A subtlety ‘ MET—A'f
Recall, we want quasi-quotes, not quotes to be more erX|bIe
l.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

A subtlety tMETA
Recall, we want quasi-quotes, not quotes to be more erX|bIe
l.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

N

A subtlety tMETA
Recall, we want quasi-quotes, not quotes to be more erX|bIe
l.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

N

Let’s reuse |{-}!

A subtlety {META
Recall, we want quasi-quotes, not quotes to be more erX|bIe
l.e. we want ’holes’ in upMLs where we can run arbitrary

computation. How can we do that?
N/

Let’s reuse |{-}!
A downML [{-} inside 1{... [{M}...} is a 'hole’ where arbitrary

computation can be executed to produce an AST. This AST is
then used as is. For example:

T{2+ i{aStint(7)}} Vet aStadd(aStint(z)aaStint(7))

T{2+ J,{T{?’ + 4}}} Vet aStadd(aStint(2)a aStadd(aStint(3)7 aStint(“')))

Operational semantics for t{ M} I

We introduce a new reduction relation | :

M%U(UI A P CT 7"4 \U(Ct A OWN UL
MY Yot AP UMYy AP

o oy STRING UL M uu’ A N liu, B APP UL
X" Ju aststring(x") MN | astapp(A, B)

M uu’ A LAM UL
AX.M |y aS’[Iam(aSJ[string(”X”), A) tag, v tag;

TAG UL

My A EVAL UL MiyA AlyB UPML UL

Mi Ju A;

VAR UL ~ ~— AST UL

X ‘U’U/ aStvar(” X”) aStt(M) »U«u/ astpromote(tagt, A)

The rules capture our intuitions

The rules capture our intuitions (META.

» -} goes up one meta-level (= adds a layer of ASTSs).

» |{-} goes down one meta-level (= removes a layer of
ASTs).

The rules capture our intuitions B

» -} goes up one meta-level (= adds a layer of ASTSs).

» |{-} goes down one meta-level (= removes a layer of
ASTs).

Thus RT-HGMP and CT-HGMP are neatly connected as two
facets of the same AST-coin.

Other features

Other features

We can easily add other features, like

Other features

We can easily add other features, like

» Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) | astin(3).

Other features

We can easily add other features, like

» Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) | astin(3).

» Cross-level variable scoping.

Staged power function Anx.x"

Staged power function Anx.x"

We want to specialise Anx.x" w.r.t. first argument.

Staged power function Anx.x" E“‘QEJ"

We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Staged power function Anx.x" ;—MET—A{
We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Then power 3 reduces to AST equivalent of

HAX.X X X x X}

Staged power function Anx.x"

We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Then power 3 reduces to AST equivalent of
HAX.X X X x X}

The function power can be used to specialise code at
compile-time:

Staged power function Anx.x"

We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Then power 3 reduces to AST equivalent of
HAX.X X X x X}

The function power can be used to specialise code at
compile-time:

let cube = |{power 3} in (cube 4) + (cube 5)

Staged power function Anx.x"

We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Then power 3 reduces to AST equivalent of
HAX.X X X x X}

The function power can be used to specialise code at
compile-time:

let cube = |{power 3} in (cube 4) + (cube 5)

and at run-time:

Staged power function Anx.x"

We want to specialise Anx.x" w.r.t. first argument.

M = rec p.An.if n =1 then {x} else t{x x |{p (n—1)}}
power = \n. H{Ax. [{M n}}

Then power 3 reduces to AST equivalent of
HAX.X X X x X}

The function power can be used to specialise code at
compile-time:

let cube = |{power 3} in (cube 4) + (cube 5)
and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Rational reconstruction?

Rational reconstruction?

We believe that adding HGMP to A-calculus is simple, yet
captures the essence of HGMP.

Rational reconstruction? h

We believe that adding HGMP to A-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Rational reconstruction?

We believe that adding HGMP to A-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

Rational reconstruction? | META |

We believe that adding HGMP to A-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

HGMP(-): mechanical HGMPification of
languages

HGMP(-): mechanical HGMPification of
languages

Nothing in the HGMPification of A-calculus depended on
A-calculus being the source language. The process was
completely generic.

HGMP(.)

HGMP(-) %ME,T“,

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

HGMP(.) [META]

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.

HGMP() |META]

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.

HGMP(.) |META]

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:
» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

HGMP(.) iMEiij

|

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:

» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

That gives us the syntax of Ly . Operational semantics:

HGMP(-) | META |

We seek to extend L with HGMP features to create Ly, . We
can then create Lmp as follows:
» Mirror every syntactic element of L with an AST and a tag.
» Add eval and tags eval and promote.
» Add 1{-} and [{-}.

That gives us the syntax of Ly . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(\) does not change the reduction rules of
A-calculus itself. Only adds rules.

HGMP(-) semi-formally

HGMP(-) semi-formally %MEJZ?

Assume C is the set of L’s program constructors, Lmp’s
constructors and tags then:

T = C U {eval,promote}
Cmp=C U {eval, l{_},{_}}tufast|te T}U{tag,|te T}

HGMP(-) semi-formally u,,M_;EJTZ-T,\:j

Assume C is the set of L’s program constructors, Lmp’s
constructors and tags then:

T = C U {eval,promote}
Cmp=C U {eval, l{_},{_}}tufast|te T}U{tag,|te T}

The arities and binders of the new syntax are as follows:
» If ¢ € C then its arity and binders are unchanged in Crp.
» ast; has the same arity as ¢ € C and no binders.

» astpromote has variable arity, or, equivalently has arity 2,
with the second argument being of type list. There are no
binders.

» asteyq has arity 1 and no binders.
» tag, has arity 0 and no binders for t € T.
» eval, |{_}, and 1{_} have arity 1 and no binders.

HGMP(.)

4 ——f

HGMP(.) | META

—

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

teT LULUM MygN NN
tiat eval(L) |\ N’

M; 4 N t
ast(M) |, asty(N

eT
)

HGMP(-) |META

{
i

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

teT LULUM MygN NN
tiat eval(L) |\ N’

M,‘UN)\ N,‘ ZE T
asty(M) ., ast(N)

Constructors with binders are most easily explained by
example. If ¢ has arity 2, with the first argument being a binder,
the following rule must be added:

MUig"x" NigN
aste(M, N) {q c(x, N')

HGMP(.)

The following rules must be added for higher-order ASTs:

HGMP(-) M =TA

The following rules must be added for higher-order ASTs:

L Udl tagt M,N l}d/ N,' t E~ T
astpromote (L, M) | astc(N)

LlataQpromote M Vartag, Nila Ri teT
astpromote (L, M, N) |lg/ astpromote (tag;, R) tag; Vo tagy

HGMP(-) a,,M;Eji\fj

|

Assuming we wish to enable compile-time HGMP, a | relation
must be added:

Me{x,"x"}u{tag, | te T} Mg N
Mg M eval(M) { ¢ eval(N)

MiUctNi ceC MiUctNi teT

c(M) Ut c(N) ast(M) I ast(N)

teT MigA AlnB BigyC
tag; |t tag, WM}l C

Questions about HGMP(+)

Questions about HGMP(-) %ME,TK

» What’s a good formal way of specifying source and target
languages of HGMP(-)?

Questions about HGMP(+) ':AME,T?

» What’s a good formal way of specifying source and target
languages of HGMP(-)?

» What does it mean for HGMP(-) to be correct?

Questions about HGMP(-) hM

» What’s a good formal way of specifying source and target
languages of HGMP(-)?

» What does it mean for HGMP(-) to be correct?
» Relationship HGMP(L) and HGMP(HGMP(L))?

Questions about HGMP(+) hM

v

What's a good formal way of specifying source and target
languages of HGMP(-)?

What does it mean for HGMP(-) to be correct?
Relationship HGMP(L) and HGMP(HGMP(L))?
What interesting properties does HGMP(-) preserve?

v

v

v

Questions about HGMP(.) kM =TA

» What’s a good formal way of specifying source and target
languages of HGMP(-)?

» What does it mean for HGMP(-) to be correct?
» Relationship HGMP(L) and HGMP(HGMP(L))?
» What interesting properties does HGMP(-) preserve?

» What languages or language features cannot be handled
satisfactorily by HGMP(.)?

Conclusion

Conclusion ;'—MEJ—Af
HGMP(-) gives a foundational approach to meta-programming.

Much work remains.

Conclusion hMEJn

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

» Compiler-hooks for HGMP(-)?

Conclusion i;,ME,T,A,j

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

» Compiler-hooks for HGMP(-)?
» Adding hygiene, e.g. using nominal techniques?

Conclusion g,MIE,T,A,j
]

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

» Compiler-hooks for HGMP(-)?

» Adding hygiene, e.g. using nominal techniques?

» Extension of HGMP(-) to typed base-languages, using
staged typing a la Template Haskell?

Conclusion "%ME,T,A,j
]

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

Compiler-hooks for HGMP(-)?
Adding hygiene, e.g. using nominal techniques?

v

v

v

Extension of HGMP(-) to typed base-languages, using
staged typing a la Template Haskell?

Implementation of HGMP(-) and applying it to real
languages?

v

Conclusion EME,T,A,j
]

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.
» Compiler-hooks for HGMP(-)?
» Adding hygiene, e.g. using nominal techniques?
» Extension of HGMP(-) to typed base-languages, using
staged typing a la Template Haskell?
» Implementation of HGMP(-) and applying it to real
languages?

» Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?

Conclusion %,,MI-Z,TZ,\.
]

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

» Compiler-hooks for HGMP(-)?

» Adding hygiene, e.g. using nominal techniques?

» Extension of HGMP(-) to typed base-languages, using
staged typing a la Template Haskell?

» Implementation of HGMP(-) and applying it to real
languages?

» Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?

» Hoare logics and other specification mechanism. Can

HGMP(-) be extended to transform logic for L to logic for
HGMP(L)?

Conclusion

| META

{
i

HGMP(-) gives a foundational approach to meta-programming.
Much work remains.

>

>

>

Compiler-hooks for HGMP(-)?
Adding hygiene, e.g. using nominal techniques?

Extension of HGMP(-) to typed base-languages, using
staged typing a la Template Haskell?

Implementation of HGMP(-) and applying it to real
languages?

Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?
Hoare logics and other specification mechanism. Can
HGMP(-) be extended to transform logic for L to logic for
HGMP(L)?

Generalising HGMP(-) to heterogeneous
meta-programming?

|y T
| META |

Questions?

