
Foundations of meta-programming

Martin Berger

Cambridge, 9 August 2016

Based on joint work with Laurie Tratt and Christian Urban.

Research programme

λ-calculus
Functional programming

=
???

Meta-programming

I want to convince you that the answer is not a calculus.

To set the scene, let’s remember why λ-calculus is good, and
how meta-programming came about.

Research programme

λ-calculus
Functional programming

=
???

Meta-programming

I want to convince you that the answer is not a calculus.

To set the scene, let’s remember why λ-calculus is good, and
how meta-programming came about.

Research programme

λ-calculus
Functional programming

=
???

Meta-programming

I want to convince you that the answer is not a calculus.

To set the scene, let’s remember why λ-calculus is good, and
how meta-programming came about.

Why is λ-calculus so useful?

M ::= x || MM || λx .M (λx .M)N → M[N/x]

The point of theory is to simplify, to focus on essence.

Why is λ-calculus so useful?

M ::= x || MM || λx .M (λx .M)N → M[N/x]

The point of theory is to simplify, to focus on essence.

Why is λ-calculus so useful?

M ::= x || MM || λx .M (λx .M)N → M[N/x]

The point of theory is to simplify, to focus on essence.

Why is λ-calculus so useful?

M ::= x || MM || λx .M (λx .M)N → M[N/x]

The point of theory is to simplify, to focus on essence.

Real-world programming languages:

I Strings
I Unicode
I FFI
I Backwards compatibility
I Modules
I Performance
I Ergonomics
I ...

Real-world programming languages:

I Strings
I Unicode
I FFI
I Backwards compatibility
I Modules
I Performance
I Ergonomics
I ...

In other words a real programming language is:

Let’s do theory

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Homogeneous generative meta-programming (HGMP) is the
generation of programs by a program as the latter is being
either compiled or executed.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Homogeneous generative meta-programming (HGMP) is the
generation of programs by a program as the latter is being
either compiled or executed.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Homogeneous generative meta-programming (HGMP) is the
generation of programs by a program as the latter is being
either compiled or executed.

Meta-programming: L-programs as data in L′.

Homogeneous meta-programming: MP where L = L′.

Homogeneous generative meta-programming (HGMP) is the
generation of programs by a program as the latter is being
either compiled or executed.

Meta-programming is simple if you don’t care about
convenient handling of programs as data. Just use strings.

Research on meta-programming is about convenient,
principled, general purpose and safe handling of programs
as data.

But first ...

Research on meta-programming is about convenient,
principled, general purpose and safe handling of programs
as data.

But first ...

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

History

Quine invents quasi-quote and splicing (1940).

Lisp was the first language to support HGMP (1970s?).

MetaML destroyed the persistent myth that HGMP works only
on syntactically simple languages like Lisp (1990s).

Haskell might have been the first typed mainstream language
with principled HGMP support (2002).

And then there is ...

Uber lormal unentscheidbare S~tze der Principia
Mathematica und verwandter Systeme I~).

Von Kur~ GSdel in Wien.

i t
Die Entwicklung der Mathematik in der Richtung zu grS~erer

Exakthei t hat bekanntlich dazu geftihrt , dal~ weite Gebiete yon ihr
foi'malisiert wurden~ in der Art~ daft d a s Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)~) einerseits~ das Z e r m e l o - F r a e n k e l -
sche (yon J. v. N e u m a n n welter ausgebildete) Axiomensystem der
~engenlehre~) andererseits. Diese beiden Systeme sind so weir, da~
alle heute in der Mathematik angewendeten Beweismethoden in ihnen
formalisiert, d .h . auf einige wenige ~ Axiome uad Schlultregeln zuriiek-
geftihrt sind. Es liegt daher die Vermutung nahe, da~ diese Axiome
und Sehlultregeln dazu ausreichen, a l l e mathematisehen Fragen~ die
sich in den betreffenden Systemen tiberhaupt formal ausdriicken
lassen: aueh zu entscheiden. Im folgenden wird gezeigt~ da~ dies
nieht der Fall ist, sondern dait es in den beiden angefiihrten
Systemen sogar relativ einfache Probleme aus der Theorie der ge-
wShnliehen ganzen Zahlen g ib t4) /d i e sich aus den Axiomen nicht

1) Vgl. die im Anzeiger der Akad. d. Wiss. in Wien (math.-naturw. KI.) 1930,
Nr. 19 erschienene Zusammenfassung der Resultate dieser Arbeit.

3) A. Whi tehead und B. Russel l , Principia Mathematica, 2. Aufl.,
Cambridge 1925. Zu den Axiomen des Systems PM rechnen wir insbesondere
aueh: Das Unendlichkeitsaxiom (in der Form: es gibt genau abziihlbar viele
Individuen), das ReduzibilitAts- und das Auswahlaxiom (ftir alle Typen).

~) Vgl. A. Fraenkel , Zehn Vorlesungen iiber die Grundlegung der Men-
genlehre, Wissensch. u. Hyp. Bd. XXXI. J,v. Neumann, Die Axiomatisierung
der Mengenlehre. Math. Zeitschr. 27, 1928. Journ. f. reine u. angew. Math. 154
(1925), 160 (1929). Wir bemerken, daii man zu den in der angeftihrten Literatur
gegebenen mengentheoretisehen Axiomen noeh die Axiome und Schh~regeln des
Logikkalktils hinzufiigen muir, um die Formalisierung zu vollenden. - - Die
naehfolgenden Oberlegungen gelten aueh ftir die in den letzten Jahren yon
D. H ilb e r t und seinen Mitarbeitern aufgestellten formalen Systeme (soweit diese
bisher vorliegen). Vgl. D. Hi lber t , Math. Ann. 88, Abh. aus d. math. Sem. der
Univ. Hamburg I (1922), VI (1928). P. B ernay s, Math. Ann. 90. J.v.Neumann,
Math. Zeitsehr. 26 (1927). W. Aekermann, Math. Ann. 93...

4) D.h. genauer, es gibt unentseheidbare Shtze, in denen aul]er den logi-
sehen Konstanten: - - (nieht), V (0der), (x) (far alle), = (identiseh mit) keine
anderen Begriffe vorkomfnen als + (Addition), . (Multip!ikation), beide bezogen
auf nattirliehe Zahlen, wobei aueh die Pri~fixe (x) sich nur auf nattlrliehe Zahlen
beziehen dtirfen.

And then there is ...

Uber lormal unentscheidbare S~tze der Principia
Mathematica und verwandter Systeme I~).

Von Kur~ GSdel in Wien.

i t
Die Entwicklung der Mathematik in der Richtung zu grS~erer

Exakthei t hat bekanntlich dazu geftihrt , dal~ weite Gebiete yon ihr
foi'malisiert wurden~ in der Art~ daft d a s Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)~) einerseits~ das Z e r m e l o - F r a e n k e l -
sche (yon J. v. N e u m a n n welter ausgebildete) Axiomensystem der
~engenlehre~) andererseits. Diese beiden Systeme sind so weir, da~
alle heute in der Mathematik angewendeten Beweismethoden in ihnen
formalisiert, d .h . auf einige wenige ~ Axiome uad Schlultregeln zuriiek-
geftihrt sind. Es liegt daher die Vermutung nahe, da~ diese Axiome
und Sehlultregeln dazu ausreichen, a l l e mathematisehen Fragen~ die
sich in den betreffenden Systemen tiberhaupt formal ausdriicken
lassen: aueh zu entscheiden. Im folgenden wird gezeigt~ da~ dies
nieht der Fall ist, sondern dait es in den beiden angefiihrten
Systemen sogar relativ einfache Probleme aus der Theorie der ge-
wShnliehen ganzen Zahlen g ib t4) /d i e sich aus den Axiomen nicht

1) Vgl. die im Anzeiger der Akad. d. Wiss. in Wien (math.-naturw. KI.) 1930,
Nr. 19 erschienene Zusammenfassung der Resultate dieser Arbeit.

3) A. Whi tehead und B. Russel l , Principia Mathematica, 2. Aufl.,
Cambridge 1925. Zu den Axiomen des Systems PM rechnen wir insbesondere
aueh: Das Unendlichkeitsaxiom (in der Form: es gibt genau abziihlbar viele
Individuen), das ReduzibilitAts- und das Auswahlaxiom (ftir alle Typen).

~) Vgl. A. Fraenkel , Zehn Vorlesungen iiber die Grundlegung der Men-
genlehre, Wissensch. u. Hyp. Bd. XXXI. J,v. Neumann, Die Axiomatisierung
der Mengenlehre. Math. Zeitschr. 27, 1928. Journ. f. reine u. angew. Math. 154
(1925), 160 (1929). Wir bemerken, daii man zu den in der angeftihrten Literatur
gegebenen mengentheoretisehen Axiomen noeh die Axiome und Schh~regeln des
Logikkalktils hinzufiigen muir, um die Formalisierung zu vollenden. - - Die
naehfolgenden Oberlegungen gelten aueh ftir die in den letzten Jahren yon
D. H ilb e r t und seinen Mitarbeitern aufgestellten formalen Systeme (soweit diese
bisher vorliegen). Vgl. D. Hi lber t , Math. Ann. 88, Abh. aus d. math. Sem. der
Univ. Hamburg I (1922), VI (1928). P. B ernay s, Math. Ann. 90. J.v.Neumann,
Math. Zeitsehr. 26 (1927). W. Aekermann, Math. Ann. 93...

4) D.h. genauer, es gibt unentseheidbare Shtze, in denen aul]er den logi-
sehen Konstanten: - - (nieht), V (0der), (x) (far alle), = (identiseh mit) keine
anderen Begriffe vorkomfnen als + (Addition), . (Multip!ikation), beide bezogen
auf nattirliehe Zahlen, wobei aueh die Pri~fixe (x) sich nur auf nattlrliehe Zahlen
beziehen dtirfen.

Arithmetisation of syntax

O b~r formal tmen~scheidbare Siitze der Principia Mathematica etc. 179

,,0" . . . 1 , , V " . . - 7 , , (~ . . . l l

,,f~ . . . 3 ,~II" . : . 9 71)".- . 13
~c~" . . . 5

ferner den Variablen n-ten Typs die Zahlen der Form p'~ (wo p
eine Primzahl > 13 ist). Dadureh entsprieht jeder endliehen Reihe
yon Grundzeiehen (also aueh jeder Formel) in sineindeutiger Weise
eine endlishe Rsihe nattirlieher Zahlsn. Die sndlishen Reihen natiir-
licher Zahlen bilden wir nun (wieder eineindeutig) auf nattirliche
Zahlen ab, indem wir der Reihs nl, n , ~ . . , nk dis Zahl 2 , 1 . 3 , 3 . . . p k ~k
sntsprechen lassen, wo pk dis k-ts Yrimzahl (der GrSl]e hash) be-

dentet. Dadurch ist nicht nur jedem Grundzsichen, sondern auch
jeder endlichen Re ihe yon solchsn in eineindeutiger Wsise eine
nattirliche Zahl zugeordnet. Aih-e dem Grundzeichen b~_ , .A .~ Grup~nd-
zeichenre.ihs)__a zugeordnete Zahl bezeich-nen--w~r-n{it (P (a). Sci ntiS-"

zeishen oder Reihen yon solchen gegeben. Wir ordnen ihr diejsnige
Klasse (Relation) /~' (x,, x ~ . . . x=) zwisehen natiirliehen Zahlen z u ,
welche dann und nur dann zwischen x~, x o . . . x~ besteht, wenn
es solehs a~, a ~ . . . a,~ gibt, daf~ x ~ = (P(a~) (i : 1, 2 , . . . n) und
1/(a~, a~ . . . a.) gilt. Diejenigen Klassen nnd Relationen natiirlicher
Zahlen, welehe auf diese Weise den bisher dsfinierten mstamathema-
tisshen Begriffen, z.B. ,Variable", ,Formel", ,,SatzformeV, ,,Axiom",
,beweisbare Formel '~ usw. zugeordnst sind, bezeichnen w i r mit
denselben Worten in Kursivschriff. Der Satz, dag es im System P
unentseheidbare Probleme gibt, lautet z. B. fo]genderma$en: Es gibt
Satzformeln a, so dal~ weder a noch dis _Negation yon a beweis-
bare 2Vormeln sind.

Wir sehalten nun sine Zwisehenbetrashtung sin, die mit ~-cm-!
formalen System P vorderhand niehts zu tun hat, nnd geben zuniichsr
folgende Definition: Eine zahlentheoretische Funktion 2~) ~0 (X~, x: . . . x,~)
heist r e k u r s i v d e f i n i e r t aus den zahlentheoretischen Funktionen
5 (xi, x~ . . . x~_~) und y. (x~, x2 . . . x,~+~), wenn fiir alle x2 . . . x,, /~ ~.6)
folgendss gilt:

'v (o, ~ . : . x~) = `5 (x~ . . . ~)
~ (2)

? (]r + 1, x~ . . . x .) = ~. (]~, ~ (~, x~ . . . x .) , x~ . . . x .) .

Eine zahlentheoretische Funktion ? hsi~t r e k u r s i v , wenn cs
eine sndliche Reihe yon * zahlentheor.Fnnktmnen ~ , ~72... % gibt, wslehe
mit ~ endet and dis Eigensehaft hat, dal~ jeds Funktion ~ der Reihs
entwedsr aus zwsi dsr vorhergchsnden rskursiv definiert ist oder

"~) D. h. ihr Definitionsbereieh ist die Klasse der nieht negativen ganzen
Zahlen (bzw. der n-tupel yon solchen) und ihre Werte sind nicht negative ganze
Zahlen.

~) Kleine lateinische Buchstaben (ev. mit Indizes) sind im folgenden
immer Variable far nicht negative ganze Zahlen (falls nicht ausdrticklieh dus
Gegenteil bemerkt ist).

Arithmetisation of syntax

O b~r formal tmen~scheidbare Siitze der Principia Mathematica etc. 179

,,0" . . . 1 , , V " . . - 7 , , (~ . . . l l

,,f~ . . . 3 ,~II" . : . 9 71)".- . 13
~c~" . . . 5

ferner den Variablen n-ten Typs die Zahlen der Form p'~ (wo p
eine Primzahl > 13 ist). Dadureh entsprieht jeder endliehen Reihe
yon Grundzeiehen (also aueh jeder Formel) in sineindeutiger Weise
eine endlishe Rsihe nattirlieher Zahlsn. Die sndlishen Reihen natiir-
licher Zahlen bilden wir nun (wieder eineindeutig) auf nattirliche
Zahlen ab, indem wir der Reihs nl, n , ~ . . , nk dis Zahl 2 , 1 . 3 , 3 . . . p k ~k
sntsprechen lassen, wo pk dis k-ts Yrimzahl (der GrSl]e hash) be-

dentet. Dadurch ist nicht nur jedem Grundzsichen, sondern auch
jeder endlichen Re ihe yon solchsn in eineindeutiger Wsise eine
nattirliche Zahl zugeordnet. Aih-e dem Grundzeichen b~_ , .A .~ Grup~nd-
zeichenre.ihs)__a zugeordnete Zahl bezeich-nen--w~r-n{it (P (a). Sci ntiS-"

zeishen oder Reihen yon solchen gegeben. Wir ordnen ihr diejsnige
Klasse (Relation) /~' (x,, x ~ . . . x=) zwisehen natiirliehen Zahlen z u ,
welche dann und nur dann zwischen x~, x o . . . x~ besteht, wenn
es solehs a~, a ~ . . . a,~ gibt, daf~ x ~ = (P(a~) (i : 1, 2 , . . . n) und
1/(a~, a~ . . . a.) gilt. Diejenigen Klassen nnd Relationen natiirlicher
Zahlen, welehe auf diese Weise den bisher dsfinierten mstamathema-
tisshen Begriffen, z.B. ,Variable", ,Formel", ,,SatzformeV, ,,Axiom",
,beweisbare Formel '~ usw. zugeordnst sind, bezeichnen w i r mit
denselben Worten in Kursivschriff. Der Satz, dag es im System P
unentseheidbare Probleme gibt, lautet z. B. fo]genderma$en: Es gibt
Satzformeln a, so dal~ weder a noch dis _Negation yon a beweis-
bare 2Vormeln sind.

Wir sehalten nun sine Zwisehenbetrashtung sin, die mit ~-cm-!
formalen System P vorderhand niehts zu tun hat, nnd geben zuniichsr
folgende Definition: Eine zahlentheoretische Funktion 2~) ~0 (X~, x: . . . x,~)
heist r e k u r s i v d e f i n i e r t aus den zahlentheoretischen Funktionen
5 (xi, x~ . . . x~_~) und y. (x~, x2 . . . x,~+~), wenn fiir alle x2 . . . x,, /~ ~.6)
folgendss gilt:

'v (o, ~ . : . x~) = `5 (x~ . . . ~)
~ (2)

? (]r + 1, x~ . . . x .) = ~. (]~, ~ (~, x~ . . . x .) , x~ . . . x .) .

Eine zahlentheoretische Funktion ? hsi~t r e k u r s i v , wenn cs
eine sndliche Reihe yon * zahlentheor.Fnnktmnen ~ , ~72... % gibt, wslehe
mit ~ endet and dis Eigensehaft hat, dal~ jeds Funktion ~ der Reihs
entwedsr aus zwsi dsr vorhergchsnden rskursiv definiert ist oder

"~) D. h. ihr Definitionsbereieh ist die Klasse der nieht negativen ganzen
Zahlen (bzw. der n-tupel yon solchen) und ihre Werte sind nicht negative ganze
Zahlen.

~) Kleine lateinische Buchstaben (ev. mit Indizes) sind im folgenden
immer Variable far nicht negative ganze Zahlen (falls nicht ausdrticklieh dus
Gegenteil bemerkt ist).

Arithmetisation of syntax has been
investigated in detail and led to powerful
proof principles like logical reflection
which strengthens the logic and
computational reflection which makes
proofs shorter.

Much work done by proof theorists and the dependent types
community, connection with ’our’ meta-programming not clear
to me. See J. Harrison, Metatheory and Reflection in Theorem
Proving: A Survey and Critique (1995) for more.

Arithmetisation of syntax

O b~r formal tmen~scheidbare Siitze der Principia Mathematica etc. 179

,,0" . . . 1 , , V " . . - 7 , , (~ . . . l l

,,f~ . . . 3 ,~II" . : . 9 71)".- . 13
~c~" . . . 5

ferner den Variablen n-ten Typs die Zahlen der Form p'~ (wo p
eine Primzahl > 13 ist). Dadureh entsprieht jeder endliehen Reihe
yon Grundzeiehen (also aueh jeder Formel) in sineindeutiger Weise
eine endlishe Rsihe nattirlieher Zahlsn. Die sndlishen Reihen natiir-
licher Zahlen bilden wir nun (wieder eineindeutig) auf nattirliche
Zahlen ab, indem wir der Reihs nl, n , ~ . . , nk dis Zahl 2 , 1 . 3 , 3 . . . p k ~k
sntsprechen lassen, wo pk dis k-ts Yrimzahl (der GrSl]e hash) be-

dentet. Dadurch ist nicht nur jedem Grundzsichen, sondern auch
jeder endlichen Re ihe yon solchsn in eineindeutiger Wsise eine
nattirliche Zahl zugeordnet. Aih-e dem Grundzeichen b~_ , .A .~ Grup~nd-
zeichenre.ihs)__a zugeordnete Zahl bezeich-nen--w~r-n{it (P (a). Sci ntiS-"

zeishen oder Reihen yon solchen gegeben. Wir ordnen ihr diejsnige
Klasse (Relation) /~' (x,, x ~ . . . x=) zwisehen natiirliehen Zahlen z u ,
welche dann und nur dann zwischen x~, x o . . . x~ besteht, wenn
es solehs a~, a ~ . . . a,~ gibt, daf~ x ~ = (P(a~) (i : 1, 2 , . . . n) und
1/(a~, a~ . . . a.) gilt. Diejenigen Klassen nnd Relationen natiirlicher
Zahlen, welehe auf diese Weise den bisher dsfinierten mstamathema-
tisshen Begriffen, z.B. ,Variable", ,Formel", ,,SatzformeV, ,,Axiom",
,beweisbare Formel '~ usw. zugeordnst sind, bezeichnen w i r mit
denselben Worten in Kursivschriff. Der Satz, dag es im System P
unentseheidbare Probleme gibt, lautet z. B. fo]genderma$en: Es gibt
Satzformeln a, so dal~ weder a noch dis _Negation yon a beweis-
bare 2Vormeln sind.

Wir sehalten nun sine Zwisehenbetrashtung sin, die mit ~-cm-!
formalen System P vorderhand niehts zu tun hat, nnd geben zuniichsr
folgende Definition: Eine zahlentheoretische Funktion 2~) ~0 (X~, x: . . . x,~)
heist r e k u r s i v d e f i n i e r t aus den zahlentheoretischen Funktionen
5 (xi, x~ . . . x~_~) und y. (x~, x2 . . . x,~+~), wenn fiir alle x2 . . . x,, /~ ~.6)
folgendss gilt:

'v (o, ~ . : . x~) = `5 (x~ . . . ~)
~ (2)

? (]r + 1, x~ . . . x .) = ~. (]~, ~ (~, x~ . . . x .) , x~ . . . x .) .

Eine zahlentheoretische Funktion ? hsi~t r e k u r s i v , wenn cs
eine sndliche Reihe yon * zahlentheor.Fnnktmnen ~ , ~72... % gibt, wslehe
mit ~ endet and dis Eigensehaft hat, dal~ jeds Funktion ~ der Reihs
entwedsr aus zwsi dsr vorhergchsnden rskursiv definiert ist oder

"~) D. h. ihr Definitionsbereieh ist die Klasse der nieht negativen ganzen
Zahlen (bzw. der n-tupel yon solchen) und ihre Werte sind nicht negative ganze
Zahlen.

~) Kleine lateinische Buchstaben (ev. mit Indizes) sind im folgenden
immer Variable far nicht negative ganze Zahlen (falls nicht ausdrticklieh dus
Gegenteil bemerkt ist).

Arithmetisation of syntax has been
investigated in detail and led to powerful
proof principles like logical reflection
which strengthens the logic and
computational reflection which makes
proofs shorter.

Much work done by proof theorists and the dependent types
community, connection with ’our’ meta-programming not clear
to me. See J. Harrison, Metatheory and Reflection in Theorem
Proving: A Survey and Critique (1995) for more.

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.

Meta-programming, circa August 2016

Most/all mainstream languages have some HGMP facilities,
either as an upfront design decision (e.g. Scala, Rust,
Javascript) or bolted on as the language evolved (e.g. C++).

Working programmers heavily use HGMP, e.g. C++ generic
programming, smart-pointers, DSL embedding. Syntax
extension for increasing language expressivity, higher
performance through compile- or run-time specialisation.

In summary, meta-programming enables abstractions without
run-time penalty. Thus MP resolves the tension between
abstraction and performance, albeit at the cost of increasing
language complexity.

Is it a solved problem in practise?

Is it a solved problem in practise?

Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in practise?
Scala just gutted it’s original HGMP approach, to be replaced
by scala.meta.

C++ template meta-programming is not pretty.

MetaOcaml was found to be ... type-unsound.

Template Haskell has meta-programming, but not
meta-meta-programming etc.

Major terminological confusion, e.g. CTMP vs RTMP, macros
vs CTMP.

Javascript’s string-based MP is a security headache.

Implementations of hygiene sometimes buggy or slow or
unclear.

Tooling hard, e.g. debugging.

Is it a solved problem in theory?

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Is it a solved problem in theory?

No convincing theory of HGMP program equality.

No convincing theory of HGMP types.

No convincing way of automatically adding HGMP to a base
language.

No convincing specification and reasoning (e.g. program logics)
about HGMP.

No convincing way of deriving semantics of embedded DSL
from embedding

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Good news 3: problems look fairly tractable, no P ?
= NP-like

difficulties. Lot’s of theory ready to go, e.g. nominal techniques,
proof assistants.

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Good news 3: problems look fairly tractable, no P ?
= NP-like

difficulties. Lot’s of theory ready to go, e.g. nominal techniques,
proof assistants.

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Good news 3: problems look fairly tractable, no P ?
= NP-like

difficulties. Lot’s of theory ready to go, e.g. nominal techniques,
proof assistants.

Not a solved problem, but ...

Good news 1: lot’s of open problems.

Good news 2: good solutions are immediately relevant for
industry.

Good news 3: problems look fairly tractable, no P ?
= NP-like

difficulties. Lot’s of theory ready to go, e.g. nominal techniques,
proof assistants.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open?

Thinking about multiple levels of a language and their
interactions is hard for humans.

slash.dot.dot.at@at.dot.dotat.at

Even humor can be based on this difficulty:

All PL researchers are liars.

Why are these problems still open?

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

Adding HGMP is deceptively easy to the untrained eye ... just
add a data type representing programs ...

Why are these problems still open?

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

Adding HGMP is deceptively easy to the untrained eye ... just
add a data type representing programs ...

Why are these problems still open?

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

Adding HGMP is deceptively easy to the untrained eye ...

just
add a data type representing programs ...

Why are these problems still open?

There is a huge need for MP since working programmers
manipulate programs all the time, but ...

Adding HGMP is deceptively easy to the untrained eye ... just
add a data type representing programs ...

How hard can it be?

How hard can it be?

How hard can it be?
Remember: real programming languages are a mess

Adding HGMP to mess, means we need to create meta-mess,
meta-meta-mess ... and think about how mess, meta-mess,
meta-meta-mess ... relate.

How hard can it be?
Remember: real programming languages are a mess

Adding HGMP to mess, means we need to create meta-mess,
meta-meta-mess ... and think about how mess, meta-mess,
meta-meta-mess ... relate.

Time for theory

Let’s simplify

λ-calculus
Functional programming

=
???

Meta-programming

... that means we focus on the essential features of HGMP,
and nothing else.

I Language representation (code as data)
I Language levels (base, meta, meta-meta ...)
I Navigation between language levels
I Computation is driven by the base-language

Let’s simplify

λ-calculus
Functional programming

=
???

Meta-programming

... that means we focus on the essential features of HGMP,
and nothing else.

I Language representation (code as data)
I Language levels (base, meta, meta-meta ...)
I Navigation between language levels
I Computation is driven by the base-language

Let’s simplify

λ-calculus
Functional programming

=
???

Meta-programming

... that means we focus on the essential features of HGMP,
and nothing else.

I Language representation (code as data)
I Language levels (base, meta, meta-meta ...)
I Navigation between language levels
I Computation is driven by the base-language

Let’s simplify

We ignore:

I Hygiene
I Types
I Notions of equality
I Beauty of syntax
I Efficiency, performance
I ...

But: What base language?

Let’s simplify

We ignore:

I Hygiene
I Types
I Notions of equality
I Beauty of syntax
I Efficiency, performance
I ...

But:

What base language?

Let’s simplify

We ignore:

I Hygiene
I Types
I Notions of equality
I Beauty of syntax
I Efficiency, performance
I ...

But: What base language?

What base language?

The PL research community will likely say λ-calculus.

This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages. I.e. an explicit function HGMP(·):

L 7→ L′

taking a programming language L as input and returning as
output a language L′ that is the HGMPified version of L.

What base language?

The PL research community will likely say λ-calculus.

This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages. I.e. an explicit function HGMP(·):

L 7→ L′

taking a programming language L as input and returning as
output a language L′ that is the HGMPified version of L.

What base language?

The PL research community will likely say λ-calculus.

This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages.

I.e. an explicit function HGMP(·):

L 7→ L′

taking a programming language L as input and returning as
output a language L′ that is the HGMPified version of L.

What base language?

The PL research community will likely say λ-calculus.

This is not a bad choice.

What we really want is to add HGMP to arbitrary base
languages. I.e. an explicit function HGMP(·):

L 7→ L′

taking a programming language L as input and returning as
output a language L′ that is the HGMPified version of L.

Why arbitrary base language?

Remember real-world programming languages:

We want the transition

mess→ meta-mess

automatised ...

... so we can experiment with languages without being drowned
in uninteresting minutiae.

Why arbitrary base language?

Remember real-world programming languages:

We want the transition

mess→ meta-mess

automatised ...

... so we can experiment with languages without being drowned
in uninteresting minutiae.

Why arbitrary base language?

Remember real-world programming languages:

We want the transition

mess→ meta-mess

automatised ...

... so we can experiment with languages without being drowned
in uninteresting minutiae.

Why arbitrary base language?

Remember real-world programming languages:

We want the transition

mess→ meta-mess

automatised ...

... so we can experiment with languages without being drowned
in uninteresting minutiae.

Research hypothesis

The foundation of meta-programming is the function HGMP(·):

λ-calculus
Functional programming

=
HGMP(·)

Meta-programming

Note that HGMP(·) is a theoretical tool, it’s not intended to give
nice result, e.g. good looking syntax.

But ...

Does HGMP(·) exist at all (as a computable algorithm)?

If HGMP(·) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but I
want to sketch why I think HGMP(·) is essentially generic in the
choice of base.

I will look at the special case of HGMP(λ), and then generalise.

But first: PL empiricism: the HGMP design space

But ...

Does HGMP(·) exist at all (as a computable algorithm)?

If HGMP(·) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but I
want to sketch why I think HGMP(·) is essentially generic in the
choice of base.

I will look at the special case of HGMP(λ), and then generalise.

But first: PL empiricism: the HGMP design space

But ...

Does HGMP(·) exist at all (as a computable algorithm)?

If HGMP(·) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but I
want to sketch why I think HGMP(·) is essentially generic in the
choice of base.

I will look at the special case of HGMP(λ), and then generalise.

But first: PL empiricism: the HGMP design space

But ...

Does HGMP(·) exist at all (as a computable algorithm)?

If HGMP(·) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but I
want to sketch why I think HGMP(·) is essentially generic in the
choice of base.

I will look at the special case of HGMP(λ), and then generalise.

But first: PL empiricism: the HGMP design space

But ...

Does HGMP(·) exist at all (as a computable algorithm)?

If HGMP(·) exists, is it generic in the choice of base language,
or highly dependent on the details of base language?

Precise answers to these questions are not yet known, but I
want to sketch why I think HGMP(·) is essentially generic in the
choice of base.

I will look at the special case of HGMP(λ), and then generalise.

But first: PL empiricism: the HGMP design space

PL empiricism: the HGMP design space

I What kind of MP?
I When is MP executed?
I How are programs represented as data?

PL empiricism: the HGMP design space

I What kind of MP?
I When is MP executed?
I How are programs represented as data?

HGMP design space: What kind of MP?

I Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Converge).

I In heterogeneous MP object- and the meta-language are
different (example: compiler written in C from Java to x86).

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP?

I Homogeneous MP: the object- and the meta-language
are identical (examples: Racket, Template Haskell,
MetaOcaml, Converge).

I In heterogeneous MP object- and the meta-language are
different (example: compiler written in C from Java to x86).

We restrict our attention to homogeneous meta-programming.

HGMP design space: What kind of MP?

I Generative MP: where an object-program is generated
(put together) by a meta-program.

I Intensional MP: where an object-program is analysed
(taken apart) by a meta-program, e.g. reflection.

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: What kind of MP?

I Generative MP: where an object-program is generated
(put together) by a meta-program.

I Intensional MP: where an object-program is analysed
(taken apart) by a meta-program, e.g. reflection.

We restrict our attention to homogeneous generative
meta-programming (HGMP).

HGMP design space: How are programs
represented as data?

I Using strings.
I ADTs (algebraic data types).
I Higher-level language support, e.g. upMLs, downMLs,

quasi-quotes, inserts and splices.

Let’s look at them briefly. Consider the following criteria:

I Syntactic overhead
I Support for generating only ’valid’ programs
I Expressivity

HGMP design space: How are programs
represented as data?

I Using strings.
I ADTs (algebraic data types).
I Higher-level language support, e.g. upMLs, downMLs,

quasi-quotes, inserts and splices.

Let’s look at them briefly. Consider the following criteria:

I Syntactic overhead
I Support for generating only ’valid’ programs
I Expressivity

Strings

Example, selector function that chooses the i-the component
from an n-tuple.

let pi_1_0 = fun (x) -> x;;
let pi_2_0 = fun (x, _) -> x;;
let pi_2_1 = fun (_, x) -> x;;
let pi_3_0 = fun (x, _, _) -> x;;
let pi_3_1 = fun (_, x, _) -> x;;
let pi_3_2 = fun (_, _, x) -> x;;
let pi_4_0 = fun (x, _, _, _) -> x;;
let pi_4_1 = fun (_, x, _, _) -> x;;
let pi_4_2 = fun (_, _, x, _) -> x;;
let pi_4_3 = fun (_, _, _, x) -> x;;
let pi_5_0 = fun (x, _, _, _, _) -> x;;
let pi_5_1 = fun (_, x, _, _, _) -> x;;
let pi_5_2 = fun (_, _, x, _, _) -> x;;
let pi_5_3 = fun (_, _, _, x, _) -> x;;
let pi_5_4 = fun (_, _, _, _, x) -> x;;

selector.ml

Strings
Example, selector function that chooses the i-the component
from an n-tuple.

let pi_1_0 = fun (x) -> x;;
let pi_2_0 = fun (x, _) -> x;;
let pi_2_1 = fun (_, x) -> x;;
let pi_3_0 = fun (x, _, _) -> x;;
let pi_3_1 = fun (_, x, _) -> x;;
let pi_3_2 = fun (_, _, x) -> x;;
let pi_4_0 = fun (x, _, _, _) -> x;;
let pi_4_1 = fun (_, x, _, _) -> x;;
let pi_4_2 = fun (_, _, x, _) -> x;;
let pi_4_3 = fun (_, _, _, x) -> x;;
let pi_5_0 = fun (x, _, _, _, _) -> x;;
let pi_5_1 = fun (_, x, _, _, _) -> x;;
let pi_5_2 = fun (_, _, x, _, _) -> x;;
let pi_5_3 = fun (_, _, _, x, _) -> x;;
let pi_5_4 = fun (_, _, _, _, x) -> x;;

selector.ml

Advantages of string-based MP

I Flexible, expressive.
I Easy to do for basic MP.
I Ubiquitous support.
I Not restricted to a single target language.

Disadvantages of string-based MP

I No language support for constructing syntactically correct
programs.

I No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

We reject strings in our foundational approach.

Disadvantages of string-based MP

I No language support for constructing syntactically correct
programs.

I No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

We reject strings in our foundational approach.

Disadvantages of string-based MP

I No language support for constructing syntactically correct
programs.

I No support for “hygiene”, i.e. sane management of free
and bound variables. Hygiene is hard to add for strings.

NB Lack of hygiene is sometimes useful, especially in
large-scale MP.

We reject strings in our foundational approach.

ADTs

sealed abstract class Binop
case class Add () extends Binop
case class Sub () extends Binop
case class Mul () extends Binop
case class Div () extends Binop
case class Eq () extends Binop

sealed abstract class Term
case class CInt (n : Int) extends Term
case class Op2 (m : Term, op : Binop, n : Term) extends Term
case class Var (x : Int) extends Term
case class App (m : Term, n : Term) extends Term
case class Lam (x : Int, m : Term) extends Term
case class Rec (f : Int, x : Int, m : Term) extends Term
case class If (c : Term, m : Term, n : Term) extends Term

We call this representation AST (abstract syntax tree), the
workhorse of HGMP.

ADTs

sealed abstract class Binop
case class Add () extends Binop
case class Sub () extends Binop
case class Mul () extends Binop
case class Div () extends Binop
case class Eq () extends Binop

sealed abstract class Term
case class CInt (n : Int) extends Term
case class Op2 (m : Term, op : Binop, n : Term) extends Term
case class Var (x : Int) extends Term
case class App (m : Term, n : Term) extends Term
case class Lam (x : Int, m : Term) extends Term
case class Rec (f : Int, x : Int, m : Term) extends Term
case class If (c : Term, m : Term, n : Term) extends Term

We call this representation AST (abstract syntax tree), the
workhorse of HGMP.

Advantages and disadvantages of ADTs

Advantage:

I ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

I Verbose.
I No support for “hygiene”, i.e. sane management of free

and bound variables. But hygiene is easy to add.

Advantages and disadvantages of ADTs

Advantage:

I ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

I Verbose.
I No support for “hygiene”, i.e. sane management of free

and bound variables. But hygiene is easy to add.

Advantages and disadvantages of ADTs

Advantage:

I ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

I Verbose.
I No support for “hygiene”, i.e. sane management of free

and bound variables. But hygiene is easy to add.

Advantages and disadvantages of ADTs

Advantage:

I ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

I Verbose.

I No support for “hygiene”, i.e. sane management of free
and bound variables. But hygiene is easy to add.

Advantages and disadvantages of ADTs

Advantage:

I ADTs only construction of syntactically valid programs
(may fail to type-check).

Disadvantages:

I Verbose.
I No support for “hygiene”, i.e. sane management of free

and bound variables. But hygiene is easy to add.

What we really want is ...

... to combine the terseness of strings with the guarantees of
syntactic correctness that ASTs offer.

What we really want is ...

... to combine the terseness of strings with the guarantees of
syntactic correctness that ASTs offer.

UpMLs and downML

Enter upMLs and downMLs, another good idea from logic, first
introduced in Lisp.

UpMLs (AKA quasi-quotes, backquotes) are quotes with holes.
In the holes we can execute arbitrary programs that produces
code.

DownMLs (AKA splices or inserts) are the corresponding
un-quotation mechanism.

UpMLs and downML

Enter upMLs and downMLs, another good idea from logic, first
introduced in Lisp.

UpMLs (AKA quasi-quotes, backquotes) are quotes with holes.
In the holes we can execute arbitrary programs that produces
code.

DownMLs (AKA splices or inserts) are the corresponding
un-quotation mechanism.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

UpML (Up MetaLevel) represent AST (or AST-like) structures
by quoted chunks of normal program syntax. We have chosen
the term ’upMLs’ to highlight an important relationship with
downMLs.

↑{2 + 3}

is short for

astadd(astint(2),astint(3))

UpMLs are “syntactic sugar” for ASTs.

UpMLs and downML

DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.

Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpMLs and downML
DownML (Down MetaLevel) indicate “holes” in upMLs. Inside
the holes, arbitrary computation takes place during the
evaluation of an upML. That computation must yield an AST.
Exampe: with M = λx .astint(x − 1):

↑{2+ ↓{M 4}}

↑{2+ ↓{astint(4− 1)}}

↑{2+ ↓{astint(3)}}

↑{2 + 3}

astadd(astint(2),astint(3))

NB: DownMLs make sense only within the process of AST
generation.

UpML and DownML in Racket

Welcome to Racket v6.5.
> (quasiquote (+ 2 3))
’(+ 2 3)

> (eval (quasiquote (+ 2 3)))
5

> (define f (lambda (x) (quasiquote (* (unquote x) (unquote x)))))

> (f 5)
’(* 5 5)

> (eval (f 5))
25

> (define g (lambda (x) (quasiquote (* 8 (unquote (f x))))))

> (g 3)
’(* 8 (* 3 3))

> (eval (g 3))
72

racket.r

UpML and DownML in Racket

Welcome to Racket v6.5.
> (quasiquote (+ 2 3))
’(+ 2 3)

> (eval (quasiquote (+ 2 3)))
5

> (define f (lambda (x) (quasiquote (* (unquote x) (unquote x)))))

> (f 5)
’(* 5 5)

> (eval (f 5))
25

> (define g (lambda (x) (quasiquote (* 8 (unquote (f x))))))

> (g 3)
’(* 8 (* 3 3))

> (eval (g 3))
72

racket.r

UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

We will strictly separate both concepts, i.e. our upMLs are not
hygienic.

UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

We will strictly separate both concepts, i.e. our upMLs are not
hygienic.

UpMLs and hygiene

By default upMLs in Racket, MetaOCaml, Converge and other
languages are hygienic, i.e. prevent capture of free variables.
This is an implementation choice, but not necessary. Advanced
MP languages like Racket or Converge offer both, capturing
and non-capturing behaviour.

We will strictly separate both concepts, i.e. our upMLs are not
hygienic.

HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

I At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

I At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

I At compile-time: e.g. the Lisp family, Template Haskell,
Converge, C++. We call this CTMP.

I At run-time: e.g. the MetaML family, Javascript,
printf-based MP. We call this RTMP.

Some languages support both (e.g. Converge, scala.meta).

The difference is subtle. The result of CTMP is ’frozen’ (e.g. by
saving the produced executable), multiple evaluations of a
CTMP’ed program can be done with one compilation. RTMP’ed
programs are regenerated on every run. Whether that leads
to observable differences depends on the available language
features.

HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ... 3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ...

1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ... 3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ... 3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ...

3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

HGMP design space: When is MP executed?

Example.

print(1);
print(2 + eval(print(3); ASTInt(4)))

Evaluates code at run-time using eval and prints ... 1 3 6

Replacing the eval with a downML to get compile-time
evaluation:

print(1);
print(2 + ↓{print(3); ASTInt(4)})

yields ... 3 1 6

The 3 is printed during compilation, the 1 6 is printed every
time the compiled code is run.

Modern languages and HGMP

Language Strings ASTs UpMLs CT-HGMP RT-HGMP

Converge • • • • •
JavaScript • ◦ ◦ ◦ •
Lisp • • • • •
MetaML ◦ ◦ • ◦ •
Haskell ◦ • • • ◦
Scala ◦ • • • •

Modern languages and HGMP

Language Strings ASTs UpMLs CT-HGMP RT-HGMP

Converge • • • • •
JavaScript • ◦ ◦ ◦ •
Lisp • • • • •
MetaML ◦ ◦ • ◦ •
Haskell ◦ • • • ◦
Scala ◦ • • • •

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ) = λ-calculus with CTMP and RTMP

We start with the untyped λ-calculus, and CBV.

M ::= x || MN || λx .M || c || M + N || ...

ASTs are the key representation of programs as data. So we
add AST constructs for each element of the base language:

M ::= ... || astt(M̃)

t ::= var || app || lam || int || string || add || ...

An AST constructor astt(M̃) takes |M|+ 1 arguments. Tag t
specifies the specific AST datatype. The rest is relative to that
datatype.

HGMP(λ): examples

astvar(”x”) is the AST representation of the variable x

astint(3) is the AST representation of the constant 3

astlam(aststring(”x”),astvar(”x”)) is the AST of λx .x

HGMP(λ): examples

astvar(”x”) is the AST representation of the variable x

astint(3) is the AST representation of the constant 3

astlam(aststring(”x”),astvar(”x”)) is the AST of λx .x

HGMP(λ): examples

astvar(”x”) is the AST representation of the variable x

astint(3) is the AST representation of the constant 3

astlam(aststring(”x”),astvar(”x”)) is the AST of λx .x

HGMP(λ): examples

astvar(”x”) is the AST representation of the variable x

astint(3) is the AST representation of the constant 3

astlam(aststring(”x”),astvar(”x”)) is the AST of λx .x

Notice something?

Adding ASTs mirrors the syntax of the language. We make a
’copy’ of the base language.

This is not λ-specific, we’d do the same for any other base.

Notice something?

Adding ASTs mirrors the syntax of the language. We make a
’copy’ of the base language.

This is not λ-specific, we’d do the same for any other base.

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is

I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time

I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST

I AST gets ’spliced into’ the rest of the AST the compiler is
constructing

I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing

I Compilation proceeds

HGMP(λ): adding CTMP

We add downMLs, to indicate compile-time HGMP should
occur.

M ::= ... || ↓{M} t ::= ...

Meaning of ↓{M} is
I M must be evaluated (= run) at compile-time
I CT-evaluation of M yields an AST
I AST gets ’spliced into’ the rest of the AST the compiler is

constructing
I Compilation proceeds

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.

I For every ↓{M} is found:
I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

Operational semantics of the foundational
calculus

We keep the usual ⇓λ from λ-calculus, but now add a second
phase:

M ⇓ct︸ ︷︷ ︸
compile-time

A ⇓λ V︸ ︷︷ ︸
run-time

How does ⇓ct work?

I ⇓ct ’searches’ through code for ↓{M} to eliminate them.
I For every ↓{M} is found:

I M is recursively scanned for downMLs, yielding M ′

I then M ′ is evaluated using ⇓λ, the usual CBV evaluation of
λ-calculus, giving an AST A

I Then ⇓dl de-ASTifies A, and splice into rest of program

⇓ct

Idea: ⇓ct scans for ↓{·} and eliminates them by evaluation and
splicing.

x ⇓ct x VAR CT
M ⇓ct A N ⇓ct B

MN ⇓ct AB APP CT
M ⇓ct N

λx .M ⇓ct λx .N LAM CT

c ⇓ct c CONST CT
M ⇓ct A N ⇓ct B
M + N ⇓ct A + B ADD CT

Mi ⇓ct Ni
astt(M̃) ⇓ct astt(Ñ)

ASTc CT
M ⇓ct A A ⇓λ B B ⇓dl C

↓{M} ⇓ct C DOWNML CT

⇓dl

Idea: ⇓dl removes one layer of ASTs, i.e. goes down a
meta-level.

astvar(”x”) ⇓dl x VAR DL
M ⇓dl M ′ N ⇓dl N ′

astapp(M,N) ⇓dl M ′N ′ APP DL

M ⇓dl ”x” N ⇓dl N ′

astlam(M,N) ⇓dl λx .N ′ LAM DL astint(n) ⇓dl n INT DL

aststring(”x”) ⇓dl ”x” STRING DL
M ⇓dl M ′ N ⇓dl N ′

astadd(M,N) ⇓dl M ′ + N ′ ADD DL

Note that non-ASTs have no ⇓dl rules, they are stuck.

⇓dl

Idea: ⇓dl removes one layer of ASTs, i.e. goes down a
meta-level.

astvar(”x”) ⇓dl x VAR DL
M ⇓dl M ′ N ⇓dl N ′

astapp(M,N) ⇓dl M ′N ′ APP DL

M ⇓dl ”x” N ⇓dl N ′

astlam(M,N) ⇓dl λx .N ′ LAM DL astint(n) ⇓dl n INT DL

aststring(”x”) ⇓dl ”x” STRING DL
M ⇓dl M ′ N ⇓dl N ′

astadd(M,N) ⇓dl M ′ + N ′ ADD DL

Note that non-ASTs have no ⇓dl rules, they are stuck.

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

I λx . ↓{astvar(”x”)} ⇓ct λx .x .
I λy . ↓{astvar(”x”)} ⇓ct λy .x .

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

I λx . ↓{astvar(”x”)} ⇓ct λx .x .
I λy . ↓{astvar(”x”)} ⇓ct λy .x .

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

I λx . ↓{astvar(”x”)} ⇓ct λx .x .

I λy . ↓{astvar(”x”)} ⇓ct λy .x .

Scoping

Our simple calculus intentionally allows variables to be
captured dynamically, because strings are not α-converted.

I λx . ↓{astvar(”x”)} ⇓ct λx .x .
I λy . ↓{astvar(”x”)} ⇓ct λy .x .

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Run-time HGMP

It is now easy to add run-time HGMP:

M ::= ... || eval(M) t ::= ... || eval

We add the following rules to ⇓ct ,⇓λ and ⇓dl .

M ⇓ct N
eval(M) ⇓ct eval(N)

EVAL CT
M ⇓dl N

asteval(M) ⇓dl eval(N)
EVAL DL

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′ EVAL RT

Note that eval is not ’disappeared’ at compile-time.

Enriching the calculus: higher-order ASTs

What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Enriching the calculus: higher-order ASTs
What about e.g. ↓{↓{M}}, i.e. meta-meta-programming?

Calculus so far doesn’t allow the representation of ASTs as
ASTs.

This can be handled in several ways, we ’internalise’ tags:

M ::= ... || tagt t ::= ... || promote

Hence AST datatype astpromote(M, Ñ) which allows an arbitrary
AST with a tag M and parameters Ñ to be promoted up a
meta-level. Promoted ASTs can then be reduced one
meta-level with the existing ⇓dl relation. E.g.:

astpromote(string,aststring(”x”)) ⇓dl aststring(”x”)

Operational semantics of higher-order ASTs

tagt ⇓dl tagt
PROMOTE TAG

L ⇓dl tagt t 6= promote ... Mi ⇓dl Ni ...

astpromote(L, M̃) ⇓dl astt(Ñ)
PROMOTE DL 1

L ⇓dl tagpromote M ⇓dl tagt ... Ni ⇓dl N ′
i ...

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, Ñ ′)
PROMOTE DL 2

⇓λ and ⇓ct are unchanged as rules, but work on larger set of
programs.

Operational semantics of higher-order ASTs

tagt ⇓dl tagt
PROMOTE TAG

L ⇓dl tagt t 6= promote ... Mi ⇓dl Ni ...

astpromote(L, M̃) ⇓dl astt(Ñ)
PROMOTE DL 1

L ⇓dl tagpromote M ⇓dl tagt ... Ni ⇓dl N ′
i ...

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, Ñ ′)
PROMOTE DL 2

⇓λ and ⇓ct are unchanged as rules, but work on larger set of
programs.

UpMLs (aka quasi-quotes)

We have now finished, and obtained a λ-calculus with CTMP
and RTMP.

UpMLs (aka quasi-quotes)

ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

UpMLs (aka quasi-quotes)
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

UpMLs (aka quasi-quotes)
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

UpMLs (aka quasi-quotes)
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

UpMLs (aka quasi-quotes)
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

UpMLs (aka quasi-quotes)
ASTs are the cornerstone of our calculus. But ASTs are
verbose. UpMLs (aka quasi-quotes or back-quotes) ameliorate
this problem by allowing concrete syntax to be used to
represent ASTs.

To add UpMLs to our language, we first extend the grammar as
follows:

M ::= ... || ↑{M} t ::= ...

We model upMLs as “syntactic-sugar” to be removed at
compile-time by conversion to ASTs, e.g.

↑{2} ⇓ct astint(2)

Like downMLs, upMLs are disappeared by the compile-time
stage.

A subtlety

Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))

A subtlety
Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))

A subtlety
Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))

A subtlety
Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))

A subtlety
Recall, we want quasi-quotes, not quotes to be more flexible.
I.e. we want ’holes’ in upMLs where we can run arbitrary
computation. How can we do that?

Let’s reuse ↓{·}!

A downML ↓{·} inside ↑{... ↓{M}...} is a ’hole’ where arbitrary
computation can be executed to produce an AST. This AST is
then used as is. For example:

↑{2+ ↓{astint(7)}} ⇓ct astadd(astint(2),astint(7))

↑{2+ ↓{↑{3 + 4}}} ⇓ct astadd(astint(2),astadd(astint(3),astint(4)))

Operational semantics for ↑{M}

We introduce a new reduction relation ⇓ul :

M ⇓ul A
↑{M} ⇓ct A UPML CT

M ⇓ct A
↓{M} ⇓ul A DOWNML UL

”x” ⇓ul aststring(”x”) STRING UL
M ⇓ul A N ⇓ul B

MN ⇓ul astapp(A,B)
APP UL

M ⇓ul A
λx .M ⇓ul astlam(aststring(”x”),A) LAM UL tagt ⇓ul tagt

TAG UL

M ⇓ul A
eval(M) ⇓ul asteval(A)

EVAL UL
M ⇓ul A A ⇓ul B
↑{M} ⇓ul B UPML UL

x ⇓ul astvar(”x”) VAR UL
... Mi ⇓ul Ai ...

astt(M̃) ⇓ul astpromote(tagt, Ã)
AST UL

The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Thus RT-HGMP and CT-HGMP are neatly connected as two
facets of the same AST-coin.

The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Thus RT-HGMP and CT-HGMP are neatly connected as two
facets of the same AST-coin.

The rules capture our intuitions

I ↑{·} goes up one meta-level (= adds a layer of ASTs).
I ↓{·} goes down one meta-level (= removes a layer of

ASTs).

Thus RT-HGMP and CT-HGMP are neatly connected as two
facets of the same AST-coin.

Other features

We can easily add other features, like

I Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) ⇓λ astint(3).

I Cross-level variable scoping.

Other features

We can easily add other features, like

I Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) ⇓λ astint(3).

I Cross-level variable scoping.

Other features

We can easily add other features, like

I Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) ⇓λ astint(3).

I Cross-level variable scoping.

Other features

We can easily add other features, like

I Lifting, where semi-arbitrary run-time values to be lifted up
a meta-level, e.g. lift(3) ⇓λ astint(3).

I Cross-level variable scoping.

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Staged power function λnx .xn

We want to specialise λnx .xn w.r.t. first argument.

M = rec p.λn.if n = 1 then ↑{x} else ↑{x ×↓{p (n − 1)}}
power = λn. ↑{λx . ↓{M n}}

Then power 3 reduces to AST equivalent of

↑{λx .x × x × x}

The function power can be used to specialise code at
compile-time:

let cube = ↓{power 3} in (cube 4) + (cube 5)

and at run-time:

let cube = eval(power 3) in (cube 4) + (cube 5)

Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

Rational reconstruction?

We believe that adding HGMP to λ-calculus is simple, yet
captures the essence of HGMP.

How do we prove this, when existing approaches to HGMP
diverge from our proposals?

Reflective equilibrium, balance or coherence between model
and PL reality.

If you have HGMP phenomena that don’t agree with our
calculus, please contact us.

HGMP(·): mechanical HGMPification of
languages

Nothing in the HGMPification of λ-calculus depended on
λ-calculus being the source language. The process was
completely generic.

HGMP(·): mechanical HGMPification of
languages

Nothing in the HGMPification of λ-calculus depended on
λ-calculus being the source language. The process was
completely generic.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.

I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.

I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·)

We seek to extend L with HGMP features to create Lmp . We
can then create Lmp as follows:

I Mirror every syntactic element of L with an AST and a tag.
I Add eval and tags eval and promote.
I Add ↑{·} and ↓{·}.

That gives us the syntax of Lmp . Operational semantics:

Add appropriate reduction rules for ASTs, upMLs and
downMLs with computation driven by the base language. Note
that HGMP(λ) does not change the reduction rules of
λ-calculus itself. Only adds rules.

HGMP(·) semi-formally

Assume C is the set of L ’s program constructors, Lmp’s
constructors and tags then:

T = C ∪ {eval,promote}

Cmp = C ∪ {eval, ↓{_}, ↑{_}} ∪ {astt | t ∈ T} ∪ {tagt | t ∈ T}

The arities and binders of the new syntax are as follows:
I If c ∈ C then its arity and binders are unchanged in Cmp.
I astc has the same arity as c ∈ C and no binders.
I astpromote has variable arity, or, equivalently has arity 2,

with the second argument being of type list. There are no
binders.

I asteval has arity 1 and no binders.
I tagt has arity 0 and no binders for t ∈ T .
I eval, ↓{_}, and ↑{_} have arity 1 and no binders.

HGMP(·) semi-formally
Assume C is the set of L ’s program constructors, Lmp’s
constructors and tags then:

T = C ∪ {eval,promote}

Cmp = C ∪ {eval, ↓{_}, ↑{_}} ∪ {astt | t ∈ T} ∪ {tagt | t ∈ T}

The arities and binders of the new syntax are as follows:
I If c ∈ C then its arity and binders are unchanged in Cmp.
I astc has the same arity as c ∈ C and no binders.
I astpromote has variable arity, or, equivalently has arity 2,

with the second argument being of type list. There are no
binders.

I asteval has arity 1 and no binders.
I tagt has arity 0 and no binders for t ∈ T .
I eval, ↓{_}, and ↑{_} have arity 1 and no binders.

HGMP(·) semi-formally
Assume C is the set of L ’s program constructors, Lmp’s
constructors and tags then:

T = C ∪ {eval,promote}

Cmp = C ∪ {eval, ↓{_}, ↑{_}} ∪ {astt | t ∈ T} ∪ {tagt | t ∈ T}

The arities and binders of the new syntax are as follows:
I If c ∈ C then its arity and binders are unchanged in Cmp.
I astc has the same arity as c ∈ C and no binders.
I astpromote has variable arity, or, equivalently has arity 2,

with the second argument being of type list. There are no
binders.

I asteval has arity 1 and no binders.
I tagt has arity 0 and no binders for t ∈ T .
I eval, ↓{_}, and ↑{_} have arity 1 and no binders.

HGMP(·)

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

t ∈ T
t ⇓λ t

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′

... Mi ⇓λ Ni ... t ∈ T
astt(M̃) ⇓λ astt(Ñ)

Constructors with binders are most easily explained by
example. If c has arity 2, with the first argument being a binder,
the following rule must be added:

M ⇓dl ”x” N ⇓dl N ′

astc(M,N) ⇓dl c(x ,N ′)

HGMP(·)

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

t ∈ T
t ⇓λ t

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′

... Mi ⇓λ Ni ... t ∈ T
astt(M̃) ⇓λ astt(Ñ)

Constructors with binders are most easily explained by
example. If c has arity 2, with the first argument being a binder,
the following rule must be added:

M ⇓dl ”x” N ⇓dl N ′

astc(M,N) ⇓dl c(x ,N ′)

HGMP(·)

We add the following rules to the operations rules of L (omitting
rules for upML for simplicity).

t ∈ T
t ⇓λ t

L ⇓λ M M ⇓dl N N ⇓λ N ′

eval(L) ⇓λ N ′

... Mi ⇓λ Ni ... t ∈ T
astt(M̃) ⇓λ astt(Ñ)

Constructors with binders are most easily explained by
example. If c has arity 2, with the first argument being a binder,
the following rule must be added:

M ⇓dl ”x” N ⇓dl N ′

astc(M,N) ⇓dl c(x ,N ′)

HGMP(·)

The following rules must be added for higher-order ASTs:

L ⇓dl tagt Mi ⇓dl Ni t ∈ T
astpromote(L, M̃) ⇓dl astc(Ñ)

L ⇓dl tagpromote M ⇓dl tagt Ni ⇓dl Ri

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, R̃)
t ∈ T

tagt ⇓dl tagt

HGMP(·)

The following rules must be added for higher-order ASTs:

L ⇓dl tagt Mi ⇓dl Ni t ∈ T
astpromote(L, M̃) ⇓dl astc(Ñ)

L ⇓dl tagpromote M ⇓dl tagt Ni ⇓dl Ri

astpromote(L,M, Ñ) ⇓dl astpromote(tagt, R̃)
t ∈ T

tagt ⇓dl tagt

HGMP(·)

Assuming we wish to enable compile-time HGMP, a ⇓ct relation
must be added:

M ∈ {x , ”x”} ∪ {tagt | t ∈ T}
M ⇓ct M

M ⇓ct N
eval(M) ⇓ct eval(N)

Mi ⇓ct Ni c ∈ C
c(M̃) ⇓ct c(Ñ)

Mi ⇓ct Ni t ∈ T
astt(M̃) ⇓ct astt(Ñ)

t ∈ T
tagt ⇓ct tagt

M ⇓ct A A ⇓λ B B ⇓dl C
↓{M} ⇓ct C

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?

I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?

I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?

I What languages or language features cannot be handled
satisfactorily by HGMP(.)?

Questions about HGMP(·)

I What’s a good formal way of specifying source and target
languages of HGMP(·)?

I What does it mean for HGMP(·) to be correct?
I Relationship HGMP(L) and HGMP(HGMP(L))?
I What interesting properties does HGMP(·) preserve?
I What languages or language features cannot be handled

satisfactorily by HGMP(.)?

Conclusion

HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?

I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?

I Extension of HGMP(·) to typed base-languages, using
staged typing a la Template Haskell?

I Implementation of HGMP(·) and applying it to real
languages?

I Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?

I Hoare logics and other specification mechanism. Can
HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?

I Implementation of HGMP(·) and applying it to real
languages?

I Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?

I Hoare logics and other specification mechanism. Can
HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?

I Application to proof assistants, e.g. “Engineering Proof by
Reflection in Agda” by Swierstra et al to implement tactics?

I Hoare logics and other specification mechanism. Can
HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?

I Hoare logics and other specification mechanism. Can
HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Conclusion
HGMP(·) gives a foundational approach to meta-programming.
Much work remains.

I Compiler-hooks for HGMP(·)?
I Adding hygiene, e.g. using nominal techniques?
I Extension of HGMP(·) to typed base-languages, using

staged typing a la Template Haskell?
I Implementation of HGMP(·) and applying it to real

languages?
I Application to proof assistants, e.g. “Engineering Proof by

Reflection in Agda” by Swierstra et al to implement tactics?
I Hoare logics and other specification mechanism. Can

HGMP(·) be extended to transform logic for L to logic for
HGMP(L)?

I Generalising HGMP(·) to heterogeneous
meta-programming?

Questions?

