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Interval Constraints Propagation

● Search for a solution using 
– Pruning: interval arithmetic to prune the search space.

– Branching: when pruning is stuck, split the domain of a 
variable and continue recursively.

● Interval arithmetic on double precision numbers
– Rounding errors taken into account

– dReal uses IBEX and CAPD libraries

● Use δ>0 to guarantee the termination



  

Branch and Prune ICP

D prune D

D branch D₁ D₂
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Completeness

● δ-satisfiability is NP (PSpace with ODE).
● Idea:

– If we can guess a small enough box containing the solution, 
we can check it in polynomial time using interval arithmetic.

– If the problem is unsatisfiable, we need to explore a  
potentially exponential number of small boxes and show that 
all of them are empty.

● Takeaway message:
Nonlinear theories over the reals are just polynomially 
harder than SAT.



  

dReal

● Description: http://dreal.github.io/
● Getting the tool: https://github.com/dreal/dreal3
● GPL3 license
● Runs natively on Linux and Mac
● Runs on Windows via Docker

http://dreal.github.io/
https://github.com/dreal/dreal3


  

dReal Frontends

● SMT2 ● dr
(set-logic QF_NRA)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (< 2.4 x))
(assert (< x 2.6))
(assert (< -10.0 y))
(assert (< y 10.0))
(assert 

(and
(= y (cos x))

)
)
(check-sat)
(exit)

var:
[2.4, 2.6] x;
[-10, 10] y;

ctr:
y = cos(x);



  

dReal Example



  

What We Support

● Types: Real, Int, Bool
– Int are handled in the ICP by a special contractor.

– Bool are handled before the ICP by a SAT solver.

● Functions:
polynomials, trigonometric functions, logarithms, …

(We will discuss very soon about the ODEs.)

prune

SAT solver

NRA solver



  

ODEs and dReach

● dReal support ODEs directly in the SMT2 
interface with a QF_NRA_ODE logic but the 
notation is non-standard.

● The dReach tool is much more user-friendly.
● dReach is a BMC that generates a dReal query 

from an hybrid automata



  

dReach Syntax



  

dReach Syntax

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;



  

dReach Syntax

{ mode 1;
  invt:
        (v <= 0);
        (x >= 0);
  flow:
        d/dt[x] = v;
        d/dt[v] = g;
  jump:
        (x = 0) ==>

@2 (and (x' = x)
(v' = (0 - v)));

}

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;

{ mode 2;
  invt:
        (v >= 0);
        (x >= 0);
  flow:
        d/dt[x] = v; 
        d/dt[v] = g;
  jump:
        (v = 0) ==>

@1 (and (x' = x)
(v' = v));

}



  

dReach Syntax

{ mode 1;
  invt:
        (v <= 0);
        (x >= 0);
  flow:
        d/dt[x] = v;
        d/dt[v] = g;
  jump:
        (x = 0) ==>

@2 (and (x' = x)
(v' = (0 - v)));

}

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;

{ mode 2;
  invt:
        (v >= 0);
        (x >= 0);
  flow:
        d/dt[x] = v; 
        d/dt[v] = g;
  jump:
        (v = 0) ==>

@1 (and (x' = x)
(v' = v));

}

init:
@1 (and (x = 10) (v = 0));

goal:
@2 (and (x = 1) (v >= 1));



  

dReach Example



  

SMT Encoding (1)

● Variables

● Mode  invariants

(declare-fun mode_i () Real)
(declare-fun time_i () Real)
(declare-fun x_i_0 () Real)
(declare-fun x_i_t () Real)
(declare-fun v_i_0 () Real)
(declare-fun v_i_t () Real)

(assert (and
(forall_t 1 [0 time_i] (>= x_i_t 0) (<= v_i_t 0))
(forall_t 2 [0 time_i] (>= x_i_t 0) (>= v_i_t 0))

))



  

SMT Encoding (2)

● Flow declaration

● Jump conditions

(declare-fun x () Real)
(declare-fun v () Real)
(define-ode flow_1 (

(= d/dt[x] v)
(= d/dt[v] g) ))

(define-ode flow_2 (
(= d/dt[x] v)
(= d/dt[v] g) ))

(assert (or (and (= mode_i 1) (= mode_j 2) (= x_i_t 0)
                 (= x_j_0 x_i_t) (= v_j_0 (- v_i_t)))
            (and (= mode_i 2) (= mode_j 1) (= v_i_t 0)
                 (= x_j_0 x_i_t) (= v_j_0 v_i_t))))



  

SMT Encoding (3)

● Connecting the flows

● Other elements
– Initial and final conditions

– Bounds for all the variables

– ...

(assert (or
(and (= mode_i 1)

         (= [x_i_t v_i_t] (integral 0. time_i [x_i_0 v_i_0] flow_1)))
    (and (= mode_i 2)
         (= [x_i_t v_i_t] (integral 0. time_i [x_i_0 v_i_0] flow_2)))
))



ODEs, dReal, and Completeness

 

is just a pruning operator over the domain

 

 

 



  

dReal Tricks

● Julia bindings, C API, etc.
● Precision (δ)

– Option: --precision 0.1
– In SMT file: (set-option :precision 0.1) 

● Model Generation
– Option: --model

● Polytope contractor
– Option: --polytope

● Branching heuristics
– Options: --gradbranch, --scoring-icp



  

What Comes Next

● More efficient search heuristics (!!!)
●  ∃∀ formula
● More parallelism
● ...



  

Conclusion

● dReal is an SMT solver for nonlinear theories 
over the reals

● dReach is a bounded model checker for hybrid 
systems. dReach uses dReal as backend.

● If you have questions, contact us by email, 
open issues on github. Pull-requests on github 
are also welcome.
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