

δ-Complete Decision Procedure
and dReal

Damien Zufferey
MIT CSAIL

ARSBM 2016, 20 Sept 2016

Based on the work of Sicun Gao and Soonho Kong

Outline

● Interval constraints propagation (ICP)
– Branch and Prune Algorithm

– Completeness

– dReal Example

● Adding ODEs
– dReach Example

– SMT encoding

● dReal Tricks

Interval Constraints Propagation

● Search for a solution using
– Pruning: interval arithmetic to prune the search space.

– Branching: when pruning is stuck, split the domain of a
variable and continue recursively.

● Interval arithmetic on double precision numbers
– Rounding errors taken into account

– dReal uses IBEX and CAPD libraries

● Use δ>0 to guarantee the termination

Branch and Prune ICP

D prune D

D branch D₁ D₂

Branch-and-Prune Example

A B

Branch-and-Prune Example

A B

Prune by B

Branch-and-Prune Example

A B

Prune by B
Prune by A

Branch-and-Prune Example

A B

Prune by B
Prune by A
Branch

Branch-and-Prune Example

A B

Prune by B
Prune by A
Branch
Prune by A

Branch-and-Prune Example

A B

Prune by B
Prune by A
Branch
Prune by A
Prune by B

Branch-and-Prune Example

A B

Prune by B
Prune by A
Branch
Prune by A
Prune by B
Prune by A

Branch-and-Prune Example

A B

Prune by B
Prune by A
Branch
Prune by A
Prune by B
Prune by A
Prune by B

Completeness

● δ-satisfiability is NP (PSpace with ODE).
● Idea:

– If we can guess a small enough box containing the solution,
we can check it in polynomial time using interval arithmetic.

– If the problem is unsatisfiable, we need to explore a
potentially exponential number of small boxes and show that
all of them are empty.

● Takeaway message:
Nonlinear theories over the reals are just polynomially
harder than SAT.

dReal

● Description: http://dreal.github.io/
● Getting the tool: https://github.com/dreal/dreal3
● GPL3 license
● Runs natively on Linux and Mac
● Runs on Windows via Docker

http://dreal.github.io/
https://github.com/dreal/dreal3

dReal Frontends

● SMT2 ● dr
(set-logic QF_NRA)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (< 2.4 x))
(assert (< x 2.6))
(assert (< -10.0 y))
(assert (< y 10.0))
(assert

(and
(= y (cos x))

)
)
(check-sat)
(exit)

var:
[2.4, 2.6] x;
[-10, 10] y;

ctr:
y = cos(x);

dReal Example

What We Support

● Types: Real, Int, Bool
– Int are handled in the ICP by a special contractor.

– Bool are handled before the ICP by a SAT solver.

● Functions:
polynomials, trigonometric functions, logarithms, …

(We will discuss very soon about the ODEs.)

prune

SAT solver

NRA solver

ODEs and dReach

● dReal support ODEs directly in the SMT2
interface with a QF_NRA_ODE logic but the
notation is non-standard.

● The dReach tool is much more user-friendly.
● dReach is a BMC that generates a dReal query

from an hybrid automata

dReach Syntax

dReach Syntax

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;

dReach Syntax

{ mode 1;
 invt:
 (v <= 0);
 (x >= 0);
 flow:
 d/dt[x] = v;
 d/dt[v] = g;
 jump:
 (x = 0) ==>

@2 (and (x' = x)
(v' = (0 - v)));

}

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;

{ mode 2;
 invt:
 (v >= 0);
 (x >= 0);
 flow:
 d/dt[x] = v;
 d/dt[v] = g;
 jump:
 (v = 0) ==>

@1 (and (x' = x)
(v' = v));

}

dReach Syntax

{ mode 1;
 invt:
 (v <= 0);
 (x >= 0);
 flow:
 d/dt[x] = v;
 d/dt[v] = g;
 jump:
 (x = 0) ==>

@2 (and (x' = x)
(v' = (0 - v)));

}

[0, 20] x;
[-9.8] g;
[-100, 100] v;
[0, 10] time;

{ mode 2;
 invt:
 (v >= 0);
 (x >= 0);
 flow:
 d/dt[x] = v;
 d/dt[v] = g;
 jump:
 (v = 0) ==>

@1 (and (x' = x)
(v' = v));

}

init:
@1 (and (x = 10) (v = 0));

goal:
@2 (and (x = 1) (v >= 1));

dReach Example

SMT Encoding (1)

● Variables

● Mode invariants

(declare-fun mode_i () Real)
(declare-fun time_i () Real)
(declare-fun x_i_0 () Real)
(declare-fun x_i_t () Real)
(declare-fun v_i_0 () Real)
(declare-fun v_i_t () Real)

(assert (and
(forall_t 1 [0 time_i] (>= x_i_t 0) (<= v_i_t 0))
(forall_t 2 [0 time_i] (>= x_i_t 0) (>= v_i_t 0))

))

SMT Encoding (2)

● Flow declaration

● Jump conditions

(declare-fun x () Real)
(declare-fun v () Real)
(define-ode flow_1 (

(= d/dt[x] v)
(= d/dt[v] g)))

(define-ode flow_2 (
(= d/dt[x] v)
(= d/dt[v] g)))

(assert (or (and (= mode_i 1) (= mode_j 2) (= x_i_t 0)
 (= x_j_0 x_i_t) (= v_j_0 (- v_i_t)))
 (and (= mode_i 2) (= mode_j 1) (= v_i_t 0)
 (= x_j_0 x_i_t) (= v_j_0 v_i_t))))

SMT Encoding (3)

● Connecting the flows

● Other elements
– Initial and final conditions

– Bounds for all the variables

– ...

(assert (or
(and (= mode_i 1)

 (= [x_i_t v_i_t] (integral 0. time_i [x_i_0 v_i_0] flow_1)))
 (and (= mode_i 2)
 (= [x_i_t v_i_t] (integral 0. time_i [x_i_0 v_i_0] flow_2)))
))

ODEs, dReal, and Completeness

is just a pruning operator over the domain

dReal Tricks

● Julia bindings, C API, etc.
● Precision (δ)

– Option: --precision 0.1
– In SMT file: (set-option :precision 0.1)

● Model Generation
– Option: --model

● Polytope contractor
– Option: --polytope

● Branching heuristics
– Options: --gradbranch, --scoring-icp

What Comes Next

● More efficient search heuristics (!!!)
● ∃∀ formula
● More parallelism
● ...

Conclusion

● dReal is an SMT solver for nonlinear theories
over the reals

● dReach is a bounded model checker for hybrid
systems. dReach uses dReal as backend.

● If you have questions, contact us by email,
open issues on github. Pull-requests on github
are also welcome.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Branch-and-Prune Example (1)
	Branch-and-Prune Example (2)
	Branch-and-Prune Example (3)
	Branch-and-Prune Example (4)
	Branch-and-Prune Example (5)
	Branch-and-Prune Example (6)
	Branch-and-Prune Example (7)
	Branch-and-Prune Example (8)
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	page12 (1)
	page12 (2)
	page12 (3)
	page12 (4)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Ordinary Differential Equations
	Slide 28
	Slide 29
	Slide 30

