#### δ-Complete Decision Procedure and dReal

Damien Zufferey MIT CSAIL

ARSBM 2016, 20 Sept 2016

Based on the work of Sicun Gao and Soonho Kong

# Outline

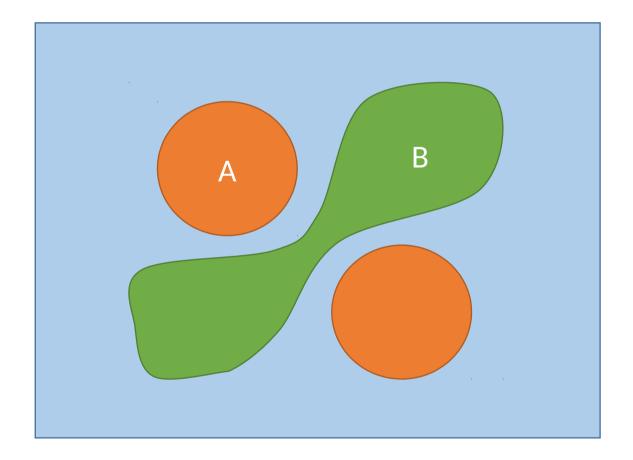
- Interval constraints propagation (ICP)
  - Branch and Prune Algorithm
  - Completeness
  - dReal Example
- Adding ODEs
  - dReach Example
  - SMT encoding
- dReal Tricks

# **Interval Constraints Propagation**

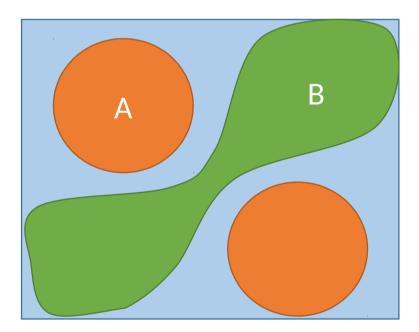
- Search for a solution using
  - Pruning: interval arithmetic to prune the search space.
  - Branching: when pruning is stuck, split the domain of a variable and continue recursively.
- Interval arithmetic on double precision numbers
  - Rounding errors taken into account
  - dReal uses IBEX and CAPD libraries
- Use  $\delta > 0$  to guarantee the termination

### **Branch and Prune ICP**

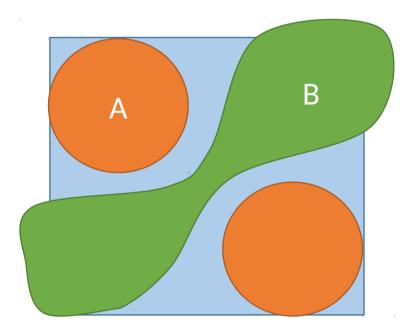
Algorithm 1 ICP $(c_1, ..., c_m, \vec{D} = D_1 \times \cdots \times D_n, \delta)$ 1:  $S.\operatorname{push}(\vec{D})$ 2: while  $S \neq \emptyset$  do  $\vec{D} \leftarrow S.\text{pop}()$ 3: while  $\exists 1 \leq i \leq m, \vec{D} \neq_{\delta} \operatorname{Prune}(\vec{D}, c_i)$  do 4: D D prune  $\vec{D} \leftarrow \operatorname{Prune}(\vec{D}, c_i)$ 5: end while 6: if  $ec{D} 
eq \emptyset$  then 7: if  $\exists 1 \leq i \leq n, |D_i| \geq \varepsilon$  then  $\triangleright \varepsilon$  is some 8: computable factor of  $\delta$  $\{\vec{D}_1, \vec{D}_2\} \leftarrow \operatorname{Branch}(\vec{D}, i)$ 9:  $S.\operatorname{push}(\vec{D}_1)$ 10: branch D2 D  $D_1$  $S.\mathrm{push}(\vec{D}_2)$ 11: else 12: return sat 13: 14: end if 15: end if 16: end while 17: return unsat



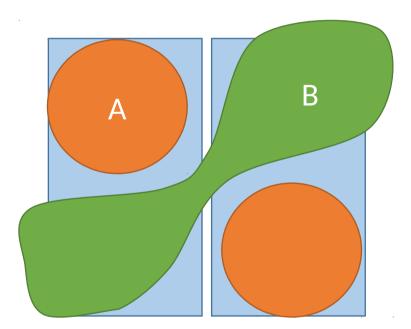
Prune by **B** 



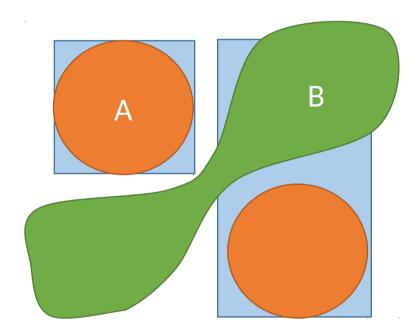
Prune by **B** Prune by **A** 



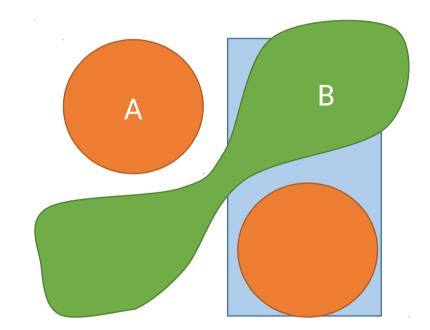
Prune by B Prune by A Branch



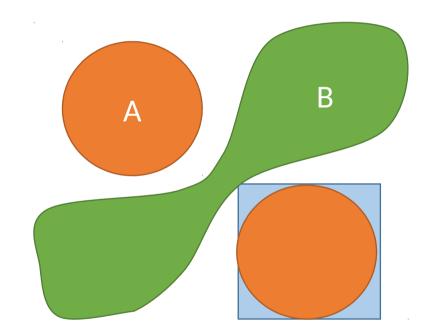
Prune by B Prune by A Branch Prune by A



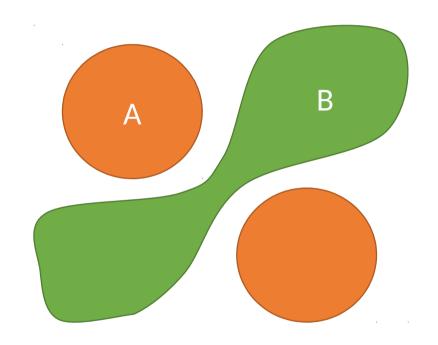
Prune by B Prune by A Branch Prune by A Prune by B



Prune by B Prune by A Branch Prune by A Prune by B Prune by A



Prune by B Prune by A Branch Prune by A Prune by B Prune by A Prune by B



# Completeness

- $\delta$ -satisfiability is NP (PSpace with ODE).
- Idea:
  - If we can guess a small enough box containing the solution, we can check it in polynomial time using interval arithmetic.
  - If the problem is unsatisfiable, we need to explore a potentially exponential number of small boxes and show that all of them are empty.
- Takeaway message:

Nonlinear theories over the reals are *just* polynomially harder than SAT.

# dReal

- Description: http://dreal.github.io/
- Getting the tool: https://github.com/dreal/dreal3
- GPL3 license
- Runs natively on Linux and Mac
- Runs on Windows via Docker

### dReal Frontends

#### • SMT2

```
(set-logic QF_NRA)
(declare-fun x () Real)
(declare-fun y () Real)
(assert (< 2.4 x))
(assert (< x 2.6))
(assert (< -10.0 y))
(assert (< y 10.0))
(assert
   (and
       (= y (cos x))
   )
(check-sat)
(exit)
```

#### • dr

```
var:
    [2.4, 2.6] x;
    [-10, 10] y;
ctr:
    y = cos(x);
```

#### dReal Example

# What We Support

- Types: Real, Int, Bool
  - Int are handled in the ICP by a special contractor.
  - Bool are handled before the ICP by a SAT solver.



• Functions:

polynomials, trigonometric functions, logarithms, ... (We will discuss very soon about the ODEs.)

# ODEs and dReach

- dReal support ODEs directly in the SMT2 interface with a QF\_NRA\_ODE logic but the notation is non-standard.
- The dReach tool is much more user-friendly.
- dReach is a BMC that generates a dReal query from an hybrid automata

[0, 20] x; [-9.8] g; [-100, 100] v; [0, 10] time;

[0, 20] x; [-9.8] g; [-100, 100] v; [0, 10] time;  $\{ mode 1; \}$ invt: (v <= 0);(x >= 0);flow: d/dt[x] = v;d/dt[v] = g;jump: (x = 0) =>02 (and (x' = x) (v' = (0 - v)); }

[0, 20] x; [-9.8] g; [-100, 100] v; [0, 10] time;  $\{ mode 1; \}$ invt: (v <= 0): $(x \ge 0):$ flow: d/dt[x] = v: d/dt[v] = g;jump: (x = 0) ==>02 (and (x' = x) (v' = (0 - v)): }

{ mode 2; invt: (v >= 0); $(x \ge 0);$ flow: d/dt[x] = v;d/dt[v] = g;jump: (v = 0) =>01 (and (x' = x) (v' = v));} init: (and (x = 10) (v = 0));goal:

02 (and (x = 1) (v >= 1));

#### dReach Example

# SMT Encoding (1)

Variables

(declare-fun mode\_i () Real) (declare-fun time\_i () Real) (declare-fun x\_ $i_0$  () Real) (declare-fun x\_ $i_t$  () Real) (declare-fun v\_ $i_0$  () Real) (declare-fun v\_ $i_t$  () Real)

• Mode invariants

```
(assert (and
      (forall_t 1 [0 time_i] (>= x_i_t 0) (<= v_i_t 0))
      (forall_t 2 [0 time_i] (>= x_i_t 0) (>= v_i_t 0))
))
```

# SMT Encoding (2)

Flow declaration

Jump conditions

$$(assert (or (and (= mode_i 1) (= mode_j 2) (= x_i_t 0) (= x_j_0 x_i_t) (= v_j_0 (- v_i_t))) (and (= mode_i 2) (= mode_j 1) (= v_i_t 0) (= x_j_0 x_i_t) (= v_j_0 v_i_t)))$$

# SMT Encoding (3)

Connecting the flows

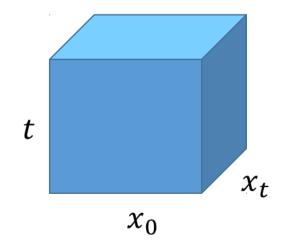
- Other elements
  - Initial and final conditions
  - Bounds for all the variables

- ...

#### ODEs, dReal, and Completeness

$$x_t = x_0 + \int_0^t f(x) \, dx \wedge 0 \le t \le 2$$

is just a pruning operator over the domain



# dReal Tricks

- Julia bindings, C API, etc.
- Precision (δ)
  - Option: --precision 0.1
  - In SMT file: (set-option :precision 0.1)
- Model Generation
  - Option: --model
- Polytope contractor
  - Option: --polytope
- Branching heuristics
  - Options: --gradbranch, --scoring-icp

# What Comes Next

- More efficient search heuristics (!!!)
- $\exists \forall$  formula
- More parallelism

# Conclusion

- dReal is an SMT solver for nonlinear theories over the reals
- dReach is a bounded model checker for hybrid systems. dReach uses dReal as backend.
- If you have questions, contact us by email, open issues on github. Pull-requests on github are also welcome.