
War of the Worlds :
Branch Consistency in Distributed Systems

 Natacha Crooks, Jean Bacon, Steven Hand Reinhard Munz, Allen Clement
 Cambridge University Computer Laboratory MPI-SWS
 natacha.crooks@cl.cam.ac.uk

Problem: Fundamental storage mismatch

Three pillars of Branch Consistency

Prototype: Transactional storage with parallel
snapshots

Branch Consistency - a declarative consistency model with branching as a first class primitive

What branch consistency enables

New York Paris

Tokyo

Independently executing
replicas

Unrealistic to expect that a unique system view could or even
should exist at a given time.

Local World View

Merged View

Remote World View

Site World View DAG

Dichotomy between: distributed reality and the
abstraction of a single unique view of the world provided
by the local storage

Remote
concurrent
executions

Local
concurrent
executions

Locking
No Transactions (NoSQL)

 Commutativity
Causal Consistency

Timeline Consistency
Red-Blue CRDTs Bayou COPS

Walter PNUTS Spanner

Contortions and
back-flips that rely
on specific properties
of operations or data.

Single View Storage

Replication

How can we
address this?

 Conflict Definition Conflict Handling Conflict Resolution

 How/when/if do we resolve
 the conflict?

- Via a user-defined resolution
function

- Optional and asynchronous

- Explicitly merge branches, not
objects

 Treat branches
as the first-class primitive

 - explicity reasons about
branches (world views),
not independent objects

- guarantees isolation between
 branches

 Application-centric

- "consistent". No meaning
outside of an application

- Declarative:

 => users specify what
a conflict is

 => users specify when/how
 to merge

Asynchronous Georeplication

To guarantee
scalability/
performance:
sites execute
concurrently

To guarantee
availability:
sites execute
independently

- composition of
consistency levels through
 varying conflict definition

 - flexibility: emulates
 existing consistency
 models

- performance. branching
can be made cheap

- No more distinction
between local vs
remote storage

- No more reliance on
properties of
data/operations

- Transactional

- Supports multiversion
concurrency control and
branches

- Supports arbitrary
conflict definitions

- Never forces merging

- Handles conflict through
branching

- Non-blocking
(including merging and
replication)

- Efficiently models the
World View DAG

How should we handle conflicts?

- Computational Time Logic
Determine when/how to branch
Constructs World View DAG

- Linear Time Logic
Express properties of individual
branches.

 What is a conflict ?

- Defined by the user.
 f: (trxn,world view) → {0,1}

- Determines whether can execute
a transaction on this world view.

- Conflict definitions are associated
with transactions

Concurrent/distributed systems fundamentally consist
of multiple independent executions

Concurrent User
Requests

