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The Computer Laboratory
Celebrating the first 75 years on 24th April 2013

Anticlockwise (from top left): Professor Sir Tony Hoare delivers the 
Wheeler Lecture; Professor Andy Hopper presents Dr Mike Lynch 
with a commemorative certificate; Professor Ahmed signs a copy 
of Cambridge Computing: The First 75 Years for Professor 
Bjarne Stroustrup; Lord Broers addresses over 300 graduates and 
friends of the Computer Laboratory; Professor Haroon Ahmed, 
Professor Andy Hopper and Lord Broers at the book launch.
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Anticlockwise (from top left): Innovation Discussion Panel shares a joke with the audience 
(left to right: Dr Mike Lynch, Dr Mike Muller, Professor Andy Hopper, Dr Andy Harter, 
Dr Eben Upton); Poster competition winner Ramsey Faragher for his poster “Opportunistic 
positioning”; raising a glass to the Computer Laboratory at the Cambridge Ring annual 
dinner; Lord Broers delivers guest speech (left to right: Sir Robin Saxby, Dr Gerard 
Bricogne, Dr Hermann Hauser CBE, Professor Andy Hopper CBE); Professor Andy Hopper 
presents Lord Broers with a copy of Cambridge Computing: The First 75 Years.
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Address by Master of Ceremonies, Professor Andy Hopper

Today we have been celebrating the 
Computer Laboratory’s 75th anniversary. It 
is a celebration not only of the Lab’s academic 
excellence but also its role as a pre-eminent 
source of entrepreneurial energy.

The Hall of Fame Awards acknowledge both 
strands so, with this in mind, I’d like to start 
with the award for Publication of the Year 
and invite Professor Robinson to accept the 
award for “3D Constrained local model for 
rigid and non-rigid facial tracking” by Tadas 
Baltrušaitis, Peter Robinson and Louis-
Philippe Morency. [Read the paper on p13]

Moving on to the categories which recognise 
those companies founded by Lab graduates 
and staff, the nominations for Product of the 
Year are:

Bromium for Bromium vSentry, Cronto for 
CrontoSign, RealVNC for VNC Automotive 
and Swiftkey for SwfitKey3.

Like last year, there was a very tight contest 
for the top spot and, like last year, this year’s 
runner-up is SwiftKey. SwiftKey 3 was the 
world’s best-selling Android app of 2012; 
it was downloaded over five million times 
and has more than two million active users. 
Over the past year it has won many acco-
lades including “Most Innovative Mobile 
App” at the GSMA awards, a People’s Voice 
award for Innovation at the Webbys, and the 
Recombu’s “Best App 2012”.

Pipping SwiftKey on the line for Product 
of the Year 2013 is a product that allows 
drivers and passengers to automatically 
detect, access and control virtually any 
mobile device or desktop computer from 

a vehicle’s touch-screen, fixed input device 
(such as steering wheel switches) or by voice 
command. 

So, I’d like to invite Andy Harter, co-founder 
of RealVNC, to accept the award for 
RealVNC’s VNC Automotive.

And now for Company of the Year 2013. 

Over 200 companies have been started by 
Lab graduates and staff. This year, the judges’ 
task of finding a winner from such a high-
quality list of entries was no mean feat. 

Hall of Fame Awards
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Professor Peter Robinson receives the award from Lord Broers

Andy Harter accepts the award for Product of the Year



5

© The Cambridge Computer Lab Ring 2013The Ring — Issue XXXIII — May 2013

The nominations for Company of the Year 
are:

Bango, Cronto, Fusepump, Raspberry Pi, 
Swiftkey, Ubisense, Xsilon.

Bango has become a pioneer of mobile 
Internet payments. 2012 was the year that 
propelled the company into the big time. At 
the start of the year, Bango captured head-
lines with announcements of partnerships 
with Amazon and then Facebook. Next came 
an agreement with Microsoft to support its 
roll-out of Windows Marketplace. In the 
final quarter of 2012, Bango announced that 
its first integration with Google Play had 
gone live.

Cronto addresses the growing problem of 
fraud in Internet payments.

In 2012, Cronto’s innovative visual transac-
tion signing solution, that enables financial 
institutions to counter sophisticated Trojan 
and “Man in the Browser” attacks, was 
deployed by two leading European banks, 
Raiffeisen in Switzerland and Commerzbank 
in Germany.

In 2009, Robert Durkin and Chris Conn 
got a bank loan and started Fusepump to 
provide e-commerce marketing solutions to 
on-line retailers. Four years on the company 

employs 55 people in the UK, has clients 
across the world and has grown at more than 
70% year-on-year. 

Fusepump has had some notable successes: 
its technology has helped Nokia to generate 
€1 billion from sales of handsets, John Lewis 
to improve its on-line search revenues by 
400% and achieve bumper sales for the 
past two Christmases, and Tesco and Sky 
to develop affiliate marketing across their 
brands. It is currently working with ASOS, 
the global on-line fashion and beauty retailer, 
to develop a closed affiliate marketing plat-
form and advertising tools. 

Raspberry Pi has recently celebrated its first 
birthday. This basic computer, which costs 
around £25, has taken the world by storm. 
It was designed primarily to get children 
interested in programming and inspire a new 
generation of British innovators. More than 
a million have been sold since orders started 
being accepted on February 29th 2012 — an 
amazing achievement for a computer made 
by a not-for-profit organisation. 

2012 was a big year for SwiftKey. Their team 
grew from 30 to over 80, they closed deals 
with more than ten mobile manufacturers, 
including four of the top ten. They signed 
deals with 15 US healthcare providers for 
“SwiftKey Healthcare”, shipped embedded 

software on some of the year’s most popular 
smartphones and won “Startup of the Year” at 
the Guardian digital innovation awards.

Ubisense celebrated a number of significant 
events in 2012. The year marked its tenth 
anniversary, during which time the company 
has grown from being a handful of academic 
researchers to almost 200 people based on 
three different continents — though their 
HQ and R&D facilities are still firmly based 
in Cambridge. 2012 saw the anniversary 
of its flotation on AIM. Unlike other more 
high profile flotations, Ubisense has never 
dropped below its original IPO price. And 
the company achieved the distinction of 
winning not one but two Queen’s Awards — 
recognising the company’s on-going innova-
tion and success in international trade. 

Xsilon, a fabless semiconductor company, 
epitomises the idea of a lean startup. Despite 
receiving only £260k in funding its team 
now numbers eight, and it has built a tech-
nology demonstrator of its groundbreaking 
comms technology. Xsilon showcased its 
Hanadu in-home M2M solutions at UK 
Trade and Investment’s British Business 
Embassy during the London 2012 Olympics 
and Paralympic Games.

So, as you can see, the judges were presented 
with an incredibly strong and varied list of 
entries and, despite the challenging task it 
presented, they have enjoyed the experience.

Sadly, there can only be one winner. By way 
of introduction, I’d like to read a quote from 
one of the co-founders:

“The younger generation has demonstrated 
significant intrigue in learning how to build 
and program their own computer devices. I 
have seen projects from Twittering chickens 
to home beer brewing kits being created 
using the Raspberry Pi and its accessories.” 

And with that, I’d like to invite Eben Upton, 
co–founder of the Raspberry Pi Foundation, 
to receive the award for Company of the Year 
2013.

hall of fame awards

Eben Upton (left) accepts the award on behalf of Raspberry Pi.
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“The Faculty of Computer Science & Technology is seeking to appoint 
a Secretary of the Department in the Computer Laboratory following 
the forthcoming retirement of the current role holder.” So read the 
notice that left all in no doubt that Margaret Levitt, who has acted as 
the Department’s glue for the last 26 years, was hanging up her gown.

The Secretary of the Department is one of the three senior members 
of staff supporting the Head of Department; the other two being the 
Deputy heads. The role today is broad, covering department adminis-
tration, personnel and building management — very different from 
the job offered in 1987.

It is largely thanks to Margaret’s husband that she joined the Computer 
Laboratory. Indeed when offered the post of Student Administration 
Secretary, she turned it down.

Margaret was working at St Andrew’s Junior School in Cambridge, as 
School Secretary, when she sent in her job application. She produced it 
on the school’s only BBC Micro — rather impressive when most were 
still using typewriters to produce their CVs. Invited for interview, she 
arrived smartly dressed in silk shirt and attendant attire and presented 
herself to an interview panel dressed in shorts and sandals! Not only 
was the panel’s garb somewhat startling for someone used to children 
in uniform and well-turned-out staff but, when the late Judy Bailey 
lifted up Margaret’s CV by the corner and, adopting an intimidatory 
tone, said “What is this?”, Margaret was taken aback. She left the inter-
view, having been asked nothing about her experience; the interview 
consisted of talk about music. 

Margaret was offered the job later that day but turned it down. How 
could she possibly work at such a “mad place”? Mr Levitt’s attitude was 
less equivocal; “You could do the job standing on your head”. So, after 
a night’s reflection, Margaret phoned Judy Bailey to say she would 
accept the job if it was still available. 

When Margaret joined the Computer Laboratory in 1987 most of the 
department’s administrative needs were met by the Computing Service 
so Margaret’s responsibilities were focused on student administration 

Margaret Levitt prepares to bid 
farewell to the Computer Laboratory

The end of an era
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(predominantly diploma students as the full three-year tripos didn’t 
begin until 1989). In 1990, Margaret felt she needed something more 
challenging and applied for the post of Faculty Secretary at Classics. 
Jean Bacon, who joined the Laboratory as its first female lecturer 
in 1985 and was acting Head of Department while Roger Needham 
was on one of his regular consulting visits to Digital Equipment 
Corporation’s Systems Research Center in Palo Alto, got wind of 
Margaret’s application and urged Roger to take defensive action to 
prevent Margaret from leaving.

Roger was easily persuaded and submitted a case to the Council for 
a Departmental Secretary. While the establishment of the post was 
making its passage through the University, Margaret was appointed, in 
May 1990, as Administration Officer ‘in an unestablished capacity to 
undertake administrative duties in the Computer Laboratory’.

Margaret didn’t spend long in this interim role as she was employed as 
Secretary of the Computer Laboratory from March 1st 1991. As well 
as being responsible for departmental administration including under-
graduate teaching and graduate students, Margaret was appointed 
Secretary of the Computer Science Syndicate (departmental and 
teaching administration) and Secretary of the Degree Committee 
(dealing with graduate students).

It was fortunate that Margaret approached new challenges with gusto 
as she would soon be heavily involved in the planning for the new 
building.

In 1996, Roger Needham resigned the headship of the Computer 
Laboratory and took up the new office of Pro Vice-Chancellor. He was 
soon approached by the Microsoft Corporation with the proposal that 
he should establish a research laboratory for them in Cambridge — 
Microsoft’s first non-US research lab. As part of the deal, the Univer-
sity received a US$20 million donation from the Gates Foundation 
for a new computer laboratory. There was much excitement that the 
Computer Laboratory, then housed in cramped conditions at the New 
Museums Site, would be moving into specially designed premises.

Under the headship of Robin Milner, Margaret was now fully engaged 
with planning. As anyone who has had building work done knows, it is 
a fraught time; Margaret was busy from the time the Building Group 
convened in June 1997 until the new building’s topping out ceremony 
on October 31st 2000 when Ian Leslie, who had taken over as Head of 
Department in 1999, tightened the last bolt on a roof beam.

The creation of the new building marked the point at which the 
Computer Laboratory split from the Computer Service and became an 
independent department. This gave Margaret a new set of challenges 
as she had to establish those administrative services (from reception 
to health and safety and building services) that had previously been 
supplied by the Computing Service. The fruition of her labours was 
evident at the time of the building’s official opening on May 1st 2002.

Margaret has enjoyed being part of the department. “I’ve been very 
fortunate in being part of the Lab during a period of such change and 
growth!” Her enjoyment stems in large part from the ethos fostered by 
Roger Needham: that the department should be very democratic with 
everyone allowed their say.

So, with Margaret part of the very fibre of the Computer Laboratory, 
there will be something missing when she leaves before the start of the 
new academic year. However, we expect to see her regularly when she 
returns for the weekly Pilates and aerobics classes. And, rest assured, 
Margaret will be just as busy in retirement as she has been during 
her career. She plans to spend more time playing the piano, painting, 
gardening, and decorating — there may even be time for a part-time 
job!

Whatever Margaret does in her retirement we all wish her a very 
happy one, and thank her heartily for leaving the Computer Labora-
tory in such robust health.
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Few would argue with the observation that mathematics in full flower 
as we know it today, both pure and applied, has evolved from the root 
concept of number. This is recounted beautifully in the book Number: 
The Language of Science by Tobias Dantzig, which was first published in 
1930 and then appeared in several subsequent editions. (The author’s 
son, George B. Dantzig, the inventor of linear programming and the 
simplex algorithm, achieved even greater eminence than his father.) 
This landmark book was endorsed by Albert Einstein as follows: 

“ This is beyond doubt the most interesting book on the 
evolution of mathematics that has ever fallen into my hands. 
If people know how to treasure the truly good, this book 
will attain a lasting place in the literature of the world. The 
evolution of mathematical thought from the earliest times 
to the latest constructions is presented here with admirable 
consistency and originality and in a wonderfully lively style.”

Nowadays every schoolchild learns number representation at an early age, 
along with the basic arithmetic operations on decimal numerals. But the 
concept of number itself is far from elementary, a fact highlighted by the 
great mathematician D. E. Littlewood, Fellow of Trinity College, in the 
chapter “Numbers” of his classic primer, A Skeleton Key of Mathematics 
[1947; 2002]:

“ A necessary preliminary for any proper understanding of 
mathematics is to have a clear conception of what is meant 
by number. When dealing with number most people refer to 
their own past handling of numbers, and this is, usually, not 
inconsiderable. Familiarity gives confidence in the handling, 
but not always an insight into the significance. The technique 
of manipulating numbers is learned by boys and girls at a very 
tender age when manipulative skill is fairly easily obtained, 
and when the understanding is very immature. At a later stage, 
when the faculty of understanding develops, the technique is 
already fully acquired, so that it is not necessary to give any 
thought to numbers. To appreciate the significance of numbers 
it is necessary to go back and reconsider the ground which was 

covered in childhood. Apart from specialized mathematicians, 
few people realize that, for example, the number 2 can have 
half a dozen distinct meanings. These differences in meaning 
are reflected in the logical definitions of number.”

Littlewood then proceeds to explain these “differences in meaning” 
and gives a brief yet masterful exposition of the logical foundations 
of four basic number systems: cardinal integers; signed integers; 
rational numbers; and real numbers. And this line of development 
could be continued, whereby the underlying structure of the foregoing 
number systems is generalised, extended or relaxed, leading to other 
key developments in mathematics: vector spaces, matrix and tensor 
theory, groups, rings and fields, functional analysis, and so on.

In contrast, computer science is a much younger discipline, although 
it too has roots that stretch back to antiquity. Its key foundational 
concepts are algorithm and universal machine, and these foundations 
were laid during the 1930s — well before the advent of the electronic 
computer — by a group of mathematical logicians, including Gödel, 
Church, Kleene, Post and, above all, Turing. (Useful background 
information on these pioneers and their contributions can be found 
in Berlinski [2000].) Seemingly different formulations of “algorithm” 
were shown to be equivalent, leading to what became known later 
within computer science as “the grand unified theory of computation.” In the 
public discourse, a “recipe” in a cookbook is often used as an analogue 
for “algorithm”. But, in reality, recipe (say within a soup cookbook) 
stands in relation to algorithm in the same way that numeral stands 
in relation to number. Like number, the concept of “algorithm” is far 
from elementary: the analogue of an algorithm is, in fact, closer to the 
entire soup cookbook, with different choices of ingredients (inputs to 
an algorithm) leading to different soups (outputs). Another frequently-
used term in this setting is “program”, the concrete realisation of an 
algorithm as a finite list of instructions. Unlike the latter, a program 
— itself a closer analogue to recipe — is not required to produce an 
answer for each and every input. In other words, every algorithm gives 
rise to a program within a prescribed model of computation, or given 
computer language, but every program is not the realisation of an algo-

Numerical Algorist vis-à-vis Numerical Analyst

Dedicated to the memory of Richard E. Crandall (1947–2012)

J. L. (Larry) Nazareth 
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rithm; hence the ubiquitous, so-called halting problem, a key break-
through of Turing, which can be stated very simply as follows: within a 
given model of computation, does there exist a particular (universal) 
algorithm that can examine any program whatsoever within the model 
and determine whether or not that program is an algorithm?

Academic departments of computer science themselves only came 
into existence within universities during the 1960s — in a few 
instances 1950s. One of the first was created by the great computer 
pioneer Maurice Wilkes at Cambridge University, where it was known 
initially, during my student days, as the Mathematical Laboratory. 
Numerical analysts played a key role in setting up such departments 
and, in particular, they initiated the process of bringing number under 
the rubric of algorithm. However, by making the primary focus of atten-
tion the finite-precision, floating-point number system, they achieved 
this objective in only a very limited, albeit practically important, way. 
The works of Jim Wilkinson, a close collaborator of Turing, were the 
landmark achievements in this area (see Wilkinson [1963], [1965]).

In a contribution on numerical analysis to the Princeton Companion 
to Mathematics (Gowers et al. [2008]), Nick Trefethen of Oxford 
University summarises this state of affairs as follows:

“ In the 1950s and 1960s, the founding fathers of the field [of 
numerical analysis] discovered that inexact arithmetic can be a 
source of danger, causing errors in results that “ought” to be 
right. The source of such problems is numerical instability, 
that is, the amplification of rounding errors from microscopic 
to macroscopic scale by certain modes of computation. These 
men, including Von Neumann, Wilkinson, Forsythe, and 
Henrici, took pains to publicise the risks of careless reliance 
on computer arithmetic. These risks are very real, but the 
message was communicated all too successfully, leading to the 
widespread impression that the main business of numerical 
analysis is coping with rounding errors. In fact, the main 
business of numerical analysis is designing algorithms that 
converge quickly; rounding error analysis, while a part of 
the discussion, is rarely the central issue. If rounding error 
vanishes, 90% of numerical analysis would remain.

Numerical analysis sprang from mathematics; then it spawned 
the field of computer science. When universities began to 
found computer science departments in the 1960s, numerical 
analysts were often in the lead. Now, two generations later, 
most of them are to be found in mathematics departments. 
What happened? A part of the answer is that numerical 
analysts deal with continuous mathematical problems, whereas 
computer scientists prefer discrete ones, and it is remarkable 
how wide a gap that can be.

At the time of this re-migration of numerical analysts back to math-
ematics during the 1970s and 80s, other key developments occurred 
within theoretical computer science, in particular, breakthroughs by 
Stephen Cook and Richard Karp on NP-completeness, and the iden-
tification of the all-encompassing P=NP problem of computational 
complexity. Later, during the 1990s, the study of models of compu-
tation and complexity within computer science — the so–called 
“grand unified theory” — leapfrogged back into mathematics, whence 
the subject had originated, thanks largely to the work of the Fields 
Medalist Stephen Smale and his co-workers. This provided a theo-
retical foundation for numerical analysis within mathematics and is 
described by Smale as follows (quoted from the panel discussion in 
Renegar et al. [1996]):

“ A lot of my motivation in spending so much time trying to 
understand numerical analysis is to help my own ideas about 
how to define an algorithm. It seems to me that it is important 
[if one is] to understand the subject of numerical analysis to 
make a definition of algorithm. It is the main object of study of 
numerical analysis and to have a definition of it so someone can 
look at all algorithms or a class of algorithms is an important 
line of understanding.”

And he adds:

“ ...numerical analysis does not need these things. It doesn’t 
need a model of computation. But on the other hand, I think 
that [it] will develop. It’s going to develop anyway, and it 
is going to develop probably more in parallel with existing 
analysis numerical. Numerical analysis will do very fine 
without it. But in the long run, these ideas from geometry and 
foundations will give a lot of insights and understanding of 
numerical analysis.”

In their resulting landmark work, Blum, Cucker, Shub, and Smale 
[1998] presented a computational model (BCSS) of great generality 
— abstract machines defined over mathematical rings and fields — 
and then developed a theory of computational complexity, in partic-
ular over the real and complex numbers. One could summarise this 
activity within the field of mathematics as setting out to bring algorithm 
under the rubric of number, the former being appropriately delineated as 
in the foregoing reference, and the latter being broadly conceived as 
the branches of mathematics that flowed from the number concept.

A compelling argument can be made in favour of undertaking a converse 
and complementary activity within computer science, namely, seeking to 
bring number under the rubric of algorithm, the former again being 
appropriately delineated and the latter broadly conceived as the 
aforementioned “grand unified theory of computation”. As previ-
ously noted, this activity was initiated by numerical analysts during 
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the 1960s, but it was left largely unfinished after their repatriation to 
mathematics. In a recently published monograph titled Numerical Algo-
rithmic Science and Engineering: Foundations and Organization (PSIPress, 
Portland, Oregon, USA, 2012, xx+166 pgs.), I’ve sought to make 
some headway on this complementary activity. I make a distinction 
between symbol-based and magnitude-based models of computation; 
introduce a real-number model of computation that re–conceptualises 
the floating-point number system so as to be able to address foundational 
issues and not just practical ones; compare and contrast the role of 
the numerical algorist (an introduced term used to identify a specialist 
in numerical algorithmic science and engineering within computer 
science) with that of the numerical analyst (a specialist in numerical 
analysis within mathematics); note that the two can co-exist peacefully 
and indeed complement one another; observe that numerical algo-
rithmic science and engineering (AS&E) addresses discrete-numerical 
(as contrasted with combinatorial) and continuous, finite-dimensional 
problems, and that the watershed between numerical AS&E and 
numerical analysis is identified more by the partition between finite-
dimensional and infinite-dimensional than by the partition between 
discrete and continuous (with the two disciplines overlapping in the 
continuous, finite-dimensional domain). And so on...

The book, a manifesto of sorts, was published by PSIPress, a new 
venture in science and technology publishing. PSIPress was founded 
recently by Richard E. Crandall, a close and long-term associate of the 
late Steve Jobs of Apple Computers. Sadly, Crandall was also taken ill 
and died suddenly and unexpectedly last year, just before Christmas; 
see the blogs of Wolfram [2012] and Borwein and Bailey [2012] for 
obituaries/tributes to this most remarkable polymath. 

The complete front-matter of my book — cover images, preface, full 
table of contents, and a detailed introduction — along with the first 
chapter can be viewed at the publisher’s Web site www.psipress.com, 
where a very inexpensive PDF version of the book can be purchased 
and downloaded directly, using a choice of payment options. A limited 
number of inexpensive paperback copies is also available. I believe 
the book will be of interest to readers of The Ring and I would very 
much welcome feedback, which can be sent to me at either of the 
following e-mail addresses: nazareth@amath.washington.edu or 
larry_nazareth@q.com. I would be glad to respond and engage in a 
dialogue on this subject.
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In the author’s words: “I became part of the general drift, described in 
this article, of people involved with numerical computation moving from 
computer science back to mathematics. But my basic orientation has 
always remained that of the computer scientist. The main thrust of my 
book on numerical AS&E is that this drift, now decades in the making, 
should be arrested and reversed, because substantial benefits are to be 
gained from computer science re-embracing the “numerical algorist”. 
This book marks a return to my roots in computer science, harking 
back to my time at the Cambridge Mathematical Laboratory, when the 
mathematically meaningless equation i=i+1 first became a FORTRAN 
metaphor for the wonder-filled world of algorithms.”



11

© The Cambridge Computer Lab Ring 2013The Ring — Issue XXXIII — May 2013

Hall of Fame news

Bango
Bango has been placed on the 2013 FinTech 
50 Watchlist, a shortlist of 50 companies in 
Europe that are redefining financial tech-
nology. 

Bango has reached 100 mobile operator 
connections globally, 200 million billable 
identities and several marquee partnerships 
including Facebook, Microsoft and Telefónica 
Digital. Providing mobile payment for most 
of the world’s largest app stores, Bango 
is emerging as the de-facto standard for 
payments on the mobile Web.

Cronto
comdirect bank AG has followed Commer-
zbank AG in deploying CrontoSign (known 
in Germany as photoTAN), Cronto’s visual 
transaction signing solution. CrontoSign is 
a simple and effective way to mitigate even 
very sophisticated attacks by Trojan malware.

FusePump
FusePump, a provider of multi-channel 
e-commerce solutions for on-line retail, 
has been selected by ModelZone to power 
its products into on-line marketplaces and 
affiliate channels. FusePump’s marketplaces 
integration solution will allow ModelZone, 
the UK’s largest specialist model chain, to 
power its products into Amazon, eBay and 
Play.com.

Global Inkjet Systems
Global Inkjet Systems (GIS), a leading devel-
oper of software drivers and electronics for 
industrial inkjet printheads, has received a 
Queen’s Award for Enterprise 2013 in the 
International Trade category. This prestigious 
award recognises the company’s outstanding 
achievement in growing revenues from over-
seas markets in Europe, USA and Asia.

GIS technology is used in a wide range of 
inkjet applications including labels, pack-
aging, ceramic tiles, product decoration, 
textiles and 3D printing systems.

Health2Works
Rally Round, a Web-based service that helps 
families to give more practical help to frail 
older relatives, has launched a new app.

Rally Round is one of ten featured apps on 
the Department of Health’s new NHS Apps 
library that was launched at NHS Expo 2013. 
It can also be found on the Apple App store 
and at www.rallyroundme.com.

Jagex
Jagex, UK’s biggest computer games devel-
oper, made a pre-tax profit of £9.8m as reve-
nues climbed to £53m.

Jagex is 55% owned by Insight Venture Part-
ners following its purchase of co-founder 
Andrew Gower’s 33% stake for £75m. 

Linguamatics
Linguamatics has been included in Outsells’ 
Information Industry Outlook. As part of 
Outlook, Outsell named its annual “30 to 
Watch” — companies that shake up their 
marketplaces by innovating and challenging 
the industry status quo. 

Mango Health
Mango Health has released the newest 
version of Mango Health on the Apple App 
Store.

Masabi
Masabi, the leader in transit mobile tick-
eting and agile fare collection, has secured 
US$2.8m in funding from Detroit-based 
Fontinalis Partners, London-based MMC 

Ventures and existing investor m8 Capital, 
to accelerate US transit ticketing. It is also 
opening an office in New York.

Netronome
Netronome has raised US$19m in equity 
capital from four venture capital firms.

The money from Sourcefire, Intel Capital, 
DFJ Esprit and the Raptor Group will enable 
Netronome to accelerate research and 
development to meet demand for its latest 
product, called NFP-6xxx.

Raspberry Pi
Raspberry Pi has released the US$30 add-on 
camera board. The camera it is a 5MP Omni-
vision 5647 sensor in a fixed-focus module, 
typical of the kinds of units seen in some 
mid–range camera phones.

The Raspberry Pi Foundation has appointed 
Clive Beale as Director of Educational 
Development. Mr Beale previously worked 
at Kesgrave High School where he taught 
ICT and Computing.

RealVNC
RealVNC has been singled out with its 
third Queen’s Award for Enterprise in as 
many years, a remarkable achievement for 
the provider of VNC® remote access and 
control software. This year the company has 
been recognised for its outstanding achieve-
ments in International Trade, following its 
unique double win for sustained achieve-
ments in Innovation and International Trade 
in 2011.

RealVNC has rapidly expanded its overseas 
sales, with exports comprising over 90% of 
turnover and overseas sales growth for the 
three-year period assessed at over 250%.

RealVNC has a diverse, international 
customer base with VNC users spread across 
over 175 countries. 
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Sintefex Audio
Satronen Sound chose JoeCo BlackBox 
Recorders, designed in partnership with 
Sintefex, to capture Mumford & Sons’ 
Gentlemen of the Road tour. 

Spektrix
The Tron Theatre in Glasgow and New 
Wolsey Theatre in Ipswich have deployed 
Spektrix, the Web-based box office software 
for the arts.

SwiftKey
SwiftKey has unveiled SwiftKey Tilt. 
SwiftKey Tilt makes it possible to text 
without even touching the screen: just rock, 
wiggle or shimmy your smartphone to insert 
words! SwiftKey Tilt works by unleashing a 
pinball into the keyboard to power a third 
way to type on your device. While tapping or 
flowing words, the device sends the brightly 
coloured ball across the keyboard and when 
it collides with a prediction, the word is 
inserted. This frees up thumbs to make even 
quicker progress through a text, email or 
Tweet. SwiftKey assures customers that it is 
fully compatible with both the Macarena and 
the Harlem Shake!

Events calendar

2013
June

Tuesday 4th, 6.30pm
The Ring Summer Garden Party
Henry J Bean’s, 195–197 King’s 
Road, Chelsea, London SW3 5ED

August

Thursday 1st, 6.30pm
London Ringlet Bar
Venue to be confirmed

October

Wednesday 3rd, 6.30pm
Venue to be confirmed

December

Tuesday 3rd, 6.30pm
Venue to be confirmed
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Abstract

We present 3D Constrained Local Model (CLM-Z) for
robust facial feature tracking under varying pose. Our ap-
proach integrates both depth and intensity information in
a common framework. We show the benefit of our CLM-
Z method in both accuracy and convergence rates over
regular CLM formulation through experiments on publicly
available datasets. Additionally, we demonstrate a way to
combine a rigid head pose tracker with CLM-Z that benefits
rigid head tracking. We show better performance than the
current state-of-the-art approaches in head pose tracking
with our extension of the generalised adaptive view-based
appearance model (GAVAM).

1. Introduction
Facial expression and head pose are rich sources of infor-

mation which provide an important communication chan-
nel for human interaction. Humans use them to reveal in-
tent, display affection, express emotion, and help regulate
turn-taking during conversation [1, 12]. Automated track-
ing and analysis of such visual cues would greatly bene-
fit human computer interaction [22, 31]. A crucial initial
step in many affect sensing, face recognition, and human
behaviour understanding systems is the estimation of head
pose and detection of certain facial feature points such as
eyebrows, corners of eyes, and lips. Tracking these points
of interest allows us to analyse their structure and motion,
and helps with registration for appearance based analysis.
This is an interesting and still an unsolved problem in com-
puter vision. Current approaches still struggle in person-
independent landmark detection and in the presence of large
pose and lighting variations.

There have been many attempts of varying success at
tackling this problem, one of the most promising being
the Constrained Local Model (CLM) proposed by Cristi-
nacce and Cootes [10], and various extensions that fol-
lowed [18, 23, 27]. Recent advances in CLM fitting and
response functions have shown good results in terms of ac-

Figure 1. Response maps of three patch experts: (A) face outline,
(B) nose ridge and (C) part of chin. Logistic regressor response
maps [23, 27] using intensity contain strong responses along the
edges, making it hard to find the actual feature position. By inte-
grating response maps from both intensity and depth images, our
CLM-Z approach mitigates the aperture problem.

curacy and convergence rates in the task of person indepen-
dent facial feature tracking. However, they still struggle in
under poor lighting conditions.

In this paper, we present a 3D Constrained Local Model
(CLM-Z) that takes full advantage of both depth and in-
tensity information to detect facial features in images and
track them across video sequences. The use of depth data
allows our approach to mitigate the effect of lighting con-
ditions. In addition, it allows us to reduce the effects of the
aperture problem (see Figure 1), which arises because of
patch response being strong along the edges but not across
them. An additional advantage of our method is the option
to use depth only CLM responses when no intensity signal
is available or lighting conditions are inadequate.

Furthermore, we propose a new tracking paradigm which
integrates rigid and non-rigid facial tracking. This paradigm

1
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integrates our CLM-Z with generalised adaptive view-based
appearance model (GAVAM) [19], leading to better head
pose estimation accuracy. We make the code, landmark la-
bels and trained models available for research purposes1.

We evaluate our approaches on four publicly available
datasets: the Binghamton University 3D dynamic facial ex-
pression database (BU-4DFE) [30], the Biwi Kinect head
pose database (Biwi) [14], the Boston University head pose
database (BU) [6], and our new dataset ICT-3DHP. The
experiments show that our method significantly outper-
forms existing state-of-the-art approaches both for person-
independent facial feature tracking (convergence and accu-
racy) and head pose estimation accuracy.

First, we present a brief overview of work done in fa-
cial feature point and head pose tracking (Section 2). Then
we move on to formulate the CLM-Z problem and describe
the fitting and model training used to solve it (Section 3).
Additionally, we present an approach to rigid-pose tracking
that benefits from non-rigid tracking (Section 3.4). Finally
we demonstrate the advantages of our approaches through
numerical experiments (Section 4).

2. Related work
Non-rigid face tracking refers to locating certain land-

marks of interest from an image, for example nose tip, cor-
ners of the eyes, and outline of the lips. There have been
numerous approaches exploring the tracking and analysis
of such facial feature points from single images or image
sequences [16, 21, 31].

Model-based approaches show good results for feature
point tracking [16]. Such approaches include Active Shape
Models [9], Active Appearance Models [7], 3D Morphable
Models [2], and Constrained Local Models [10].

Feature points in the image are modelled using a point
distribution model (PDM) that consists of non-rigid shape
and rigid global transformation parameters. Once the model
is trained on labelled examples (usually through combina-
tion of Procrustes analysis and principal component analy-
sis), a fitting process is used to estimate rigid and non-rigid
parameters that could have produced the appearance of a
face in an unseen 2D image. The parameters are optimised
with respect to an error term that depends on how well the
parameters are modelling the appearance of a given image,
or how well the current points represent an aligned model.

Constrained Local Model (CLM) [10] techniques use the
same PDM formulation. However, they do not model the
appearance of the whole face but rather the appearance of
local patches around landmarks of interest (and are thus
similar to Active Shape Model approaches). This leads to
more generalisability because there is no need to model the
complex appearance of the whole face. The fitting strategies

1http://www.cl.cam.ac.uk/research/rainbow/emotions/

employed in CLMs vary from general optimisation ones to
custom tailored ones. For a detailed discussion of various
fitting strategies please refer to Saragih et al. [23].

There are few approaches that attempt tracking feature
points directly from depth data, most researches use man-
ually labeled feature points for further expression analy-
sis [15]. Some notable exceptions are attempts of de-
formable model fitting on depth images directly through the
use of iterative closest point like algorithms [3, 5]. Breidt
et al. [3] use only depth information to fit an identity and
expression 3D morphable model. Cai et al. [5] use the in-
tensity to guide their 3D deformable model fitting. Another
noteworthy example is that of Weise et al. [28], where a
person-specific deformable model is fit to depth and texture
streams for performance based animation. The novelty of
our work is the full integration of both intensity and depth
images used for CLM-Z fitting.

Rigid head pose tracking attempts to estimate the loca-
tion and orientation of the head. These techniques can be
grouped based on the type of data they work on: static, dy-
namic or hybrid. Static methods attempt to determine the
head pose from a single intensity or depth image, while
dynamic ones estimate the object motion from one frame
to another. Static methods are more robust while dynamic
ones show better overall accuracy, but are prone to failure
during longer tracking sequences due to accumulation of er-
ror [20]. Hybrid approaches attempt to combine the benefits
of both static and dynamic tracking.

Recent work also uses depth for static head pose detec-
tion [4, 13, 14]. These approaches are promising, as meth-
ods that rely solely on 2D images are sensitive to illumina-
tion changes. However, they could still benefit from addi-
tional temporal information. An approach that uses inten-
sity and can take in depth information as an additional cue,
and combines static and dynamic information was presented
by Morency et al. [19] and is described in Section 3.4.

Rigid and non-rigid face tracking approaches combine
head pose estimation together with feature point tracking.
There have been several extensions to Active Appearance
Models that explicitly model the 3D shape in the formula-
tion of the PDM [29], or train several types of models for
different view points [8].They show better performance for
feature tracking at various poses, but still suffer from low
accuracy at estimating the head pose.

Instead of estimating the head pose directly from feature
points, our approach uses a rigid-pose tracker that is aided
by a non-rigid one for a more accurate estimate.

3. CLM-Z
The main contribution of our paper is CLM-Z, a Con-

strained Local Model formulation which incorporates inten-
sity and depth information for facial feature point tracking.

Our CLM-Z model can be described by parameters
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p = [s,R,q, t] that can be varied to acquire various in-
stances of the model: the scale factor s, object rotation R
(first two rows of a 3D rotation matrix), 2D translation t,
and a vector describing non-rigid variation of the shape q.
The point distribution model (PDM) used in CLM-Z is:

xi = s ·R(xi +Φiq) + t. (1)

Here xi = (x, y) denotes the 2D location of the ith feature
point in an image, xi = (X,Y, Z) is the mean value of the
ith element of the PDM in the 3D reference frame, and the
vector Φi is the ith eigenvector obtained from the training
set that describes the linear variations of non-rigid shape of
this feature point.

This formulation uses a weak-perspective (scaled ortho-
graphic) camera model instead of perspective projection,
as the linearity allows for easier optimisation. The scal-
ing factor s can be seen as the inverse of average depth
and the translation vector t as the central point in a weak-
perspective model. This is a reasonable approximation due
to the relatively small variations of depth along the face
plane with respect to the distance to camera.

In CLM-Z we estimate the maximum a posteriori proba-
bility (MAP) of the face model parameters p in the follow-
ing equation:

p(p|{li=1}ni=1, I,Z) ∝ p(p)

n∏
i=1

p(li=1|xi, I,Z), (2)

where li ∈ {1,−1} is a discrete random variable indicat-
ing if the ith feature point is aligned or misaligned, p(p)
is the prior probability of the model parameters p, and∏n

i=1 p(li = 1|xi, I,Z) is the joint probability of the fea-
ture points x being aligned at a particular point xi, given an
intensity image I and a depth one Z .

Patch experts are used to calculate p(li = 1|xi, I,Z),
which is the probability of a certain feature being aligned at
point xi (from Equation 1).

3.1. Patch experts

We estimate if the current feature point locations are
aligned through the use of local patch experts that quan-
tify the probability of alignment (p(li = 1|xi, I,Z)) based
on the surrounding support region.

As a probabilistic patch expert we use Equation 3; the
mean value of two logistic regressors (Equations 4, and 5).

p(li|xi, I,Z) = 0.5× (p(li|xi, I) + p(li|xi,Z)) (3)

p(li|xi, I) =
1

1 + edCI,i(xi;I)+c
(4)

p(li|xi,Z) =
1

1 + edCZ,i(xi;Z)+c
(5)

Here CZ,i and CI,i are the outputs of intensity and depth
patch classifiers, respectively, for the ith feature, c is the
logistic regressor intercept, and d the regression coefficient.

We use linear SVMs as proposed by Wang et al. [27],
because of their computational simplicity, and efficient im-
plementation on images using convolution. The classifiers
can thus be expressed as:

CI,i(xi; I) = wT
I,iPI(W(xi; I)) + bI,i, (6)

CZ,i(xi;Z) = wT
Z,iPZ(W(xi;Z)) + bZ,i, (7)

where {wi, bi} are the weights and biases associated with
a particular SVM. Here W(xi; I) is a vectorised version of
n× n image patch centered around xi.

PI normalises the vectorised patch to zero mean and unit
variance. Because of potential missing data caused by oc-
clusions, reflections, and background elimination we do not
use PI on depth data, we use a robust PZ instead. Using
PI on depth data, missing values skew the normalised patch
(especially around the face outline) and lead to bad perfor-
mance (see Figures 3, 4).

PZ ignores missing values in the patch when calculat-
ing the mean. It then subtracts that mean from the patch
and sets the missing values to an experimentally determined
value (in our case 50mm). Finally, the resulting patch is
normalised to unit variance.

Example images of intensity, depth and combined re-
sponse maps (the patch expert function evaluated around
the pixels of an initial estimate) can be seen in Figure 1. A
major issue that CLMs face is the aperture problem, where
detection confidence across the edge is better than along it,
which is especially apparent for nose ridge and face outline
in the case of intensity response maps. Addition of the depth
information helps with solving this problem, as the strong
edges in both images do not correspond exactly, providing
further disambiguation for points along strong edges.

3.2. Fitting

We employ a common two step CLM fitting strat-
egy [10, 18, 23, 27]; performing an exhaustive local search
around the current estimate of feature points leading to a
response map around every feature point, and then itera-
tively updating the model parameters to maximise Equation
2 until a convergence metric is reached. For fitting we use
Regularised Landmark Mean-Shift (RLMS) [23].

As a prior p(p) for parameters p, we assume that the
non-rigid shape parameters q vary according to a Gaus-
sian distribution with the variance of the ith parameter cor-
responding to the eigenvalue of the ith mode of non-rigid
deformation; the rigid parameters s,R, and t follow a non-
informative uniform distribution.

Treating the locations of the true landmarks as hidden
variables, they can be marginalised out of the likelihood that
the landmarks are aligned:

p(li|xi, I,Z) =
∑

yi∈Ψi

p(li|yi, I,Z)p(yi|xi), (8)
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where p(yi|xi) = N (yi;xi, ρI), with ρ denoting the vari-
ance of the noise on landmark locations arising due to PCA
truncation in PDM construction [23], and Ψi denotes all
integer locations within the patch region.

By substituting Equation 8 into Equation 2 we get:

p(p)

n∏
i=1

∑
yi∈Ψi

p(li|yi, I,Z)N (yi;xi, ρI). (9)

The MAP term in Equation 9 can be maximised using
Expectation Maximisation [23].

Our modification to the original RLMS algorithm is in
the calculation of response maps and their combination.
Our new RLMS fitting is as follows:

Algorithm 1 Our modified CLM-Z RLMS algorithm
Require: I,Z and p

Compute intensity responses { Equation 4 }
Compute depth responses { Equation 5 }
Combine the responses {Equation 3}
while not converged(p) do

Linearise shape model
Compute mean-shift vectors
Compute PDM parameter update
Update parameters

end while
return p

We use Saragih et al.’s [23] freely available implementa-
tion of RLMS2. The difference between the available imple-
mentation and the algorithm described in Saragih et al. [23],
is through the use of patches trained using profile face im-
ages in addition to frontal ones. This leads to three sets of
classifiers (frontal, left, right), with the left and right sets not
having the response functions for the occluded landmarks.
This enables us to deal with self occlusion as the invisible
points are not evaluated for the fitting procedure.

3.3. Training

Training CLM-Z involves constructing the PDM and
training the patch experts. The point distribution model
is used to both provide the prior p(p) and to linearise the
shape model. The patch experts serve to calculate the re-
sponse maps.

We use the PDM provided by Saragih et al. [23], which
was created using non-rigid structure from motion [24] ap-
proach on the Multi-PIE [17] dataset.

For the intensity-based SVM classifiers and the logistic
regressors, we used the classifiers used by Wang et al. [27]
and Saragih et al. [23]. The local descriptors were trained

2http://web.mac.com/jsaragih/FaceTracker/
FaceTracker.html (accessed Apr. 2012)

on the Multi-PIE [17] dataset using 400 positive and 15k
negative examples for each landmark for frontal images,
and 30 positive examples for profile images, due to the lack
of labeled data. The interocular distance of the training im-
ages was 30 pixels, and the patch sizes used for training
were 11× 11 pixels.

Currently there is no extensive dataset with labeled facial
feature points of depth images over varying poses. Collect-
ing such a dataset would be very time consuming and costly,
especially if a wide range of poses is to be covered; manu-
ally labelling feature points on depth images would also be
very difficult (see depth images in Figure 2).

In order to create such a training set we use the 4D-
BUFE [30] as our starting point. 4D-BUFE consists of
video sequences of 101 subjects acting out one of the six
basic emotions. It was collected using the Di3D3 dynamic
face capturing system, which records sequences of texture
images together with 3D models of faces. This means that
by labelling the feature points in the texture images we are
able to map them to the 3D models of faces. The 3D mod-
els can then be rotated and rendered at various poses. This
allows us to generate many labelled depth images from a
single labelled texture image.

We took a subset of 707 frames (each participant with
neutral expression and peaks of the 6 basic emotions)
and labelled the images with 66 feature points semi-
automatically (with the aid of the intensity based CLM
tracker followed by manual inspection and correction). The
original 3D models were rotated from −70◦ to 70◦ yaw, and
−30◦ to 30◦ pitch and their combinations. Examples of the
rendered training data can be seen in Figure 2.

We trained the depth-based classifiers using 400 positive
and 15k negative examples for each feature for every experi-
ment (making sure that subject independence is preserved).
The interocular distance and patch sizes were the same as
for intensity training data.

3.4. Combining rigid and non-rigid tracking

Because non-rigid shape based approaches, such as
CLM, do not provide an accurate pose estimate on their own
(see Section 4.2), we present a way our CLM-Z tracker can
interact with an existing rigid pose tracker. For a rigid head
pose tracker we use a Generalised Adaptive View-based
Appearance Model (GAVAM) introduced by Morency et
al. [19]. The tracker works on image sequences and esti-
mates the translation and orientation of the head in three
dimensions with respect to the camera in addition to pro-
viding an uncertainty associated with each estimate.

GAVAM is an adaptive keyframe based differential
tracker. It uses 3D scene flow [25] to estimate the motion of
the frame from keyframes. The keyframes are collected and
adapted using a Kalman filter throughout the video stream.

3http://www.di3d.com (accessed Apr. 2012)
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Figure 2. Examples of synthetic depth images used for training.
Closer pixels are darker, and black is missing data.

This leads to good accuracy tracking and limited drift. The
tracker works on both intensity and depth video streams.
It is also capable of working without depth information by
approximating the head using an ellipsoid. We introduce
three extensions to GAVAM in order to combine rigid and
non-rigid tracking, hence improving pose estimation accu-
racy both in the 2D and 3D cases.

Firstly, we replace the simple ellipsoid model used in 2D
tracking with a person specific triangular mesh. The mesh
is constructed from the first frame of the tracking sequence
using the 3D PDM of the fitted CLM. Since different projec-
tion is assumed by CLM (weak-perspective) and GAVAM
(full perspective), to convert from the CLM landmark posi-
tions to GAVAM reference frame we use:

Zg =
1

s
+ Zp, Xg = Zg

xi − cx
f

, Yg = Zg
yi − cy

f
, (10)

where f is the camera focal length, cx, cy the camera central
points, s is the PDM scaling factor (inverse average depth
for the weak perspective model), Zp the Z component of
a feature point in PDM reference frame xi, yi the feature
points in image plane, and Xg, Yg, Zg the vertex locations
in the GAVAM frame of reference.

Secondly, we use the CLM tracker to provide a better
estimate of initial head pose than is provided by the static
head pose detector used in GAVAM. Furthermore, the initial
estimate of head distance from the camera used in GAVAM
(assumption that the head is 20 cm wide), is replaced with
a more stable assumption of interpupillary distance of 62
mm [11], based on the tracked eye corners using the CLM-
Z or CLM trackers.

Lastly, we provide additional hypotheses using the cur-
rent head pose estimate from CLM-Z (CLM in 2D case) to
aid the GAVAM tracker with the selection of keyframes to
be used for differential tracking.

Figure 3. The fitting curve of CLM on intensity and depth images
separately on the BU-4DFE dataset. Note the higher fitting ac-
curacy on depth images using our normalisation scheme PZ , as
opposed to zero mean unit variance one

4. Experiments
To validate our CLM-Z approach and the extensions

made to the rigid-pose tracker we performed both rigid and
non-rigid tracking experiments that demonstrate the bene-
fits of our methods. In the following section when we re-
fer to CLM we mean the CLM formulation presented by
Saragih et al. [23] which uses RLMS for fitting, and linear
SVMs with logistic regressors as patch experts.

4.1. Non-rigid face tracking

4.1.1 BU-4DFE

For this experiment we split the data into two subsets: train-
ing and testing. Training set included 31 female and 20 male
subjects, while the testing 26 female and 24 male subjects.
We discarded some images from the training and test sets
due to lack of coverage by the range scanner (e.g. part of
the chin is missing in the range scan). This lead to 324
3D models used for generating the training data (see Sec-
tion 3.3), and 339 texture and depth images for testing. The
average Inter-ocular distance of the resulting test set was
300 pixels.

The tracker was initialised by an off the shelf Viola-
Jones [26] face detector. The fit was performed using
11×11 pixel patch experts on a 15×15 pixel search window.
The error was measured by using the mean absolute dis-
tance from the ground truth location for each feature point.

You can see the comparison of intensity and depth sig-
nals in Figure 3. Intensity modality manages to track the
feature points better than the depth one. However, the depth
modality on its own is still able to track the feature points
well, demonstrating the usefuleness of depth when there is
no intensity information available. We can also see the ben-
efit of using our specialised normalisation PZ . The small
difference in intensity and intensity with depth tracking is
because the original CLM is already able to track the faces
in this dataset well (frontal images with clear illumination),
and the advantage of adding depth is small.
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Method Converged Mean error
CLM intensity 64 % 0.135
CLM depth with PZ 50% 0.152
CLM depth without PZ 13% 0.16
CLM-Z 79% 0.125

Table 1. Results of feature point tracking on Biwi dataset. Mea-
sured in absolute pixel error. The mean errors are reported only
for the converged frames (< 0.3 of interocular distance)

Figure 4. The fitting curve of CLM and CLM-Z on the Biwi dataset
facial feature point subset. Note that intensity and depth combined
lead to best performance. Furthermore, depth without PZ normal-
isation fails to track the videos succesfully.

4.1.2 Biwi

There currently is no facial feature point labelled video se-
quence dataset that contains depth information, thus we
chose to use a publicly available head pose dataset and label
a subset of it with feature points.

We used the Biwi Kinect head pose dataset [14]. It con-
sists of 24 video sequences collected using the Microsoft
Kinect sensor. For this experiment we selected 4 videos
sequences of 772, 572, 395, and 634 frames each. We man-
ually labeled every 30th frame of those sequences with 66
feature points (or in the case of profile images 37 feature
points), leading to 82 labeled images in total. This is a par-
ticularly challenging dataset for a feature point tracker due
to large head pose variations (±75◦ yaw and ±60◦ pitch).

The training and fitting strategies used were the same as
for the previous experiment. For feature tracking in a se-
quence the model parameters from the previous frame were
used as starting parameters for tracking the next frame. We
did not use any reinitialisation policy because we wanted to
compare the robustness of using different patch responses
in CLM fitting, and a reinitialisation policy would have in-
fluenced some of the results.

The results of this experiment can be seen in Table 1
and Figure 4. We see a marked improvement of using our
CLM-Z over any of the modalities separately (depth or in-
tensity). Furthermore, even though using only depth is not
as accurate as using intensity or combination of both it is
still able to track the sequences making it especially useful
under very bad lighting conditions where the standard CLM

Method Yaw Pitch Roll Mean
Regression forests [14] 7.17 9.40 7.53 8.03
GAVAM [19] 3.00 3.50 3.50 3.34
CLM [23] 11.10 9.92 7.30 9.44
CLM-Z 6.90 7.06 10.48 8.15
CLM-Z with GAVAM 2.90 3.14 3.17 3.07

Table 2. Head pose estimation results on ICT-3DHP. Error is mea-
sured in mean absolute distance from the ground truth.

tracker is prone to failure. Furthermore, we see the benefit
of our normalisation function PZ .

Even though the training and testing datasets were quite
different (high resolution range scanner was used to cre-
ate the training set and low resolution noisy Kinect data for
testing) our approach still managed to generalise well and
improve the performance of a regular CLM without any ex-
plicit modeling of noise. The examples of tracks using CLM
and CLM-Z on the Biwi dataset can be seen in Figure 5.

4.2. Rigid head pose tracking

To measure the performance of our rigid pose tracker we
evaluated it on three publicly available datasets with exist-
ing ground truth head pose data. For comparison, we report
the results of using Random Regression Forests [13] (using
the implementation provided by the authors), and the origi-
nal GAVAM implementation.

4.2.1 ICT-3DHP

We collected a head pose dataset using the Kinect sensor.
The dataset contains 10 video sequences (both intensity and
depth), of around 1400 frames each and is publicly avail-
able4. The ground truth was labeled using a Polhemus FAS-
TRAK flock of birds tracker. Examples of tracks using
CLM and CLM-Z on our dataset can be seen in Figure 6.

Results of evaluating our tracker on ICT-3DHP can be
seen in Table 2. We see a substantial improvement of using
GAVAM with CLM-Z over all other trackers.

From the results we see that a CLM and CLM-Z track-
ers are fairly inaccurate for large out of plane head pose
estimation, making them not very suitable for human head
gesture analysis on their own. However, the inaccuracy in
roll when using CLM, and CLM-Z might be explained by
lack of training data images displaying roll.

4.2.2 Biwi dataset

We also evaluated our approach on the dataset collected by
Fanelli et al. [14]. The dataset was collected with a frame
based algorithm in mind so it has numerous occasions of

4http://projects.ict.usc.edu/3dhp/



19

© The Cambridge Computer Lab Ring 2013The Ring — Issue XXXIII — May 2013

hall of fame awards — publiCaTion of The year

Method Yaw Pitch Roll Mean
Regression forests [14] 9.2 8.5 8.0 8.6
CLM 28.85 18.30 28.49 25.21
CLM-Z 14.80 12.03 23.26 16.69
CLM-Z with GAVAM 6.29 5.10 11.29 7.56

Table 3. Head pose estimation results on the Biwi Kinect head pose
dataset. Measured in mean absolute error.

Method Yaw Pitch Roll Mean
GAVAM [19] 3.79 4.45 2.15 3.47
CLM [23] 5.23 4.46 2.55 4.08
CLM with GAVAM 3.00 3.81 2.08 2.97

Table 4. Head pose estimation results on the BU dataset. Measured
in mean absolute error.

lost frames and occasional mismatch between colour and
depth frames. This makes the dataset especially difficult
for tracking based algorithms like ours whilst not affect-
ing the approach proposed by Fanelli et al. [13]. Despite
these shortcomings we see an improvement of tracking per-
formance when using our CLM-Z with GAVAM approach
over that of Fanelli et al. [13] (Table 3).

4.2.3 BU dataset

To evaluate our extension to the 2D GAVAM tracker we
used BU dataset presented by La Cascia et al. [6]. It con-
tains 45 video sequences from 5 different people with 200
frames each. The results of our approach can be seen in Ta-
ble 4. Our approach significantly outperforms the GAVAM
method in all of the orientation dimensions.

5. Conclusion

In this paper we presented CLM-Z, a Constrained Lo-
cal Model approach that fully integrates depth information
alongside intensity for facial feature point tracking. This
approach was evaluated on publicly available datasets and
shows better performance both in terms of convergence and
accuracy for feature point tracking from a single image and
in a video sequence. This is especially relevant due to re-
cent availability of cheap consumer depth sensors that can
be used to improve existing computer vision techniques.

Using only non-rigid trackers for head pose estimation
leads to less accurate results than using rigid head pose
trackers. Hence, we extend an existing rigid-pose GAVAM
tracker to be able to use the non-rigid tracker information
leading to more accuracy when tracking head pose.

In future work we will explore the possibility of using a
prior for rigid transformation parameters from GAVAM in-
stead of a uniform distribution that is currently used in CLM

and CLM-Z. We would also like to explore the use of a per-
spective camera model for CLM-Z fitting. This will lead to
more integration between rigid and non-rigid trackers.

In addition, we will explore the use of different classi-
fiers for patch experts, as what is appropriate for intensity
image might not be suitable for depth information. More-
over, we would like to explore the influence of noise for the
CLM-Z fitting, as the training data used was clean which is
not the case for the consumer depth cameras.
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