
Using Relation Algebraic Methods
in the Coq Proof Assistant

Damien Pous, CNRS

RAMiCS, 19.9.2o12

1 / 31

Relation algebra / point-free reasonning

I A wonderful tool to work with binary relations:
I concise and expressive
I allows calculational proofs
I decidable fragments (KA, CKA, KAT, residuated lattices, . . .)

I Can be exploited in other models
I min-max algebras
I languages, traces
I matrices

I Very well suited to mechanised reasoning

2 / 31

Objectives

Exploit relation algebra tools and methodology

in the Coq proof assistant

3 / 31

Outline

Basic introduction to Coq

Two case-studies
Commuting diagrams
Compiler optimisations

Behind the scene
How do ka/kat work?
Types, untyping
Algebraic hierarchy

Challenges for future work

4 / 31

What is Coq?

I A purely functional programming language
I A specification language
I An interactive proof assistant

5 / 31

What is it useful for?

I Build certified software
Compcert (Leroy et al. ’05-’10)

I Certify algorithms, prove mathematical theorems
4 colours theorem (Gonthier ’04)

Feit-Thompson theorem (Gonthier et al. ’08-)

6 / 31

What it’s not?

I A Turing-complete programming language
Every program terminates

I An automatic theorem prover (ATP)
The user writes the proofs

I An oracle
The user writes the programs

I Something always easy to work with
The user writes the programs and the proofs

7 / 31

What it’s not?

I A Turing-complete programming language
Every program terminates

I An automatic theorem prover (ATP)
The user writes the proofs

I An oracle
The user writes the programs

I Something always easy to work with
The user writes the programs and the proofs

7 / 31

What it’s not?

I A Turing-complete programming language
Every program terminates

I An automatic theorem prover (ATP)
The user writes the proofs

I An oracle
The user writes the programs

I Something always easy to work with
The user writes the programs and the proofs

7 / 31

What it’s not?

I A Turing-complete programming language
Every program terminates

I An automatic theorem prover (ATP)
The user writes the proofs

I An oracle
The user writes the programs

I Something always easy to work with
The user writes the programs and the proofs

7 / 31

Curry-Howard-de Bruijn correspondence

I A proof of A is a lambda-term of type A
I Checking a proof amounts to type-checking a lambda-term

easy

I Writing a proof amounts to writing a lambda-term
terrible

I Use tactics to produce lambda-terms (proofs)
I At “Qed”, Coq type-checks the lambda-term

8 / 31

Curry-Howard-de Bruijn correspondence

I A proof of A is a lambda-term of type A
I Checking a proof amounts to type-checking a lambda-term

easy

I Writing a proof amounts to writing a lambda-term
terrible

I Use tactics to produce lambda-terms (proofs)
I At “Qed”, Coq type-checks the lambda-term

8 / 31

Curry-Howard-de Bruijn correspondence

I A proof of A is a lambda-term of type A
I Checking a proof amounts to type-checking a lambda-term

easy

I Writing a proof amounts to writing a lambda-term
terrible

I Use tactics to produce lambda-terms (proofs)
I At “Qed”, Coq type-checks the lambda-term

8 / 31

Small demo

9 / 31

Outline

Basic introduction to Coq

Two case-studies
Commuting diagrams
Compiler optimisations

Behind the scene
How do ka/kat work?
Types, untyping
Algebraic hierarchy

Challenges for future work

10 / 31

A Church-Rosser property

*

*

*

*

*

* *
*

*

*

p

r

q

s

*
implies p q

s

(Usually presented with → = ←)

11 / 31

Diagrammatic proof

*

*

*

*

*

* *
*

*

*

p

r

q

s

*

qH

H

IH
p

s’

p’

s

*

*

(Usually presented with → = ←)

12 / 31

Diagrammatic proof

*

*

*

*

*

* *
*

*

*

p

r

q

s

*

qH

IH

p’

p

s

(Usually presented with → = ←)

12 / 31

More formally

*

*

*

*

*

* *
*

*

*

p

r

q

s

*
implies p q

s

(∀p, r , q, pRr , rS?q ⇒ ∃s, pS?s ∧ sR?q)
⇒ (∀p, q, p(R + S)?q ⇒ ∃s, pS?s ∧ sR?q)

R; S? ⊆ S?;R? ⇒ (R + S)? ⊆ S?;R?

13 / 31

More formally

*

*

*

*

*

* *
*

*

*

p

r

q

s

*
implies p q

s

(∀p, r , q, pRr , rS?q ⇒ ∃s, pS?s ∧ sR?q)
⇒ (∀p, q, p(R + S)?q ⇒ ∃s, pS?s ∧ sR?q)

R; S? ⊆ S?;R? ⇒ (R + S)? ⊆ S?;R?

13 / 31

Point-free reasoning

I The point-free statement is much nicer than the expanded one
I The same holds for the corresponding proofs
I both with pen and pencil . . .

. . . and with Coq

demo

14 / 31

Newman’s Lemma
If R terminates, then

R◦;R ⊆ R?;R◦? ⇒ R◦?;R? ⊆ R?;R◦?

·

�� ��H

? �� ?��·

·
?

��
?

��

? �� ?��·

· ·oo %% · //ee ·

p

�� ��
Hq

?

��
? ��

IHq

r

?��
?

��

IHr? ��

·
?~~

?

��

·
? ·

15 / 31

Newman’s Lemma
If R terminates, then

R◦;R ⊆ R?;R◦? ⇒ R◦?;R? ⊆ R?;R◦?

·

�� ��H

? �� ?��·

·
?

��
?

��

? �� ?��·

· ·oo %% · //ee ·

p

�� ��
Hq

?

��
? ��

IHq

r

?��
?

��

IHr? ��

·
?~~

?

��

·
? ·

15 / 31

Abstract termination

How to express the termination hypothesis in an abstract setting?

“A Calculational Approach to Mathematical Induction”
H. Doornbos, R. Backhouse, and J. van der Woude ’97

(Alternative: ω-algebras)

16 / 31

Abstract termination

How to express the termination hypothesis in an abstract setting?

“A Calculational Approach to Mathematical Induction”
H. Doornbos, R. Backhouse, and J. van der Woude ’97

(Alternative: ω-algebras)

16 / 31

Factors and monotype factors in division allegories

I Residuated semiring:

y ≤ x\z ⇔ x ; y ≤ z ⇔ x ≤ y/z

left and right factors

I Monotypes: elements below 1
denoted by A,B

I Left monotype factor:

B ≤ x\A ⇔ x ;B ≤ A; x

With relations: x\A is the set of points whose all predecessors
by x belong to A

weakest precondition

17 / 31

Factors and monotype factors in division allegories

I Residuated semiring:

y ≤ x\z ⇔ x ; y ≤ z ⇔ x ≤ y/z

left and right factors

I Monotypes: elements below 1
denoted by A,B

I Left monotype factor:

B ≤ x\A ⇔ x ;B ≤ A; x

With relations: x\A is the set of points whose all predecessors
by x belong to A

weakest precondition

17 / 31

Factors and monotype factors in division allegories

I Residuated semiring:

y ≤ x\z ⇔ x ; y ≤ z ⇔ x ≤ y/z

left and right factors

I Monotypes: elements below 1
denoted by A,B

I Left monotype factor:

B ≤ x\A ⇔ x ;B ≤ A; x

With relations: x\A is the set of points whose all predecessors
by x belong to A

weakest precondition

17 / 31

Properties of monotype factors

I Cancellation: x ; (x\A) ≤ A; x
I Duplication: (x\A); (x\A) = x\A
I Reversal: x\A = A/x◦

A/x being defined symmetrically

18 / 31

Abstract well-foundedness [DBvdW’97]

Definition: Call t well-founded
if for all monotypes A ≤ 1, t\A ≤ A entails 1 ≤ A.

I This pointfree notion coincides with the usual notion of
well-foundedness on binary relations.

I In particular, t is well-founded iff t◦ terminates.

19 / 31

Newman’s Lemma using abstract well-founded induction
Setting y = x◦, the proof reduces to showing that forall A ≤ 1,

y∗;A; x∗ ≤ x∗; y∗ (IH) entails y∗; y ; (y\A); x ; x∗ ≤ x∗; y∗

y∗; y ; (y\A); x ; x∗

= y∗; y ; (y\A); (y\A); x ; x∗ (duplication)
= y∗; y ; (y\A); (A/x); x ; x∗ (converse)
≤ y∗;A; y ; (A/x); x ; x∗ (left cancellation)
≤ y∗;A; y ; x ;A; x∗ (right cancellation)
≤ y∗;A; x∗; y∗;A; x∗ (local confluence)
≤ x∗; y∗; y∗;A; x∗ (IH)
= x∗; y∗;A; x∗ (KA)
≤ x∗; x∗; y∗ (IH)
= x∗; y∗ (KA)

demo
20 / 31

Compiler optimisations in KAT

“Certification of Compiler Optimizations
using Kleene Algebra with Tests”

D. Kozen and M. C. Patron ’00

demo

21 / 31

Summary

I fairly short point-free proofs
I thanks to several tactics:

I ka for deciding Kleene algebra equations [Braibant, P. ’09]
I kat/hkat for deciding Kleene algebra with tests equations,

under Hoare assumptions [P., to be released]
I mrewrite for rewriting modulo associativity [Braibant, P. ’11]

I proofs can even be searched this way, by exploiting the
provided counter-examples

22 / 31

Outline

Basic introduction to Coq

Two case-studies
Commuting diagrams
Compiler optimisations

Behind the scene
How do ka/kat work?
Types, untyping
Algebraic hierarchy

Challenges for future work

23 / 31

Tactics by reflection

I Take a decidable property
chose a decision procedure for it

I Coq is a programming language
program the decision procedure in Coq

I Coq is a proof assistant
prove the correctness of your decision procedure

I Coq knows how to compute
let it go

An example

24 / 31

How do ka/kat work?

1. Implement an algorithm to check language equivalence of
regular expressions with tests

2. Prove it correct
rather easy, using the coalgebraic presentation of KAT

3. Formalise Kozen’s completeness theorem for KA
harder, need matrices

4. Formalise Kozen’s reduction of KAT to KA
(KAT ` ê = e, G (ê) = L(ê))

non-trivial too

5. Pack everything into a tactic, using reflection

25 / 31

How do ka/kat work?

1. Implement an algorithm to check language equivalence of
regular expressions with tests

2. Prove it correct
rather easy, using the coalgebraic presentation of KAT

3. Formalise Kozen’s completeness theorem for KA
harder, need matrices

4. Formalise Kozen’s reduction of KAT to KA
(KAT ` ê = e, G (ê) = L(ê))

non-trivial too

5. Pack everything into a tactic, using reflection

25 / 31

How do ka/kat work?

1. Implement an algorithm to check language equivalence of
regular expressions with tests

2. Prove it correct
rather easy, using the coalgebraic presentation of KAT

3. Formalise Kozen’s completeness theorem for KA
harder, need matrices

4. Formalise Kozen’s reduction of KAT to KA
(KAT ` ê = e, G (ê) = L(ê))

non-trivial too

5. Pack everything into a tactic, using reflection

25 / 31

Types

I The completeness proof for KA requires matrices
Rectangular matrices

I The corresponding algebra is “typed”
Operations are partial

I Natural models are also “typed”
Heterogeneous relations

(x ; y)∗; x = x ; (y ; x)∗
{

x : n→ m
y : m→ n

→ Work in a categorical setting !
I really easy with Coq dependent types
I except for decision procedures

26 / 31

Types

I The completeness proof for KA requires matrices
Rectangular matrices

I The corresponding algebra is “typed”
Operations are partial

I Natural models are also “typed”
Heterogeneous relations

(x ; y)∗; x = x ; (y ; x)∗
{

x : n→ m
y : m→ n

→ Work in a categorical setting !
I really easy with Coq dependent types
I except for decision procedures

26 / 31

Untyping theorem

Theorem:
Let e, f : n→ m be typed regular expressions.
Let u(e), u(f) denote their untyped counterparts.
If KA ` u(e) = u(f) then KA ` e = f : n→ m.

I Holds for various other fragments of relation algebra [P. ’10]
residuated semirings, allegories, cyclic linear logic

I Not all of them
> ≤ >;>, but >A,B 6≤ >A,∅;>∅,B

27 / 31

Untyping theorem

Theorem:
Let e, f : n→ m be typed regular expressions.
Let u(e), u(f) denote their untyped counterparts.
If KA ` u(e) = u(f) then KA ` e = f : n→ m.

I Holds for various other fragments of relation algebra [P. ’10]
residuated semirings, allegories, cyclic linear logic

I Not all of them
> ≤ >;>, but >A,B 6≤ >A,∅;>∅,B

27 / 31

The cloud of relation algebra fragments

Residuated semirings

with bottom

with top

Kleene algebra with tests

Kleene algebras

Semirings

Monoids

Action algebras

Allegories

Division Allegories

Distributive Allegories

Action lattices

Kleene algebra with converse

Semirings with converse

We need a modular presentation of the algebraic hierarchy:
I to capture the largest possible range of models
I to benefit from tools from lower structures when working in

higher ones

28 / 31

The cloud of relation algebra fragments

Residuated semirings

with bottom

with top

Kleene algebra with tests

Kleene algebras

Semirings

Monoids

Action algebras

Allegories

Division Allegories

Distributive Allegories

Action lattices

Kleene algebra with converse

Semirings with converse

We need a modular presentation of the algebraic hierarchy:
I to capture the largest possible range of models
I to benefit from tools from lower structures when working in

higher ones

28 / 31

Modular algebraic hierarchy

Residuated semirings

with bottom

with top

Kleene algebra with tests

Kleene algebras

Semirings

Monoids

Action algebras

Allegories

Division Allegories

Distributive Allegories

Action lattices

Kleene algebra with converse

Semirings with converse

I we failed using modules
I typeclasses do not scale
I current solution: exploit Coq’s dependent types to make the

relationships first-class

29 / 31

Outline

Basic introduction to Coq

Two case-studies
Commuting diagrams
Compiler optimisations

Behind the scene
How do ka/kat work?
Types, untyping
Algebraic hierarchy

Challenges for future work

30 / 31

Algorithmics of relation algebra

Residuated semirings

with bottom

with top

Kleene algebra with tests

Kleene algebras

Semirings

Monoids

Action algebras

Allegories

Division Allegories

Distributive Allegories

Action lattices

Kleene algebra with converse

Semirings with converse

I Decidability:
I tractable algorithm for Kleene algebra with converse?
I decidability of action algebra? of allegories? . . .

I Other properties:
I elimination of hypotheses
I matching / word problem
I untyping theorem for action algebra?

31 / 31

Algorithmics of relation algebra

Residuated semirings

with bottom

with top

Kleene algebra with tests

Kleene algebras

Semirings

Monoids

Action algebras

Allegories

Division Allegories

Distributive Allegories

Action lattices

Kleene algebra with converse

Semirings with converse

I Decidability:
I tractable algorithm for Kleene algebra with converse?
I decidability of action algebra? of allegories? . . .

I Other properties:
I elimination of hypotheses
I matching / word problem
I untyping theorem for action algebra?

31 / 31

	Basic introduction to Coq
	Two case-studies
	Commuting diagrams
	Compiler optimisations

	Behind the scene
	How do ka/kat work?
	Types, untyping
	Algebraic hierarchy

	Challenges for future work

