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Diversity in theory of concurrency
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Wouldn’t it be nice if we had a theory of concurrency
that was

I based on a few simple axioms

I satisfied by some diverse models

I and where the axioms implied
some substantial consequences

I Disclaimer: ‘some’ because ‘all’ is unrealistic as of yet: we are
not in a position for a ‘grand unified theory’... but will try for
‘some’ and see what we can do.

I This talk describes work in progress. Some parts are solid,
others are in progress or are potential applications. I will say
which as we go along.
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Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I ...
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Example
Linearly-ordered model: The Interleaving Model

I We define M,v, parallel , nothing , ;, skip.

I
M = P(E ⇤), for a given set E of events. v=✓

I nothing = skip = {✏}
I For P ,Q ✓ E

⇤, define

P k Q = {t | 9t
P

2 P , t
Q

2 Q . t 2 interleave(t
P

, t
Q

)}
P ;Q = {t | 9t

P

2 P , t
Q

2 Q. t = t

P

t

Q

}
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Example
Partially-ordered model: the Tracelet Model (aka Tony

graphs)

I Start with a partially ordered set E ,. M = P(P(E )).

I For X ,Y ✓ E , define X � Y to mean that nothing in Y

depends on anything in X . I.e., 8e
Y

2 Y , e
X

2 X . e
Y

6 e

X

.

I For p, q ✓ P(E ), define

p k q = {X]Y | X 2 p, Y 2 q, X \ Y = ;}
p ; q = {X]Y | X 2 p, Y 2 q, X \ Y = ;, X � Y }

I Wehrman, CAR Hoare, PW O’Hearn: Graphical models of separation
logic. Inf. Process. Lett. 109(17): 1001-1004 (2009)

T Hoare, BMöller, G Struth, I Wehrman: Concurrent Kleene Algebra and
its Foundations. J. Log. Algebr. Program. 80(6): 266-296 (2011)
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Other models

I The pomset model (Pratt, Gisher). Sets of pomsets. P ;Q is
(lifting of) strong sequential composition (everything in P

precedes everything in Q), k is disjoint concurrency (no
dependence).

I The fair interleaving model. Finite and infinite sequences, k is
lifting of fair parallel composition.

I Failures/divergences model of CSP.

I ...
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Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I ...
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The historic triple

I The historic triple {p} c {q} is defined by

{p} c {q} , p; c v q

for p, c , q all elements of M.

I Consequence and sequencing rules of Hoare logic follow,
interpreting entailment as v

p

0 v p p ; c v q q v q

0

p

0
; c v q

0

p ; c1 v q q ; c2 v r

p ; c1 ; c2 v r
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The historic triple

I The historic triple {p} c {q} is defined by

{p} c {q} , p; c v q

for p, c , q all elements of M.

I Suppose a pre or post represents ‘traces up until now’. Then
{p} c {q} means

q accounts for (overapproximates) the immediate

past p followed by c.
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A potential use of the historic triple

I In work with Rinetzky and others we have been looking at
highly-concurrent optimistic algorithms.

I In the case of a ‘set’ algorithm, the remarkable wait free
traversal is the hardest operation to prove

I We do it by reasoning about the past, via a ‘Hindsight lemma’:

any pointer link encountered in a list traversal was

reachable from the head node sometime in the past,

since the traversal started.

I No program logic as of PODC’10: We are working on
formalization via historic triples.

PW O’Hearn, N Rinetzky, MT Vechev, E Yahav, G Yorsh: Verifying
linearizability with hindsight. PODC 2010: 85-94
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Slide courtesy of Noam Rinetzky

3. Hindsight 
(no need for linearization: existence of past state)

bool contains(int k) {

p,c=LOCATE(k);

return (c.k==k)

}

LOCATE(k)

p = H; 

c = H.n

while (c.k < k) {

p = c;

c = p.n;   

}

Tuesday, December 6, 2011
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Slide courtesy of Noam Rinetzky

Hindsight Lemma

π

φ⊨π

σ∈[σi... σk]:∃

σi σk

σi φi⊨
σk φk⊨

ψ⊨σ

If

then

σ

Tuesday, December 6, 2011
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Futuristic triples

I The futuristic triple p !
c

q is defined by

p !
c

q , p w c ; q

Suppose a pre or post represents ‘traces into the future’.
Then p !

c

q means

p accounts for (overapproximates) what c might do

followed by q.

I Example (probable): Singularity OS has a concept of
‘contract’ in which preconditions and postconditions describe
message passing protocols into the future.

I Formalized (Villard) with communicating automata + SL

I Likely connected as well to typestate and to session types.
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I Formalized (Villard) with communicating automata + SL

I Likely connected as well to typestate and to session types.

M Fähndrich et. al.: Language support for fast and reliable message-based
communication in singularity OS. EuroSys 2006: 177-190

J Villard: Heaps and Hops. Thèse de doctorat, ÉNS de Cachan, 2011
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Slide courtesy of Jules Villard

Specs for List Passing

message cell [val �� �]
message ack [emp]
message endpoint [val ep��(L{end}) � val = src]

put(e,x) [e ep��(L{start}) � list(x)] {
local t;
while(x != 0)
[e ep��(L{start}) � list(x)] {

t = x->tl;
send(cell ,e,x);
x = t;
// e ep��(L{ack}) � list(x)
receive(ack ,e);

}
send(endpoint ,e,e);

} [emp]

L

start

ack

end

!cell ?ack

!end

11 / 22
Tuesday, December 6, 2011
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So far...

I Trivial axioms (two ordered monoids), some particular models,
and two unusual interpretations of pre/post specs.

I What we have is too little (just monotonicity, associativity...),
and there are no axioms linking k and ;.

I On our way to program logic, but we need more...
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Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law

(pkr);(qks) v (p;q)k(r ;s)

I ...
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Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law

(pkr);(qks) v (p;q)k(r ;s)

I ...

Inequational exchange law emphasized by Hoare (2008-), mentioned before
in concurrency by Gischer’88, Bloom-Ésik’95
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Exchange law in Interleaving model

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Writing a trace t for the singleton {t}, an instance is

(aakb);(cckd) v (aa;cc)k(b;d)

Then, for example,

aba 2 interleave(aa, b) and cdc 2 interleave(cc , d)

Clearly abacdc 2 interleave(aacc , bd).

I The reverse inclusion does not hold:

aaccbd 2 (aa;cc)k(b;d)
but

aaccbd 62 (aakb);(cckd)

so we cannot have the equational exchange law.
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Exchange in Tracelet model

I Recall: X � Y means that nothing in Y depends on anything
in X .

I For p, q ✓ P(E ), define

p k q = {X]Y | X 2 p, Y 2 q, X \ Y = ;}
p ; q = {X]Y | X 2 p, Y 2 q, X \ Y = ;, X � Y }

I Special case of exchange law ,

(X1kY1);(X2kY2) v (X1;X2)k(Y1;Y2)

boils down to

X1 ] Y1�X2 ] Y2 )
X1�X2

^
Y1�Y2
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A negative example: fair k with subset order

I Consider finite and infinite traces with k being fair parallel
composition.

I Without giving a definition of fairness, let us just assume that
any trace of a!kb must include b, and that tt 0 = t if t is
infinite.

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Then

(a!kb);(ckd) 6v (a!;c)k(b;d)

because

ca

! 2 (a!;c)k(b;d)

but it doesn’t include a b, so

ca

! 62 (a!kb);(ckd)

I I attach no deep significance to this, but am just illustrating
that our theory covers ‘some’ but not ‘all’ models of interest.
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Exchange and logic: Locality on the cheap

I Historic triples ({p} c {q} , p; c v q)

p1 ; c1 v q1 p2 ; c2 v q2

(p1; c1) k (p2 ; c2) v q1 k q2
k Monotone

(p1 k p2) ;(c1 k c2) v q1 k q2
Exchange

I If we squint, this is the concurrency rule of concurrent
separation logic

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ⇤ P2}C1kC2 {Q1 ⇤ Q2}

I And similar works for futuristic triples.
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A CSL example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m := (i + j)/2; ;
if i < j then�

ms(a, i ,m) k ms(a,m + 1, j)
�
; ;

merge(a, i ,m + 1, j); ;
{sorted(a, i , j)}

Main part of proof:

{array(a, i ,m) ⇤ array(a,m + 1, j)}
{array(a, i ,m)} {array(a,m + 1, j)}
ms(a, i ,m) k ms(a,m + 1, j)
{sorted(a, i ,m)} {sorted(a,m + 1, j)}

{sorted(a, i ,m) ⇤ sorted(a,m + 1, j)}
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Concurrency and Frame rules are linked

I Concurrency and Frame rules from SL

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ⇤ P2}C1kC2 {Q1 ⇤ Q2}

{P}C {Q}
{P ⇤ F}C {Q ⇤ F}

I If C = C k skip then we can derive Frame from Concurrency

{P}C {Q} {F} skip {F}
{P ⇤ F}C k skip {Q ⇤ F}

I In the algebra, we will not assume that C = C k skip for all
C , but take this as the definition of locality
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Minimalist theory
(Locality bimonoid)

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law: (pkr);(qks) v (p;q)k(r ;s)

I skip is an idempotent of k: skip k skip = skip. We say that
p 2 M is local if p = p k skip.

I Facts:
I k and ; preserve locality.
I Let M

loc

be the local elements. Galois connection with left
adjoint M

loc

,! M and right adjoint �p.p k skip
I The SL concurrency rule holds in any locality bimonoid. The

frame rule holds of historic triples of the form {p} c {q} i↵
c = c k skip (and similarly for futuristic triples)

CAR Hoare, A Hussain, B Möller, PW O’Hearn, RL Petersen, G Struth:
On Locality and the Exchange Law for Concurrent Processes. CONCUR 2011
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Local

Non-Local

p

||skipp
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Perspective

I From our minimalist axioms, we automatically get lots of
proof rules (Hoare and concurrent separation logic)

I For a range of models

I Wait a minute: do they mean what we expect? Is this
cheating?

I Turning the tables: Start from CSL, see if we can get locality
bimonoid. If we succeed we confirm, no cheat in the logic,
and we get lots of more example models.
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Basic CSL

[Skip] {X} skip {X} [Frame]
{X} c {Y }

{X ⇤ F} c {Y ⇤ F}

[Seq]
{X} c1 {Y } {Y } c2 {Z}

{X} c1; c2 {Z}
[Par]

{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ⇤ X2} c1 k c2 {Y1 ⇤ Y2}

[Consequence]
X

0 ` X {X} c {Y } Y ` Y

0

{X 0} c {Y 0}

An instance of Basic CSL presumes a preordered commutative
monoid (Props,`, ⇤, emp) and a set of axioms {X} c

p

{Y } for a set
of primitive command c

p

and X ,Y 2 Prop.

BCSL minus Frame can be interpreted in any locality bimonoid.
Frame holds when primitive commands are local.
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Embedding

Theorem. From the proof theory of BCSL one can construct a
locality bimonoid (model of minimalist theory) together with

I embeddings of propositions and programs into the bimonoid,

I sending ⇤ to k and preserving and reflecting order,

I sending programs to elements of the bimonoid, such that

{p} c {q} is provable in BCSL ()
embed(p) ; embed(c) v embed(q)
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Ideas in the proof

I Use ideal completion: map a proposition p to everything that
entails it p+. Down-closed subsets have rich structure:
complete Heyting algebra, residuated monoid (cf. BI algebra).

I Intuitionistic BI semantics of ⇤ on down-closed sets (call it ~)

P ~ Q = {X | Y 2 P ^ Z 2 Q ^ X ` Y ⇤ Z}
I = {p | p ` emp}

I Monotone function space [Preds ! Preds] is carrier of our
algebra

(F1kF2)Y =
S
{F1Y1~F2Y2 | Y1~Y2 ✓ Y }

nothing Y = Y \ I

(F1;F2)Y = F1(F2(Y ))

skip Y = Y

I Inject predicate P into predicate transformers using greatest
transformer F satisfying emp ✓ F (P). This maps ~ to k.

Ack to H Yang: suggestion of F1kF2.
Saturday, September 22, 2012



Sum up

I Minimalist theory with a few axioms:

A single poset M,v equipped withan ordered

commutative monoid (k, nothing) and an ordered

monoid (;, skip), satisfying the exchange law, where

skip k skip = skip.

I Connection with program logic: generalized CSL.

I Lots of models: interleaving, independence, resource
separation...

I Temporal readings of triples which we are exploring

I
Speculation: programs and assertions are part of the same
space. I wonder if we can push this and make a more genuine
logic encompassing both, also bringing out the temporal
aspect?
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Maximalist model (tentative.. speculation)

I The traces model P(E ⇤) has lots more structure. Ditto for
tracelet model.

I
G = (M,v, ⇤, nothing, ;, skip) is an ordered residuated

commutative monoid (⇤, nothing) and a ordered residuated

monoid (;, skip) on the same complete boolean algebra

(M,v), satisfying exchange, where skip ⇤ skip = skip.

I Residuation means that we have the adjoint cousins

p ⇤ q v r , p v q�⇤r

p; q v r , p v q . r , q v q / r

I We have classical predicate logic (complete bool alg),
alongside full-strength substructural logics (like in BI/SL).

I These connectives have a declarative reading given by a
Kripke semantics (a la bunched/separation logic), where
;,C,B have a temporal flavour
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I E.g., in the tracelet model
(recall that X ,Y etc are subsets of a given poset E ,)

Y � X means that nothing in X depends on anything in Y .
Then,

X |= p C q i↵ 8Y .Y � X and Y |= p implies Y ] X |= q

I
previous(p) = ¬(p B false)

= 9Y .¬(Y � X and Y |= p implies false)
= 9Y .Y � X and Y |= p
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