
Algebraic Laws for Concurrency and Separation

Peter O’Hearn

University College London

Ongoing joint work with
T Hoare, B Moeller, G Struth, R Petersen...

Saturday, September 22, 2012

Some Sources

Concurrent Kleene Algebra and its Foundations

Resources, Concurrency and Local Reasoning

O’Hearn. TCS 2007

Hoare, Moeller, Struth, Wehrman. J Log Alg Prog, 2011

Saturday, September 22, 2012

Diversity in theory of concurrency

Saturday, September 22, 2012

Wouldn’t it be nice if we had a theory of concurrency
that was

I based on a few simple axioms

I satisfied by some diverse models

I and where the axioms implied
some substantial consequences

I Disclaimer: ‘some’ because ‘all’ is unrealistic as of yet: we are
not in a position for a ‘grand unified theory’... but will try for
‘some’ and see what we can do.

I This talk describes work in progress. Some parts are solid,
others are in progress or are potential applications. I will say
which as we go along.

Saturday, September 22, 2012

Wouldn’t it be nice if we had a theory of concurrency
that was

I based on a few simple axioms

I satisfied by some diverse models

I and where the axioms implied
some substantial consequences

I Disclaimer: ‘some’ because ‘all’ is unrealistic as of yet: we are
not in a position for a ‘grand unified theory’... but will try for
‘some’ and see what we can do.

I This talk describes work in progress. Some parts are solid,
others are in progress or are potential applications. I will say
which as we go along.

Saturday, September 22, 2012

Wouldn’t it be nice if we had a theory of concurrency
that was

I based on a few simple axioms

I satisfied by some diverse models

I and where the axioms implied
some substantial consequences

I Disclaimer: ‘some’ because ‘all’ is unrealistic as of yet: we are
not in a position for a ‘grand unified theory’... but will try for
‘some’ and see what we can do.

I This talk describes work in progress. Some parts are solid,
others are in progress or are potential applications. I will say
which as we go along.

Saturday, September 22, 2012

Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I ...

Saturday, September 22, 2012

Example
Linearly-ordered model: The Interleaving Model

I We define M,v, parallel , nothing , ;, skip.

I
M = P(E ⇤), for a given set E of events. v=✓

I nothing = skip = {✏}
I For P ,Q ✓ E

⇤, define

P k Q = {t | 9t
P

2 P , t
Q

2 Q . t 2 interleave(t
P

, t
Q

)}
P ;Q = {t | 9t

P

2 P , t
Q

2 Q. t = t

P

t

Q

}

Saturday, September 22, 2012

Example
Partially-ordered model: the Tracelet Model (aka Tony

graphs)

I Start with a partially ordered set E ,. M = P(P(E)).

I For X ,Y ✓ E , define X � Y to mean that nothing in Y

depends on anything in X . I.e., 8e
Y

2 Y , e
X

2 X . e
Y

6 e

X

.

I For p, q ✓ P(E), define

p k q = {X]Y | X 2 p, Y 2 q, X \ Y = ;}
p ; q = {X]Y | X 2 p, Y 2 q, X \ Y = ;, X � Y }

I Wehrman, CAR Hoare, PW O’Hearn: Graphical models of separation
logic. Inf. Process. Lett. 109(17): 1001-1004 (2009)

T Hoare, BMöller, G Struth, I Wehrman: Concurrent Kleene Algebra and
its Foundations. J. Log. Algebr. Program. 80(6): 266-296 (2011)

Saturday, September 22, 2012

Other models

I The pomset model (Pratt, Gisher). Sets of pomsets. P ;Q is
(lifting of) strong sequential composition (everything in P

precedes everything in Q), k is disjoint concurrency (no
dependence).

I The fair interleaving model. Finite and infinite sequences, k is
lifting of fair parallel composition.

I Failures/divergences model of CSP.

I ...

Saturday, September 22, 2012

Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I ...

Saturday, September 22, 2012

Wouldn’t it be nice if we had a theory of concurrency
that was

I based on a few simple axioms

I satisfied by some diverse models

I and where the axioms implied
some substantial consequences

Saturday, September 22, 2012

The historic triple

I The historic triple {p} c {q} is defined by

{p} c {q} , p; c v q

for p, c , q all elements of M.

I Consequence and sequencing rules of Hoare logic follow,
interpreting entailment as v

p

0 v p p ; c v q q v q

0

p

0
; c v q

0

p ; c1 v q q ; c2 v r

p ; c1 ; c2 v r

Saturday, September 22, 2012

The historic triple

I The historic triple {p} c {q} is defined by

{p} c {q} , p; c v q

for p, c , q all elements of M.

I Suppose a pre or post represents ‘traces up until now’. Then
{p} c {q} means

q accounts for (overapproximates) the immediate

past p followed by c.

Saturday, September 22, 2012

A potential use of the historic triple

I In work with Rinetzky and others we have been looking at
highly-concurrent optimistic algorithms.

I In the case of a ‘set’ algorithm, the remarkable wait free
traversal is the hardest operation to prove

I We do it by reasoning about the past, via a ‘Hindsight lemma’:

any pointer link encountered in a list traversal was

reachable from the head node sometime in the past,

since the traversal started.

I No program logic as of PODC’10: We are working on
formalization via historic triples.

PW O’Hearn, N Rinetzky, MT Vechev, E Yahav, G Yorsh: Verifying
linearizability with hindsight. PODC 2010: 85-94

Saturday, September 22, 2012

Slide courtesy of Noam Rinetzky

3. Hindsight
(no need for linearization: existence of past state)

bool contains(int k) {

p,c=LOCATE(k);

return (c.k==k)

}

LOCATE(k)

p = H;

c = H.n

while (c.k < k) {

p = c;

c = p.n;

}

Tuesday, December 6, 2011

Saturday, September 22, 2012

Slide courtesy of Noam Rinetzky

Hindsight Lemma

π

φ⊨π

σ∈[σi... σk]:∃

σi σk

σi φi⊨
σk φk⊨

ψ⊨σ

If

then

σ

Tuesday, December 6, 2011

Saturday, September 22, 2012

Futuristic triples

I The futuristic triple p !
c

q is defined by

p !
c

q , p w c ; q

Suppose a pre or post represents ‘traces into the future’.
Then p !

c

q means

p accounts for (overapproximates) what c might do

followed by q.

I Example (probable): Singularity OS has a concept of
‘contract’ in which preconditions and postconditions describe
message passing protocols into the future.

I Formalized (Villard) with communicating automata + SL

I Likely connected as well to typestate and to session types.

Saturday, September 22, 2012

Futuristic triples

I The futuristic triple p !
c

q is defined by

p !
c

q , p w c ; q

Suppose a pre or post represents ‘traces into the future’.
Then p !

c

q means

p accounts for (overapproximates) what c might do

followed by q.

I Example (probable): Singularity OS has a concept of
‘contract’ in which preconditions and postconditions describe
message passing protocols into the future.

I Formalized (Villard) with communicating automata + SL

I Likely connected as well to typestate and to session types.

M Fähndrich et. al.: Language support for fast and reliable message-based
communication in singularity OS. EuroSys 2006: 177-190

J Villard: Heaps and Hops. Thèse de doctorat, ÉNS de Cachan, 2011
Saturday, September 22, 2012

Slide courtesy of Jules Villard

Specs for List Passing

message cell [val �� �]
message ack [emp]
message endpoint [val ep��(L{end}) � val = src]

put(e,x) [e ep��(L{start}) � list(x)] {
local t;
while(x != 0)
[e ep��(L{start}) � list(x)] {

t = x->tl;
send(cell ,e,x);
x = t;
// e ep��(L{ack}) � list(x)
receive(ack ,e);

}
send(endpoint ,e,e);

} [emp]

L

start

ack

end

!cell ?ack

!end

11 / 22
Tuesday, December 6, 2011

Saturday, September 22, 2012

So far...

I Trivial axioms (two ordered monoids), some particular models,
and two unusual interpretations of pre/post specs.

I What we have is too little (just monotonicity, associativity...),
and there are no axioms linking k and ;.

I On our way to program logic, but we need more...

Saturday, September 22, 2012

Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law

(pkr);(qks) v (p;q)k(r ;s)

I ...

Saturday, September 22, 2012

Minimalist theory

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law

(pkr);(qks) v (p;q)k(r ;s)

I ...

Inequational exchange law emphasized by Hoare (2008-), mentioned before
in concurrency by Gischer’88, Bloom-Ésik’95

Saturday, September 22, 2012

Exchange law in Interleaving model

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Writing a trace t for the singleton {t}, an instance is

(aakb);(cckd) v (aa;cc)k(b;d)

Then, for example,

aba 2 interleave(aa, b) and cdc 2 interleave(cc , d)

Clearly abacdc 2 interleave(aacc , bd).

I The reverse inclusion does not hold:

aaccbd 2 (aa;cc)k(b;d)
but

aaccbd 62 (aakb);(cckd)

so we cannot have the equational exchange law.

Saturday, September 22, 2012

Exchange law in Interleaving model

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Writing a trace t for the singleton {t}, an instance is

(aakb);(cckd) v (aa;cc)k(b;d)

Then, for example,

aba 2 interleave(aa, b) and cdc 2 interleave(cc , d)

Clearly abacdc 2 interleave(aacc , bd).

I The reverse inclusion does not hold:

aaccbd 2 (aa;cc)k(b;d)
but

aaccbd 62 (aakb);(cckd)

so we cannot have the equational exchange law.

Saturday, September 22, 2012

Exchange in Tracelet model

I Recall: X � Y means that nothing in Y depends on anything
in X .

I For p, q ✓ P(E), define

p k q = {X]Y | X 2 p, Y 2 q, X \ Y = ;}
p ; q = {X]Y | X 2 p, Y 2 q, X \ Y = ;, X � Y }

I Special case of exchange law ,

(X1kY1);(X2kY2) v (X1;X2)k(Y1;Y2)

boils down to

X1] Y1�X2] Y2)
X1�X2

^
Y1�Y2

Saturday, September 22, 2012

A negative example: fair k with subset order

I Consider finite and infinite traces with k being fair parallel
composition.

I Without giving a definition of fairness, let us just assume that
any trace of a!kb must include b, and that tt 0 = t if t is
infinite.

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Then

(a!kb);(ckd) 6v (a!;c)k(b;d)

because

ca

! 2 (a!;c)k(b;d)

but it doesn’t include a b, so

ca

! 62 (a!kb);(ckd)

I I attach no deep significance to this, but am just illustrating
that our theory covers ‘some’ but not ‘all’ models of interest.

Saturday, September 22, 2012

A negative example: fair k with subset order

I Consider finite and infinite traces with k being fair parallel
composition.

I Without giving a definition of fairness, let us just assume that
any trace of a!kb must include b, and that tt 0 = t if t is
infinite.

I exchange law: (pkr);(qks) v (p;q)k(r ;s)

I Then
(a!kb);(ckd) 6v (a!;c)k(b;d)

because

ca

! 2 (a!;c)k(b;d)

but it doesn’t include a b, so

ca

! 62 (a!kb);(ckd)

I I attach no deep significance to this, but am just illustrating
that our theory covers ‘some’ but not ‘all’ models of interest.

Saturday, September 22, 2012

A negative example: fair k with subset order

I Consider finite and infinite traces with k being fair parallel
composition.

I Without giving a definition of fairness, let us just assume that
any trace of a!kb must include b, and that tt 0 = t if t is
infinite.

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Then

(a!kb);(ckd) 6v (a!;c)k(b;d)

because

ca

! 2 (a!;c)k(b;d)

but it doesn’t include a b, so

ca

! 62 (a!kb);(ckd)

I I attach no deep significance to this, but am just illustrating
that our theory covers ‘some’ but not ‘all’ models of interest.

Saturday, September 22, 2012

A negative example: fair k with subset order

I Consider finite and infinite traces with k being fair parallel
composition.

I Without giving a definition of fairness, let us just assume that
any trace of a!kb must include b, and that tt 0 = t if t is
infinite.

I exchange law: (pkr);(qks) v (p;q)k(r ;s)
I Then

(a!kb);(ckd) 6v (a!;c)k(b;d)

because

ca

! 2 (a!;c)k(b;d)

but it doesn’t include a b, so

ca

! 62 (a!kb);(ckd)

I I attach no deep significance to this, but am just illustrating
that our theory covers ‘some’ but not ‘all’ models of interest.

Saturday, September 22, 2012

Exchange and logic: Locality on the cheap

I Historic triples ({p} c {q} , p; c v q)

p1 ; c1 v q1 p2 ; c2 v q2

(p1; c1) k (p2 ; c2) v q1 k q2
k Monotone

(p1 k p2) ;(c1 k c2) v q1 k q2
Exchange

I If we squint, this is the concurrency rule of concurrent
separation logic

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ⇤ P2}C1kC2 {Q1 ⇤ Q2}

I And similar works for futuristic triples.

Saturday, September 22, 2012

Exchange and logic: Locality on the cheap

I Historic triples ({p} c {q} , p; c v q)

p1 ; c1 v q1 p2 ; c2 v q2

(p1; c1) k (p2 ; c2) v q1 k q2
k Monotone

(p1 k p2) ;(c1 k c2) v q1 k q2
Exchange

I If we squint, this is the concurrency rule of concurrent
separation logic

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ⇤ P2}C1kC2 {Q1 ⇤ Q2}

I And similar works for futuristic triples.

Saturday, September 22, 2012

A CSL example: Parallel Mergesort

{array(a, i , j)}
procedure ms(a, i , j)
newvar m := (i + j)/2; ;
if i < j then�

ms(a, i ,m) k ms(a,m + 1, j)
�
; ;

merge(a, i ,m + 1, j); ;
{sorted(a, i , j)}

Main part of proof:

{array(a, i ,m) ⇤ array(a,m + 1, j)}
{array(a, i ,m)} {array(a,m + 1, j)}
ms(a, i ,m) k ms(a,m + 1, j)
{sorted(a, i ,m)} {sorted(a,m + 1, j)}

{sorted(a, i ,m) ⇤ sorted(a,m + 1, j)}

Saturday, September 22, 2012

Concurrency and Frame rules are linked

I Concurrency and Frame rules from SL

{P1}C1 {Q1} {P2}C2 {Q2}
{P1 ⇤ P2}C1kC2 {Q1 ⇤ Q2}

{P}C {Q}
{P ⇤ F}C {Q ⇤ F}

I If C = C k skip then we can derive Frame from Concurrency

{P}C {Q} {F} skip {F}
{P ⇤ F}C k skip {Q ⇤ F}

I In the algebra, we will not assume that C = C k skip for all
C , but take this as the definition of locality

Saturday, September 22, 2012

Minimalist theory
(Locality bimonoid)

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law: (pkr);(qks) v (p;q)k(r ;s)

I skip is an idempotent of k: skip k skip = skip. We say that
p 2 M is local if p = p k skip.

I Facts:
I k and ; preserve locality.
I Let M

loc

be the local elements. Galois connection with left
adjoint M

loc

,! M and right adjoint �p.p k skip
I The SL concurrency rule holds in any locality bimonoid. The

frame rule holds of historic triples of the form {p} c {q} i↵
c = c k skip (and similarly for futuristic triples)

CAR Hoare, A Hussain, B Möller, PW O’Hearn, RL Petersen, G Struth:
On Locality and the Exchange Law for Concurrent Processes. CONCUR 2011

Saturday, September 22, 2012

Minimalist theory
(Locality bimonoid)

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law: (pkr);(qks) v (p;q)k(r ;s)
I skip is an idempotent of k: skip k skip = skip. We say that

p 2 M is local if p = p k skip.

I Facts:
I k and ; preserve locality.
I Let M

loc

be the local elements. Galois connection with left
adjoint M

loc

,! M and right adjoint �p.p k skip
I The SL concurrency rule holds in any locality bimonoid. The

frame rule holds of historic triples of the form {p} c {q} i↵
c = c k skip (and similarly for futuristic triples)

CAR Hoare, A Hussain, B Möller, PW O’Hearn, RL Petersen, G Struth:
On Locality and the Exchange Law for Concurrent Processes. CONCUR 2011

Saturday, September 22, 2012

Minimalist theory
(Locality bimonoid)

I A single poset M,v equipped with two structures:
I ordered commutative monoid (k, nothing), and
I an ordered monoid (;, skip)

I satisfying the exchange law: (pkr);(qks) v (p;q)k(r ;s)
I skip is an idempotent of k: skip k skip = skip. We say that

p 2 M is local if p = p k skip.

I Facts:
I k and ; preserve locality.
I Let M

loc

be the local elements. Galois connection with left
adjoint M

loc

,! M and right adjoint �p.p k skip
I The SL concurrency rule holds in any locality bimonoid. The

frame rule holds of historic triples of the form {p} c {q} i↵
c = c k skip (and similarly for futuristic triples)

CAR Hoare, A Hussain, B Möller, PW O’Hearn, RL Petersen, G Struth:
On Locality and the Exchange Law for Concurrent Processes. CONCUR 2011

Saturday, September 22, 2012

Local

Non-Local

p

||skipp

Saturday, September 22, 2012

Perspective

I From our minimalist axioms, we automatically get lots of
proof rules (Hoare and concurrent separation logic)

I For a range of models

I Wait a minute: do they mean what we expect? Is this
cheating?

I Turning the tables: Start from CSL, see if we can get locality
bimonoid. If we succeed we confirm, no cheat in the logic,
and we get lots of more example models.

Saturday, September 22, 2012

Perspective

I From our minimalist axioms, we automatically get lots of
proof rules (Hoare and concurrent separation logic)

I For a range of models

I Wait a minute: do they mean what we expect? Is this
cheating?

I Turning the tables: Start from CSL, see if we can get locality
bimonoid. If we succeed we confirm, no cheat in the logic,
and we get lots of more example models.

Saturday, September 22, 2012

Basic CSL

[Skip] {X} skip {X} [Frame]
{X} c {Y }

{X ⇤ F} c {Y ⇤ F}

[Seq]
{X} c1 {Y } {Y } c2 {Z}

{X} c1; c2 {Z}
[Par]

{X1} c1 {Y1} {X2} c2 {Y2}
{X1 ⇤ X2} c1 k c2 {Y1 ⇤ Y2}

[Consequence]
X

0 ` X {X} c {Y } Y ` Y

0

{X 0} c {Y 0}

An instance of Basic CSL presumes a preordered commutative
monoid (Props,`, ⇤, emp) and a set of axioms {X} c

p

{Y } for a set
of primitive command c

p

and X ,Y 2 Prop.

BCSL minus Frame can be interpreted in any locality bimonoid.
Frame holds when primitive commands are local.

Saturday, September 22, 2012

Embedding

Theorem. From the proof theory of BCSL one can construct a
locality bimonoid (model of minimalist theory) together with

I embeddings of propositions and programs into the bimonoid,

I sending ⇤ to k and preserving and reflecting order,

I sending programs to elements of the bimonoid, such that

{p} c {q} is provable in BCSL ()
embed(p) ; embed(c) v embed(q)

Saturday, September 22, 2012

Ideas in the proof

I Use ideal completion: map a proposition p to everything that
entails it p+. Down-closed subsets have rich structure:
complete Heyting algebra, residuated monoid (cf. BI algebra).

I Intuitionistic BI semantics of ⇤ on down-closed sets (call it ~)

P ~ Q = {X | Y 2 P ^ Z 2 Q ^ X ` Y ⇤ Z}
I = {p | p ` emp}

I Monotone function space [Preds ! Preds] is carrier of our
algebra

(F1kF2)Y =
S
{F1Y1~F2Y2 | Y1~Y2 ✓ Y }

nothing Y = Y \ I

(F1;F2)Y = F1(F2(Y))

skip Y = Y

I Inject predicate P into predicate transformers using greatest
transformer F satisfying emp ✓ F (P). This maps ~ to k.

Ack to H Yang: suggestion of F1kF2.
Saturday, September 22, 2012

Sum up

I Minimalist theory with a few axioms:

A single poset M,v equipped withan ordered

commutative monoid (k, nothing) and an ordered

monoid (;, skip), satisfying the exchange law, where

skip k skip = skip.

I Connection with program logic: generalized CSL.

I Lots of models: interleaving, independence, resource
separation...

I Temporal readings of triples which we are exploring

I
Speculation: programs and assertions are part of the same
space. I wonder if we can push this and make a more genuine
logic encompassing both, also bringing out the temporal
aspect?

Saturday, September 22, 2012

Sum up

I Minimalist theory with a few axioms:

A single poset M,v equipped withan ordered

commutative monoid (k, nothing) and an ordered

monoid (;, skip), satisfying the exchange law, where

skip k skip = skip.

I Connection with program logic: generalized CSL.

I Lots of models: interleaving, independence, resource
separation...

I Temporal readings of triples which we are exploring

I
Speculation: programs and assertions are part of the same
space. I wonder if we can push this and make a more genuine
logic encompassing both, also bringing out the temporal
aspect?

Saturday, September 22, 2012

Maximalist model (tentative.. speculation)

I The traces model P(E ⇤) has lots more structure. Ditto for
tracelet model.

I
G = (M,v, ⇤, nothing, ;, skip) is an ordered residuated

commutative monoid (⇤, nothing) and a ordered residuated

monoid (;, skip) on the same complete boolean algebra

(M,v), satisfying exchange, where skip ⇤ skip = skip.

I Residuation means that we have the adjoint cousins

p ⇤ q v r , p v q�⇤r

p; q v r , p v q . r , q v q / r

I We have classical predicate logic (complete bool alg),
alongside full-strength substructural logics (like in BI/SL).

I These connectives have a declarative reading given by a
Kripke semantics (a la bunched/separation logic), where
;,C,B have a temporal flavour

Saturday, September 22, 2012

I E.g., in the tracelet model
(recall that X ,Y etc are subsets of a given poset E ,)

Y � X means that nothing in X depends on anything in Y .
Then,

X |= p C q i↵ 8Y .Y � X and Y |= p implies Y] X |= q

I
previous(p) = ¬(p B false)

= 9Y .¬(Y � X and Y |= p implies false)
= 9Y .Y � X and Y |= p

Saturday, September 22, 2012

