
A Hierarchically Typed Relation Algebra

Patrick Roocks

Institut für Informatik, Universität Augsburg

September 17, 2012

Introduction Basics The problem Multitypes Conclusion Motivation

Motivation

We have introduced a typed relational algebra to model:

▸ Tuples of a databases

▸ There the types represent the attributes (database columns)

▸ Relations between database tuples

Additionally we introduced:

▸ A join algebra: Differently typed elements can be “glued together”

▸ This is embedded in a semiring with 1 and ⊺

Application:

▸ Preferences in databases

Ð→ See talk tomorrow

Patrick Roocks — A Hierarchically Typed Relation Algebra 2

Introduction Basics The problem Multitypes Conclusion Motivation

Motivation

We have introduced a typed relational algebra to model:

▸ Tuples of a databases

▸ There the types represent the attributes (database columns)

▸ Relations between database tuples

Additionally we introduced:

▸ A join algebra: Differently typed elements can be “glued together”

▸ This is embedded in a semiring with 1 and ⊺

Application:

▸ Preferences in databases

Ð→ See talk tomorrow

Patrick Roocks — A Hierarchically Typed Relation Algebra 2

Introduction Basics The problem Multitypes Conclusion Motivation

Motivation

We have introduced a typed relational algebra to model:

▸ Tuples of a databases

▸ There the types represent the attributes (database columns)

▸ Relations between database tuples

Additionally we introduced:

▸ A join algebra: Differently typed elements can be “glued together”

▸ This is embedded in a semiring with 1 and ⊺

Application:

▸ Preferences in databases

Ð→ See talk tomorrow

Patrick Roocks — A Hierarchically Typed Relation Algebra 2

Introduction Basics The problem Multitypes Conclusion Motivation

Outline

Problems:

▸ Arbitrary unions are not typable with our typing mechanism

▸ 1 and ⊺are also not typable

▸ This is a lack of uniformity in our algebra

Our idea:

▸ Introducing an new typing concept covering arbitrary unions

The talk is structured as follows:

1 Basics (Typing, Join-Algebra)

2 Sketch of the problem

3 Definition of the new typing mechanism

4 Some properties

Patrick Roocks — A Hierarchically Typed Relation Algebra 3

Introduction Basics The problem Multitypes Conclusion Motivation

Outline

Problems:

▸ Arbitrary unions are not typable with our typing mechanism

▸ 1 and ⊺are also not typable

▸ This is a lack of uniformity in our algebra

Our idea:

▸ Introducing an new typing concept covering arbitrary unions

The talk is structured as follows:

1 Basics (Typing, Join-Algebra)

2 Sketch of the problem

3 Definition of the new typing mechanism

4 Some properties

Patrick Roocks — A Hierarchically Typed Relation Algebra 3

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed tuples

▸ Database tuples consist of values according to their attributes

▸ We introduce types of relations according to their attribute names

We use:

▸ A: set of attribute names (e.g. set of column names)

▸ DA for all A ∈ A: The type domain of the attribute, e.g. R,N,
strings,... (int, float, varchar,...)

Patrick Roocks — A Hierarchically Typed Relation Algebra 4

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed tuples

▸ Database tuples consist of values according to their attributes

▸ We introduce types of relations according to their attribute names

We use:

▸ A: set of attribute names (e.g. set of column names)

▸ DA for all A ∈ A: The type domain of the attribute, e.g. R,N,
strings,... (int, float, varchar,...)

Patrick Roocks — A Hierarchically Typed Relation Algebra 4

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed tuples

Definition (Typed Tuples, (1/2))
▸ A type T is a subset T ⊆ A.

▸ An attribute A ∈ A also denotes the type {A}
▸ A T-tuple is a mapping

t ∶ T → ⋃
A∈A

DA where ∀A ∈ T ∶ t(A) ∈ DA

▸ The type domain DT for a type T is the set of all T -tuples, i.e.

DT = ∏
A∈T

DA

Patrick Roocks — A Hierarchically Typed Relation Algebra 5

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed Tuples

Definition (Typed Tuples, (2/2))
▸ The greatest type domain is the universe: U =df ⋃

T⊆A
DT

▸ Abbreviations:

t ∶∶ T ⇔df t ∈ DT , M ∶∶ T ⇔df M ⊆ DT

Unions of types and differently typed tuples can be expressed by joins:

Definition (Join)

We define the join of types T1,T2 and sets of tuples Mi ∶∶ Ti (i = 1,2)

T1 & T2 =df T1 ∪ T2.

M1 &M2 =df {t ∶∶ T1 & T2 ∣ t ∣Ti ∈ Mi , i = 1,2}

Patrick Roocks — A Hierarchically Typed Relation Algebra 6

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed Tuples

Definition (Typed Tuples, (2/2))
▸ The greatest type domain is the universe: U =df ⋃

T⊆A
DT

▸ Abbreviations:

t ∶∶ T ⇔df t ∈ DT , M ∶∶ T ⇔df M ⊆ DT

Unions of types and differently typed tuples can be expressed by joins:

Definition (Join)

We define the join of types T1,T2 and sets of tuples Mi ∶∶ Ti (i = 1,2)

T1 & T2 =df T1 ∪ T2.

M1 &M2 =df {t ∶∶ T1 & T2 ∣ t ∣Ti ∈ Mi , i = 1,2}

Patrick Roocks — A Hierarchically Typed Relation Algebra 6

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

The join operator – an example

Example

Assume a database of cars with attributes: ID, model, power

Consider the sets

M1 = {{ID↦ 1, model↦ ’BMW’},{ID↦ 3, model↦ ’Mercedes’}}
M2 = {{ID↦ 2, power↦ 230},{ID↦ 3, power↦ 315}}.

The sets are typed as follows:

M1 ∶∶ ID &model, M2 ∶∶ ID & power

The join M1 &M2 ∶∶ ID &model & power combines tuples with the same ID,
because (ID &model) ∩ (ID & power) = ID

M1 &M2 = {{ID↦ 3, model↦ ’Mercedes’, power↦ 315}}

Patrick Roocks — A Hierarchically Typed Relation Algebra 7

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

The join operator – an example

Example

Assume a database of cars with attributes: ID, model, power

Consider the sets

M1 = {{ID↦ 1, model↦ ’BMW’},{ID↦ 3, model↦ ’Mercedes’}}
M2 = {{ID↦ 2, power↦ 230},{ID↦ 3, power↦ 315}}.

The sets are typed as follows:

M1 ∶∶ ID &model, M2 ∶∶ ID & power

The join M1 &M2 ∶∶ ID &model & power combines tuples with the same ID,
because (ID &model) ∩ (ID & power) = ID

M1 &M2 = {{ID↦ 3, model↦ ’Mercedes’, power↦ 315}}

Patrick Roocks — A Hierarchically Typed Relation Algebra 7

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Type assertions for elements and tests

Algebraically:
a ∶∶ T 2 ⇔df a = 1T ⋅ a ⋅ 1T

p ∶∶ T ⇔df p ≤ 1T

In the concrete relational instances:

a ∶∶ T 2 ⇔ a ⊆ DT × DT

p ∶∶ T ⇔ p ⊆ DT

Note that subidentities can be represented as sets:

{(x , x) ∣ x ∈ M} ↦ M for M ⊆ DT

Patrick Roocks — A Hierarchically Typed Relation Algebra 8

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Type assertions for elements and tests

Algebraically:
a ∶∶ T 2 ⇔df a = 1T ⋅ a ⋅ 1T

p ∶∶ T ⇔df p ≤ 1T

In the concrete relational instances:

a ∶∶ T 2 ⇔ a ⊆ DT × DT

p ∶∶ T ⇔ p ⊆ DT

Note that subidentities can be represented as sets:

{(x , x) ∣ x ∈ M} ↦ M for M ⊆ DT

Patrick Roocks — A Hierarchically Typed Relation Algebra 8

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Type assertions for elements and tests

Algebraically:
a ∶∶ T 2 ⇔df a = 1T ⋅ a ⋅ 1T

p ∶∶ T ⇔df p ≤ 1T

In the concrete relational instances:

a ∶∶ T 2 ⇔ a ⊆ DT × DT

p ∶∶ T ⇔ p ⊆ DT

Note that subidentities can be represented as sets:

{(x , x) ∣ x ∈ M} ↦ M for M ⊆ DT

Patrick Roocks — A Hierarchically Typed Relation Algebra 8

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed relations and their join

Definition (Typed homogeneous binary relations)

For a type T we define:

(t1, t2) ∶∶ T 2 ⇔df ti ∈ DT , R ∶∶ T 2 ⇔df R ⊆ DT × DT

Special relations:

▸ The full relation ⊺T =df DT × DT

▸ The identity 1T =df {(x , x) ∣ x ∶∶ T}
▸ The empty relation 0T =df ∅

Definition (Join of relations / Generalised Cartesian Product)

For Ri ∶∶ T 2
i (i = 1,2) we define R1 & R2 ∶∶ (T1 & T2)2

t (R1 & R2)u ⇔df t ∣T1 R1 u∣T1 ∧ t ∣T2 R2 u∣T2 .

Patrick Roocks — A Hierarchically Typed Relation Algebra 9

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed relations and their join

Definition (Typed homogeneous binary relations)

For a type T we define:

(t1, t2) ∶∶ T 2 ⇔df ti ∈ DT , R ∶∶ T 2 ⇔df R ⊆ DT × DT

Special relations:

▸ The full relation ⊺T =df DT × DT

▸ The identity 1T =df {(x , x) ∣ x ∶∶ T}
▸ The empty relation 0T =df ∅

Definition (Join of relations / Generalised Cartesian Product)

For Ri ∶∶ T 2
i (i = 1,2) we define R1 & R2 ∶∶ (T1 & T2)2

t (R1 & R2)u ⇔df t ∣T1 R1 u∣T1 ∧ t ∣T2 R2 u∣T2 .

Patrick Roocks — A Hierarchically Typed Relation Algebra 9

Introduction Basics The problem Multitypes Conclusion Types and Tuples Typed relations

Typed relations and their join

Definition (Typed homogeneous binary relations)

For a type T we define:

(t1, t2) ∶∶ T 2 ⇔df ti ∈ DT , R ∶∶ T 2 ⇔df R ⊆ DT × DT

Special relations:

▸ The full relation ⊺T =df DT × DT

▸ The identity 1T =df {(x , x) ∣ x ∶∶ T}
▸ The empty relation 0T =df ∅

Definition (Join of relations / Generalised Cartesian Product)

For Ri ∶∶ T 2
i (i = 1,2) we define R1 & R2 ∶∶ (T1 & T2)2

t (R1 & R2)u ⇔df t ∣T1 R1 u∣T1 ∧ t ∣T2 R2 u∣T2 .

Patrick Roocks — A Hierarchically Typed Relation Algebra 9

Introduction Basics The problem Multitypes Conclusion

The problem

▸ Assume attributes A,B and tests pA ∶∶ {A} and pB ∶∶ {B}
▸ Consider the union pA + pB

▸ pA + pB ∶∶ {A,B} does not hold
▸ We have {A} ∪ {B} = {A} & {B}, but pA + pB is a union, not a join!

Consider the subsumption order

x ≤ y =df x + y = y

▸ Consider the following inequation:

pA ≤ pA + pB ≤ 1 ≤ ⊺

▸ This is valid due to the definition of the subsumption order
▸ (pA + pB), 1 and ⊺are all not typable with “∶∶”

Patrick Roocks — A Hierarchically Typed Relation Algebra 10

Introduction Basics The problem Multitypes Conclusion

The problem

▸ Assume attributes A,B and tests pA ∶∶ {A} and pB ∶∶ {B}
▸ Consider the union pA + pB

▸ pA + pB ∶∶ {A,B} does not hold
▸ We have {A} ∪ {B} = {A} & {B}, but pA + pB is a union, not a join!

Consider the subsumption order

x ≤ y =df x + y = y

▸ Consider the following inequation:

pA ≤ pA + pB ≤ 1 ≤ ⊺

▸ This is valid due to the definition of the subsumption order
▸ (pA + pB), 1 and ⊺are all not typable with “∶∶”

Patrick Roocks — A Hierarchically Typed Relation Algebra 10

Introduction Basics The problem Multitypes Conclusion

A first idea

▸ Consider U = ⋃
T⊆A

DT

▸ T ranges over P(A) − ∅ (P(...) denotes the power set)

⇒ “P(A) − ∅” could be the type of U

This would mean:

▸ Types are not anymore subsets of A...

▸ ...but subsets of the powerset

Ð→ In the following we will formalize this

Patrick Roocks — A Hierarchically Typed Relation Algebra 11

Introduction Basics The problem Multitypes Conclusion

A first idea

▸ Consider U = ⋃
T⊆A

DT

▸ T ranges over P(A) − ∅ (P(...) denotes the power set)

⇒ “P(A) − ∅” could be the type of U

This would mean:

▸ Types are not anymore subsets of A...

▸ ...but subsets of the powerset

Ð→ In the following we will formalize this

Patrick Roocks — A Hierarchically Typed Relation Algebra 11

Introduction Basics The problem Multitypes Conclusion

A first idea

▸ Consider U = ⋃
T⊆A

DT

▸ T ranges over P(A) − ∅ (P(...) denotes the power set)

⇒ “P(A) − ∅” could be the type of U

This would mean:

▸ Types are not anymore subsets of A...

▸ ...but subsets of the powerset

Ð→ In the following we will formalize this

Patrick Roocks — A Hierarchically Typed Relation Algebra 11

Introduction Basics The problem Multitypes Conclusion Definition Properties

Multitypes – Definition

Definition

For a (finite) attribute set A we define:

1 The set of fundamental types F :

1 Base types: If A ∈ A, then {A} is a base type

2 Complex types: Let T1 and T2 be fundamental
⇒ Then T1 ∪ T2 is a complex type.

In summary we have:
F = P(A) − ∅

2 Multitypes:M consists of all subsets M ⊆ F of fundamental types:

M= P(F) = P(P(A) − ∅)

Patrick Roocks — A Hierarchically Typed Relation Algebra 12

Introduction Basics The problem Multitypes Conclusion Definition Properties

Multitypes – Definition

Definition

For a (finite) attribute set A we define:

1 The set of fundamental types F :

1 Base types: If A ∈ A, then {A} is a base type
2 Complex types: Let T1 and T2 be fundamental
⇒ Then T1 ∪ T2 is a complex type.

In summary we have:
F = P(A) − ∅

2 Multitypes:M consists of all subsets M ⊆ F of fundamental types:

M= P(F) = P(P(A) − ∅)

Patrick Roocks — A Hierarchically Typed Relation Algebra 12

Introduction Basics The problem Multitypes Conclusion Definition Properties

Multitypes – Definition

Definition

For a (finite) attribute set A we define:

1 The set of fundamental types F :

1 Base types: If A ∈ A, then {A} is a base type
2 Complex types: Let T1 and T2 be fundamental
⇒ Then T1 ∪ T2 is a complex type.

In summary we have:
F = P(A) − ∅

2 Multitypes:M consists of all subsets M ⊆ F of fundamental types:

M= P(F) = P(P(A) − ∅)

Patrick Roocks — A Hierarchically Typed Relation Algebra 12

Introduction Basics The problem Multitypes Conclusion Definition Properties

Type assertions for multitypes

In the relational case, for M ∈ M:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT)

R ∶∶ M ⇔df R ⊆ ⋃
T⊆M

DT

In the algebraic setting, for M ∈ M:

a ∶∶ M2 ⇔df a ≤ ∑
T∈M

1T ⋅ a ⋅ 1T

p ∶∶ M ⇔df p ≤ ∑
T∈M

1T

Consequence: The typing of 1 and ⊺:

1 ∶∶ F , ⊺ ∶∶ F2

Patrick Roocks — A Hierarchically Typed Relation Algebra 13

Introduction Basics The problem Multitypes Conclusion Definition Properties

Type assertions for multitypes

In the relational case, for M ∈ M:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT)

R ∶∶ M ⇔df R ⊆ ⋃
T⊆M

DT

In the algebraic setting, for M ∈ M:

a ∶∶ M2 ⇔df a ≤ ∑
T∈M

1T ⋅ a ⋅ 1T

p ∶∶ M ⇔df p ≤ ∑
T∈M

1T

Consequence: The typing of 1 and ⊺:

1 ∶∶ F , ⊺ ∶∶ F2

Patrick Roocks — A Hierarchically Typed Relation Algebra 13

Introduction Basics The problem Multitypes Conclusion Definition Properties

Type assertions for multitypes

In the relational case, for M ∈ M:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT)

R ∶∶ M ⇔df R ⊆ ⋃
T⊆M

DT

In the algebraic setting, for M ∈ M:

a ∶∶ M2 ⇔df a ≤ ∑
T∈M

1T ⋅ a ⋅ 1T

p ∶∶ M ⇔df p ≤ ∑
T∈M

1T

Consequence: The typing of 1 and ⊺:

1 ∶∶ F , ⊺ ∶∶ F2

Patrick Roocks — A Hierarchically Typed Relation Algebra 13

Introduction Basics The problem Multitypes Conclusion Definition Properties

Minimal types

▸ “⊆” is the natural order onM= P(F)
▸ F is the maximal type, i.e. M ⊆ F for all M ∈ M

▸ Consider an element a ∶∶ T 2 where T ∈ F
▸ We also have for any M ∈ M with T ∈ M: a ∶∶ M2

⇒ An element has its “real” type and all supertypes

⇒ We want to define a unique “minimal” type

Definition (Minimal type)

The minimal type for a general element x is defined as follows:

x
min∶∶ M2 ⇔df M = ⋂{N ∈ M ∣ x ∶∶ N2}

▸ x
min∶∶ ∅ is only fulfilled by x = 0, hence 0T = 0U

Patrick Roocks — A Hierarchically Typed Relation Algebra 14

Introduction Basics The problem Multitypes Conclusion Definition Properties

Minimal types

▸ “⊆” is the natural order onM= P(F)
▸ F is the maximal type, i.e. M ⊆ F for all M ∈ M
▸ Consider an element a ∶∶ T 2 where T ∈ F
▸ We also have for any M ∈ M with T ∈ M: a ∶∶ M2

⇒ An element has its “real” type and all supertypes

⇒ We want to define a unique “minimal” type

Definition (Minimal type)

The minimal type for a general element x is defined as follows:

x
min∶∶ M2 ⇔df M = ⋂{N ∈ M ∣ x ∶∶ N2}

▸ x
min∶∶ ∅ is only fulfilled by x = 0, hence 0T = 0U

Patrick Roocks — A Hierarchically Typed Relation Algebra 14

Introduction Basics The problem Multitypes Conclusion Definition Properties

Minimal types

▸ “⊆” is the natural order onM= P(F)
▸ F is the maximal type, i.e. M ⊆ F for all M ∈ M
▸ Consider an element a ∶∶ T 2 where T ∈ F
▸ We also have for any M ∈ M with T ∈ M: a ∶∶ M2

⇒ An element has its “real” type and all supertypes

⇒ We want to define a unique “minimal” type

Definition (Minimal type)

The minimal type for a general element x is defined as follows:

x
min∶∶ M2 ⇔df M = ⋂{N ∈ M ∣ x ∶∶ N2}

▸ x
min∶∶ ∅ is only fulfilled by x = 0, hence 0T = 0U

Patrick Roocks — A Hierarchically Typed Relation Algebra 14

Introduction Basics The problem Multitypes Conclusion Definition Properties

Minimal types

▸ “⊆” is the natural order onM= P(F)
▸ F is the maximal type, i.e. M ⊆ F for all M ∈ M
▸ Consider an element a ∶∶ T 2 where T ∈ F
▸ We also have for any M ∈ M with T ∈ M: a ∶∶ M2

⇒ An element has its “real” type and all supertypes

⇒ We want to define a unique “minimal” type

Definition (Minimal type)

The minimal type for a general element x is defined as follows:

x
min∶∶ M2 ⇔df M = ⋂{N ∈ M ∣ x ∶∶ N2}

▸ x
min∶∶ ∅ is only fulfilled by x = 0, hence 0T = 0U

Patrick Roocks — A Hierarchically Typed Relation Algebra 14

Introduction Basics The problem Multitypes Conclusion Definition Properties

Minimal types

▸ “⊆” is the natural order onM= P(F)
▸ F is the maximal type, i.e. M ⊆ F for all M ∈ M
▸ Consider an element a ∶∶ T 2 where T ∈ F
▸ We also have for any M ∈ M with T ∈ M: a ∶∶ M2

⇒ An element has its “real” type and all supertypes

⇒ We want to define a unique “minimal” type

Definition (Minimal type)

The minimal type for a general element x is defined as follows:

x
min∶∶ M2 ⇔df M = ⋂{N ∈ M ∣ x ∶∶ N2}

▸ x
min∶∶ ∅ is only fulfilled by x = 0, hence 0T = 0U

Patrick Roocks — A Hierarchically Typed Relation Algebra 14

Introduction Basics The problem Multitypes Conclusion Definition Properties

An example

Example

▸ Assume attributes A,B with type domains DA = {A1,A2} and
DB = {B1,B2}.

▸ The set X = {(A1,A2), (B1,B2)} fulfils

X ∶∶ {{A},{B}}2

▸ We do not allow relations between different multitype-subsets:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT) ≠ (⋃

T⊆M
DT) × (⋃

T⊆M
DT)

⇒ Y = {(A1,B1)} does not fulfil the assertion Y ∶∶ {{A},{B}}2

▸ But note that Y ∶∶ {A} & {B} is true

Patrick Roocks — A Hierarchically Typed Relation Algebra 15

Introduction Basics The problem Multitypes Conclusion Definition Properties

An example

Example

▸ Assume attributes A,B with type domains DA = {A1,A2} and
DB = {B1,B2}.

▸ The set X = {(A1,A2), (B1,B2)} fulfils

X ∶∶ {{A},{B}}2

▸ We do not allow relations between different multitype-subsets:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT) ≠ (⋃

T⊆M
DT) × (⋃

T⊆M
DT)

⇒ Y = {(A1,B1)} does not fulfil the assertion Y ∶∶ {{A},{B}}2

▸ But note that Y ∶∶ {A} & {B} is true

Patrick Roocks — A Hierarchically Typed Relation Algebra 15

Introduction Basics The problem Multitypes Conclusion Definition Properties

An example

Example

▸ Assume attributes A,B with type domains DA = {A1,A2} and
DB = {B1,B2}.

▸ The set X = {(A1,A2), (B1,B2)} fulfils

X ∶∶ {{A},{B}}2

▸ We do not allow relations between different multitype-subsets:

R ∶∶ M2 ⇔df R ⊆ ⋃
T⊆M
(DT × DT) ≠ (⋃

T⊆M
DT) × (⋃

T⊆M
DT)

⇒ Y = {(A1,B1)} does not fulfil the assertion Y ∶∶ {{A},{B}}2

▸ But note that Y ∶∶ {A} & {B} is true

Patrick Roocks — A Hierarchically Typed Relation Algebra 15

Introduction Basics The problem Multitypes Conclusion Definition Properties

Generalized Union

▸ We want to allow unions of elements in F and inM
▸ We generalize the union between types:

T1 ∪m T2 =df T ′1 ∪ T ′2 where T ′ ∶=
⎧⎪⎪⎨⎪⎪⎩

{T} for T ∈ F
T for T ∈ M

▸ Analogously we define ∩m

▸ We need this to characterize the type of an addition or composition

Patrick Roocks — A Hierarchically Typed Relation Algebra 16

Introduction Basics The problem Multitypes Conclusion Definition Properties

Type of an addition

Corollary (Type of an addition)

Let a ∶∶ M2
a ,b ∶∶ M2

b . Then we have

a + b ∶∶ (Ma ∪m Mb)2

Proof.
▸ We have: a ≤ ∑T∈Ma

1T ⋅ a ⋅ 1T ∧ b ≤ ∑T∈Mb
1T ⋅ b ⋅ 1T

▸ We conclude:

a + b ≤ ∑
T∈Ma

1T ⋅ a ⋅ 1T + ∑
T∈Mb

1T ⋅ b ⋅ 1T

≤ ∑
T∈Ma

1T ⋅ (a + b) ⋅ 1T + ∑
T∈Mb

1T ⋅ (a + b) ⋅ 1T

= ∑
T∈Ma∪mMb

1T ⋅ (a + b) ⋅ 1T

Patrick Roocks — A Hierarchically Typed Relation Algebra 17

Introduction Basics The problem Multitypes Conclusion Definition Properties

Type of an addition

Corollary (Type of an addition)

Let a ∶∶ M2
a ,b ∶∶ M2

b . Then we have

a + b ∶∶ (Ma ∪m Mb)2

Proof.
▸ We have: a ≤ ∑T∈Ma

1T ⋅ a ⋅ 1T ∧ b ≤ ∑T∈Mb
1T ⋅ b ⋅ 1T

▸ We conclude:

a + b ≤ ∑
T∈Ma

1T ⋅ a ⋅ 1T + ∑
T∈Mb

1T ⋅ b ⋅ 1T

≤ ∑
T∈Ma

1T ⋅ (a + b) ⋅ 1T + ∑
T∈Mb

1T ⋅ (a + b) ⋅ 1T

= ∑
T∈Ma∪mMb

1T ⋅ (a + b) ⋅ 1T

Patrick Roocks — A Hierarchically Typed Relation Algebra 17

Introduction Basics The problem Multitypes Conclusion Definition Properties

More typing properties

▸ In the relational setting we also have:

a
min∶∶ M2

a ,b
min∶∶ M2

b ⇒ a + b
min∶∶ (Ma ∪m Mb)2

Corollary (Type of a composition)

Let a ∶∶ M2
a ,b ∶∶ M2

b . Then we have

a ⋅ b ∶∶ (Ma ∩m Mb)2

For “
min∶∶ ” this does not hold:

▸ Assume a,a′ ∶∶ A, DA = {A1,A2} and

a = (A1,A1), a′ = (A2,A2)

▸ We have a ⋅ a′ = 0, hence a ⋅ a′ min∶∶ ∅
▸ But we have (A ∩m A) = {A}

Patrick Roocks — A Hierarchically Typed Relation Algebra 18

Introduction Basics The problem Multitypes Conclusion Definition Properties

More typing properties

▸ In the relational setting we also have:

a
min∶∶ M2

a ,b
min∶∶ M2

b ⇒ a + b
min∶∶ (Ma ∪m Mb)2

Corollary (Type of a composition)

Let a ∶∶ M2
a ,b ∶∶ M2

b . Then we have

a ⋅ b ∶∶ (Ma ∩m Mb)2

For “
min∶∶ ” this does not hold:

▸ Assume a,a′ ∶∶ A, DA = {A1,A2} and

a = (A1,A1), a′ = (A2,A2)

▸ We have a ⋅ a′ = 0, hence a ⋅ a′ min∶∶ ∅
▸ But we have (A ∩m A) = {A}

Patrick Roocks — A Hierarchically Typed Relation Algebra 18

Introduction Basics The problem Multitypes Conclusion Definition Properties

More typing properties

▸ In the relational setting we also have:

a
min∶∶ M2

a ,b
min∶∶ M2

b ⇒ a + b
min∶∶ (Ma ∪m Mb)2

Corollary (Type of a composition)

Let a ∶∶ M2
a ,b ∶∶ M2

b . Then we have

a ⋅ b ∶∶ (Ma ∩m Mb)2

For “
min∶∶ ” this does not hold:

▸ Assume a,a′ ∶∶ A, DA = {A1,A2} and

a = (A1,A1), a′ = (A2,A2)

▸ We have a ⋅ a′ = 0, hence a ⋅ a′ min∶∶ ∅
▸ But we have (A ∩m A) = {A}

Patrick Roocks — A Hierarchically Typed Relation Algebra 18

Introduction Basics The problem Multitypes Conclusion

Conclusion

What was done in this work:

▸ Introduced a type hierarchy (basic/fundamental types, multitypes)

▸ Extended the typing to arbitrary unions of fundamental types

▸ Introduced a typed 1 and ⊺ in our calculus

Future work:

▸ Combining sub-typing (1′T ∶= r ≤ 1T) and multitypes

▸ Introducing projections ((a & b)∣Ta = a)...

▸ ...and embedding them into the multitype-setting

▸ Extending the multitype-setting to more complex algebras
(i.e. heterogeneous relation algebras)

Patrick Roocks — A Hierarchically Typed Relation Algebra 19

	Introduction
	Motivation

	Basics
	Types and Tuples
	Typed relations

	The problem
	Multitypes
	Definition
	Properties

	Conclusion

