Walter Guttmann University of Canterbury

- 1. Overview
- 2. Lazy Computations
- 3. Recursion
- 4. Iteration

Computation models

- mathematical descriptions
- based on real computing systems
- simplified, generalised
 - sequential non-deterministic computations
 - relational model, ignore intermediate states
- varying precision
 - infinite, aborting executions
 - partial, total, general correctness
- unify models
 - so far: strict computations
 - new: lazy computations

Lazy computations

- in functional programming
 - compute only the necessary parts
 - support infinite data structures
 - improve modularity
- in imperative programming
 - state with variables
 - · values of variables not always needed
 - avoid unnecessary infinite, aborting executions
 - · relational model

Unifying models

- structure diversity of models
 - · understand their connections
 - reuse theories
 - · characterise individual models
 - discover new models
- algebraic structures
 - elements: computations, programs, specifications
 - operations: program constructs
 - axioms, theorems: laws, program transformations

What is unified?

- non-deterministic choice, refinement order, intersection
- sequence, iteration
- conditions, preconditions
- recursion
 - approximation order
 - infinite executions
 - loops are a special case
- neutral, absorbing, least, greatest elements

How are these unified?

- bounded distributive lattices
- variants of semirings, Kleene algebras, omega algebras
- test, domain semirings
- reduce approximation order to semilattice order
 - use domain to extract states with infinite executions
 - axioms about endless loop
- iterings
 - unary operation for unifying iteration
 - · simulation axioms instead of induction axioms

- reduce approximation order to semilattice order
 - use domain to extract states with infinite executions
 - axioms about endless loop
 - problem: previous axioms hold only in strict models
- iterings
 - unary operation for unifying iteration
 - · simulation axioms instead of induction axioms
 - problem: previous axioms hold only in strict models

- reduce approximation order to semilattice order
 - use domain to extract states with infinite executions
 - axioms about endless loop
 - problem: previous axioms hold only in strict models
 - solution: use weaker axioms
- iterings
 - unary operation for unifying iteration
 - simulation axioms instead of induction axioms
 - problem: previous axioms hold only in strict models

- reduce approximation order to semilattice order
 - use domain to extract states with infinite executions
 - axioms about endless loop
 - problem: previous axioms hold only in strict models
 - solution: use weaker axioms
- iterings
 - unary operation for unifying iteration
 - · simulation axioms instead of induction axioms
 - problem: previous axioms hold only in strict models
 - problem: cannot use unary operation in lazy model

- reduce approximation order to semilattice order
 - use domain to extract states with infinite executions
 - axioms about endless loop
 - problem: previous axioms hold only in strict models
 - solution: use weaker axioms
- iterings
 - unary operation for unifying iteration
 - simulation axioms instead of induction axioms
 - problem: previous axioms hold only in strict models
 - problem: cannot use unary operation in lazy model
 - solution: axiomatise binary operation of omega algebra

Walter Guttmann University of Canterbury

- 1. Overview
- 2. Lazy Computations
- 3. Recursion
- 4. Iteration

Lazy computations

- assignment $(x_1 := \frac{1}{0})$ aborts only if value of x_1 needed
 - $(x_1 := \frac{1}{0})$; $(x_1 := 2) = (x_1 := 2)$ • $(x_1, x_2 := \frac{1}{0}, 2)$; $(x_1 := x_2) = (x_1, x_2 := 2, 2)$
- similarly for non-terminating statements
 - (while *true* do skip); $(x_1, x_2 := 2, 2) = (x_1, x_2, \vec{x}_{3..n} := 2, 2, \vec{\infty})$
- construct infinite list ones = 1:ones
 - P = f(P) = P; (xs := 1:xs)
 - $\nu f = \bigcap_{n \in \mathbb{N}} f^n(\top) = \bigcap_{n \in \mathbb{N}} (xs := (1:)^n \infty) = (xs := ones)$

Relational model

- variables x_1, \ldots, x_n with values $x_i \in D_i$
- state $\vec{x} \in D_{1..n} = \prod_{i \in 1..n} D_i$
- computation $P \in D_{1..n} \leftrightarrow D_{1..n}$
- $(\vec{x}, \vec{x}') \in P \Leftrightarrow$ execution of P with input \vec{x} may yield output \vec{x}'
- non-deterministic if $|P(\vec{x})| > 1$ $(x := 3x+1) \cup (x := 4x+1) = \{(0,1), (1,4), (1,5), (2,7), (2,9), \dots\}$
- lazy computations
 - 'undefined' value $\oint \in D_i$
 - 'non-terminating' value $\infty \in D_i$
 - D_i partially ordered, for $D_i = \mathbb{N} \cup \{\infty, \frac{1}{2}\}$ by
 - image sets $P(\vec{x})$ upward-closed

Walter Guttmann · RAMiCS · 2012-09-17

Algebraic structure

- bounded distributive lattice $(S, +, \curlywedge, 0, \top)$
 - non-deterministic choice +
 - refinement $x \le y \Leftrightarrow x + y = y$
- omega algebra $(S, +, \cdot, *, \omega, 0, 1)$ without x0 = 0
 - sequential composition ·
 - finite iteration * with $y^*z = \mu(\lambda x.yx + z)$
 - infinite iteration ω with $y^{\omega} + y^*z = \nu(\lambda x.yx + z)$
- domain $d: S \rightarrow S$
 - x = d(x)x
 - d(xy) = d(xd(y))
 - d(x+y) = d(x) + d(y)
 - d(0) = 0
 - $d(x) \leq 1$

Recursion

- least fixpoint in approximation order
 - $x \sqsubseteq y \Leftrightarrow x \le y + L \land d(L)y \le x + d(x0) \top$
- use domain for infinite executions of a computation
 - x0 eliminates all finite executions of x
 - · L endless loop, all infinite executions
 - x ⊥ L infinite executions of x
 - d(x0) or $d(x \perp L)$ states with infinite executions
- axioms for L should
 - imply useful properties of ⊑
 - hold in lazy and strict models

Axioms for L

- weaken previous axioms
 - xL = x0 + d(x)L
 - $d(L)x \leq xd(L)$
 - $d(L) \top \leq L + d(L0) \top$
 - $L_X < L$
 - $x0 \land L \leq (x \land L)0$
- Lx = L in strict models
- consequences
 - □ partial order with least element L
 - +, \cdot , \downarrow L, *, ω are \sqsubseteq -isotone

Structuring computation models

Recursion theorem

- assume f is \leq -, \sqsubseteq -isotone and μf , νf exist
 - $\mu f/\nu f/\kappa f$ is $\leq/\geq/\sqsubseteq$ -least fixpoint
 - □ is □-meet
- then equivalent
 - κf exists
 - κf and $\mu f \sqcap \nu f$ exist and $\kappa f = \mu f \sqcap \nu f$
 - κf exists and $\kappa f = (\nu f \perp L) + \mu f$
 - $d(L)\nu f \leq (\nu f \perp L) + \mu f + d(\nu f 0) \top$
 - $d(\mathsf{L})\nu f \leq (\nu f \perp \mathsf{L}) + \mu f + d(((\nu f \perp \mathsf{L}) + \mu f)0) \top$
 - $(\nu f \perp L) + \mu f \sqsubseteq \nu f$
 - $\mu f \sqcap \nu f$ exists and $\mu f \sqcap \nu f = (\nu f \curlywedge L) + \mu f$
 - $\mu f \sqcap \nu f$ exists and $\mu f \sqcap \nu f \leq \nu f$

Iteration theorem

- while-loop
 - while p do w = if p then (w ; while p do w) else skip
 - f(x) = yx + z
 - $\kappa f = (y^{\omega} \perp L) + y^*z = d(y^{\omega})L + y^*z$
- in strict models
 - $\kappa f = y^{\circ} z$
 - $y^{\circ} = d(y^{\omega})L + y^*$

Unary itering

- itering $(S, +, \cdot, ^{\circ}, 0, 1)$
 - $(x+y)^\circ = (x^\circ y)^\circ x^\circ$
 - $(xy)^\circ = 1 + x(yx)^\circ y$
 - $zx \le yy^{\circ}z + w \Rightarrow zx^{\circ} \le y^{\circ}(z + wx^{\circ})$
 - $xz \le zy^{\circ} + w \Rightarrow x^{\circ}z \le (z + x^{\circ}w)y^{\circ}$
- models
 - Kleene algebra $x^{\circ} = x^*$
 - omega algebra $x^{\circ} = x^{\omega} 0 + x^*$
 - demonic refinement algebra $x^{\circ} = x^{\omega}$
 - extended designs $x^{\circ} = d(x^{\omega})L + x^*$

Iterings and lazy computations

- in lazy model
 - f(x) = x
 - $\kappa f = L \neq 0 = 1^{\circ}0$
 - cannot use unary $^{\circ}$ for κf
- omega algebra has binary $y \star z = y^{\omega} + y^*z$
 - not valid in some strict models
- axiomatise * instead of definition
 - independent of omega algebra, Kleene algebra

Binary itering

- binary itering $(S, +, \cdot, \star, 0, 1)$
 - $(x + y) \star z = (x \star y) \star (x \star z)$
 - $(xy) \star z = z + x((yx) \star (yz))$
 - $x \star (y+z) = (x \star y) + (x \star z)$
 - $(x \star y)z < x \star (yz)$
 - $zx < y(y \star z) + w \Rightarrow z(x \star v) < y \star (zv + w(x \star v))$
 - $xz \le z(y \star 1) + w \Rightarrow x \star (zv) \le z(y \star v) + (x \star (w(y \star v)))$
 - $w(x \star (yz)) \leq (w(x \star y)) \star (w(x \star y)z)$
- models
 - itering $x \star y = x^{\circ}y$
 - omega algebra with $x \top \leq x \top x \top$ and $x \star y = x^{\omega} + x^* y$
- paper shows properties of * and Back's theorem

Conclusion

- unifying approach covers
 - lazy computations
 - binary operation for iteration
- future work
 - lazy computations with general correctness
 - independent aborting, finite and infinite executions
 - conditions and aborting, infinite executions