CONSTRAINTS IN FEATURE ALGEBRA

Andreas Zelend

Universitit
Augsburg
University

13th Int’l Conference on Relational and Algebraic Methods in
Computer Science
20. September 2012

CAMBRIDGE 2012 -1- (© ANDREAS ZELEND

THE FEATURE ALGEBRA

GOALS

e language independent and formal characterisation of important
aspects of feature oriented software development (FOSD)

e build an algebraic foundation for feature-structure-forests (FSF's),
which represent the hierarchical structure of programs (similar to
abstract syntax trees)

e provide two operations: superimposition + to compose features
(recursive merging of FSFs), and modification application - to
modify certain parts of a feature

CAMBRIDGE 2012 2 (© ANDREAS ZELEND

ExampLE FST/FSF

//feature CONS

package util;
util package
class List{
ListNode first;
void cons(ListNode n){ l List l class { LIStNodel
n.next = first;
first = n; }

[co:ns] [firs..t.] [.rlext]

class ListNode{
ListNode next;

}

method fields

CAMBRIDGE 2012 -3- (© ANDREAS ZELEND

ExampLE FST/FSF

//feature CONS
package util;

util package

class List{
ListNode first;

void cons(ListNode n){ l List l class { LiStNOdel

n.next = first;

first = n; }
[cons] [first] [next]
class ListNode{ metghod f.e\ds
ListNode next;

}

Or as a prefix-free set:

{util.List.cons, util.List.first,util.List Node.next}

CAMBRIDGE 2012 -3- (© ANDREAS ZELEND

EXAMPLE SUPERIMPOSITION

util package

[List |- class {ListNode |

cons first next

method fields

{util.List.cons,
wutil.List. first, +
util. List Node.next }

util package

[List | class {ListNode]

ListNode

[cons] [first] [printList] [next] [value]

[prin?List] [vaAue]

method field

{util.List.printList,
util.List Node.value } =

{util.List.cons,
util.List. first,
util.List.printList,
util.List Node.next,
util. List Node.value }

CAMBRIDGE 2012

(© ANDREAS ZELEND

FEATURE ALGEBRA

DEFINITION (APEL, LENGAUER, MOLLER, KASTNER 2010)
A Feature Algebra is a structure (M, I, +,0,-,0,1), with the following
properties:
e (I,+,0) is a monoid in which distant idempotence holds, i.e.,
i+j+i=7+1.
e [is a external monoid over the structure (M,o,1), i.e.,

e - is a external binary operation - : M X [— I
e (mon)-i=m-(n-1)
e 1l.-i=1

e 0 is a right annihilator, i.e., m-0=0
e - distributes over +, i.e., m- (i +j) = (m-i) + (m-j)

Elements of I are called introductions.

CAMBRIDGE 2012 —5— (© ANDREAS ZELEND

TYPES OF CONSTRAINTS

We distinguish three main classes of constraints:

e Low-level constraints stem from code level. An example are
dependences like “feature F' builds on feature G".

e High-level constraints mainly originate from the program model or
the problem domain.
° An optional feature

e An example of a non-functional constraint is that “the product
must run on a mobile phone and has to have less than 1 Mb of
compiled source code”.

CAMBRIDGE 2012 6 (© ANDREAS ZELEND

LOW-LEVEL CONSTRAINTS

e References describe all code-level constraints where a method, a
class, etc. refers to another object. The same type of constraint
occurs when program parts are imported.

//feature F2 //feature F1
class C1{ class C1{
void foo(){ Object o;
o.something(); }
}
}

FIGURE : Low-level Constraint: Reference

CAMBRIDGE 2012 -7- (© ANDREAS ZELEND

LOW-LEVEL CONSTRAINTS

o Refinements are similar to references. In jak, the keyword refines
indicates that a feature builds on another. The Java keyword
extends has the same effect.

//feature F3 //feature F4
class C3{ refines class C3{
} }

FIGURE : Low-level Constraint: Refinement

We call references and refinements, which behave similarly, structural
dependences.

CAMBRIDGE 2012 8 (© ANDREAS ZELEND

LOW-LEVEL CONSTRAINTS

e Abstract Class Constraints and Interface Constraints.
A concrete subclass class C of an abstract class or
interface A must implement all inherited abstract methods.
Features may introduce new classes inheriting from A or may
introduce new abstract methods into A.

//feature F5 //feature F6

abstract class C5{ class C6 extends C5{
abstract void foo (); void foo(){};

}

FIGURE : Abstract Class Constraint

CAMBRIDGE 2012 -9- (© ANDREAS ZELEND

HicH-LEVEL CONSTRAINTS

Mandatority
e A certain feature has to be present in a product.

o A user requires a toString ()-method for each class.

Optionality
o A feature is optional in an product line.

° The optional feature F may be part of product P, whereas
another product () does not have F.

Alternative

e provides a choice from a given set of features. It can be seen as
“exactly one of m different features”.

CAMBRIDGE 2012 10 (© ANDREAS ZELEND

HicH-LEVEL CONSTRAINTS

Exclusion
e Two features are not allowed to be within the same product.

o If a product P has a 64-bit implementation of foo(), P is not
allowed to have a 32-bit implementation of the same method.

Implication
e A second feature is required.

o If P provides a method (feature) to allocate memory, another
feature for deallocation has to be provided.

Requirements

e The dependences between features are given by the feature model or
the user.

° A customer demands the implementation of a printer driver
whenever a function print () is implemented.

CAMBRIDGE 2012 11 (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

The main idea is to use triples (4, d, c) consisting of

e an introduction

e a collection d of structural dependences,
again represented by an introduction

e 3 condition ¢

CAMBRIDGE 2012 -12— (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

EXAMPLE

//feature PRINT_LIST
package util;

util l package
class List{

public void printList(){
ListNode iter = first;

while (iter 1= null){ List r class
System.out.print(iter.toString()+",");

iter = iter.next; }

}
first |- field
class ListNode{ I:I

Object value;
} FIGURE : Structural

Dependence of PRINT

FIGURE : Implementation of PRINT

CAMBRIDGE 2012 -13- (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

EXAMPLE

e The introduction of PRINT (impl) is just its FSF
e Its structural dependence (sdpl) is the FSF given before

e PRINT does not impose any condition, i.e., its condition is the
constant predicate true

The design D,, can now be defined as (impl, sdpl, true).

CAMBRIDGE 2012 -14— (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

EXAMPLE

util package util package

Ea class l List l class l ListNode l ListNode
first field [prinFList] [va!ue] [cons] [first] [printList] [next] [value]
met.hod ﬂe.ld

e D, does not satisfy its dependence (sdpl Z impl).

e In contrast CONS + PRINT does, since it includes sdpl as a
subtree. (sdpl C CONS + PRINT)

CAMBRIDGE 2012 -15— (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

We model the classes of constraints using a predicate has(F)(z) that
checks whether a feature I is included in a given Feature Algebra
element ¢ € I. If F' can be represented as an introduction f, this can be
expressed as the condition has(f)(i) <=q f <.

o Feature exclusion: has(F)(i) = —has(G)(4)
e Feature implication: has(F)(i) = has(G)(1).

e Abstract class constraints (and interface constraints):
extendsp(i) = has(foo())(¢)

CAMBRIDGE 2012 ~16— (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

DEFINITION
Let A= (M,I,+,0,-,0,1) be a Feature Algebra and P; be the set of all
predicates over the introductions I of A.

o A design over A is an element of I x I x Py

e A design (i,d, ¢) satisfies its dependence d iff d < i

e A design (i,d,c) satisfies its condition c iff ¢(i) = true

o A design that satisfies its dependence and its condition is called a
product

DEFINITION

The conjunction of predicates p, ¢ € P; is defined by

(p A q)(2) =ar p(i) A q(¢) for all i € I. The predicate that maps every
element of I to true is denoted by true.

CAMBRIDGE 2012 -17- (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

DEFINITION
Assume an arbitrary set I, the set of predicates P; over I and predicates
p,q € Pr.

e By P71 we denote the set of all predicate transformers

o A predicate transformer t is conjunctive if t(p A q) = t(p) A t(q)
holds for all p,q € Pr (e.g. id(p) = p is conjunctive)

The set of all conjunctive predicate transformers over A is denoted
by CT7.

A predicate p is called stable iff p(i) = p(i + j) for all j.

CAMBRIDGE 2012 -18- (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

LEMMA
For a set I of introductions the structure (CT 1, Pr, A\, o0, -, true,id)
forms a Feature Algebra.

Now the following result is immediate by universal algebra.

THEOREM

For a Feature Algebra A = (M,I,+,0,-,0,1) the structure

DESy =45 (M x M xCTr,Ix1IxPr,+,0,-,0,1) forms a Feature
Algebra of designs if 0 =4 (0,0,true), 1 =4 (1,1,id) and the
operations as well as modifications are lifted pointwise.

CAMBRIDGE 2012 -19- (© ANDREAS ZELEND

CONSTRAINTS IN FEATURE ALGEBRA

LEMMA

If the designs f = (i,d,b) and g = (j, e, c) are products and b and ¢ are
stable then the composition f + g is also a product. Furthermore if f is a
product and (t - b)(m - i) = b(i) then (m,m,t) - f is a product.

e A design with a stable condition can be composed with another
design while the condition does not change its value

e For example all has(f)(i) conditions are stable

CAMBRIDGE 2012 —20— (© ANDREAS ZELEND

CONCLUSION AND OUTLOOK

e We have shown how constraints can be embedded into the abstract
structure of Feature Algebra

e Future work will be directed towards representative case studies to
gain a better insight into Feature Algebra and constraints

CAMBRIDGE 2012 -21- (© ANDREAS ZELEND

