
Constraints in Feature Algebra

Andreas Zelend

13th Int’l Conference on Relational and Algebraic Methods in
Computer Science
20. September 2012

Cambridge 2012 –1– c©Andreas Zelend



The Feature Algebra

Goals

• language independent and formal characterisation of important
aspects of feature oriented software development (FOSD)

• build an algebraic foundation for feature-structure-forests (FSFs),
which represent the hierarchical structure of programs (similar to
abstract syntax trees)

• provide two operations: superimposition + to compose features
(recursive merging of FSFs), and modification application · to
modify certain parts of a feature

Cambridge 2012 –2– c©Andreas Zelend



Example FST/FSF

//feature CONS
package util;

class List{
ListNode first;

void cons(ListNode n){
n.next = first;
first = n; }

}

class ListNode{
ListNode next;

}

util

List ListNode

cons first next

package

class

method fields

Or as a prefix-free set:

{util.List.cons, util.List.first, util.ListNode.next}

Cambridge 2012 –3– c©Andreas Zelend



Example FST/FSF

//feature CONS
package util;

class List{
ListNode first;

void cons(ListNode n){
n.next = first;
first = n; }

}

class ListNode{
ListNode next;

}

util

List ListNode

cons first next

package

class

method fields

Or as a prefix-free set:

{util.List.cons, util.List.first, util.ListNode.next}

Cambridge 2012 –3– c©Andreas Zelend



Example superimposition

util

List ListNode

cons first next

package

class

method fields

+

util

List ListNode

printList value

package

class

method field

=

util

List ListNode

cons first printList next value

{util.List.cons,

util.List.first,

util.ListNode.next }
+

{util.List.printList,

util.ListNode.value } =

{util.List.cons,

util.List.first,

util.List.printList,

util.ListNode.next,

util.ListNode.value }

Cambridge 2012 –4– c©Andreas Zelend



Feature Algebra

Definition (Apel, Lengauer, Möller, Kästner 2010)

A Feature Algebra is a structure (M, I,+, ◦, ·, 0, 1), with the following
properties:

• (I,+, 0) is a monoid in which distant idempotence holds, i.e.,
i+ j + i = j + i.

• I is a external monoid over the structure (M, ◦, 1), i.e.,
• · is a external binary operation · : M × I 7→ I
• (m ◦ n) · i = m · (n · i)
• 1 · i = i

• 0 is a right annihilator, i.e., m · 0 = 0

• · distributes over +, i.e., m · (i+ j) = (m · i) + (m · j)

Elements of I are called introductions.

Cambridge 2012 –5– c©Andreas Zelend



Types of Constraints

We distinguish three main classes of constraints:

• Low-level constraints stem from code level. An example are
dependences like “feature F builds on feature G”.

• High-level constraints mainly originate from the program model or
the problem domain.

• Ex: An optional feature

• An example of a non-functional constraint is that “the product
must run on a mobile phone and has to have less than 1Mb of
compiled source code”.

Cambridge 2012 –6– c©Andreas Zelend



Low-level constraints

• References describe all code-level constraints where a method, a
class, etc. refers to another object.The same type of constraint
occurs when program parts are imported.

//feature F2
class C1{

void foo(){
o.something();
... }

}

//feature F1
class C1{

Object o;
}

Figure : Low-level Constraint: Reference

Cambridge 2012 –7– c©Andreas Zelend



Low-level constraints

• Refinements are similar to references. In jak, the keyword refines
indicates that a feature builds on another. The Java keyword
extends has the same effect.

//feature F3
class C3{

...
}

//feature F4
refines class C3{

...
}

Figure : Low-level Constraint: Refinement

We call references and refinements, which behave similarly, structural
dependences.

Cambridge 2012 –8– c©Andreas Zelend



Low-level constraints

• Abstract Class Constraints and Interface Constraints.
A concrete subclass class C of an abstract class or
interface A must implement all inherited abstract methods.
Features may introduce new classes inheriting from A or may
introduce new abstract methods into A.

//feature F5
abstract class C5{
abstract void foo ();

}

//feature F6
class C6 extends C5{
void foo(){};

}

Figure : Abstract Class Constraint

Cambridge 2012 –9– c©Andreas Zelend



High-Level Constraints

Mandatority

• A certain feature has to be present in a product.

• Ex: A user requires a toString ()-method for each class.

Optionality

• A feature is optional in an product line.

• Ex: The optional feature F may be part of product P , whereas
another product Q does not have F.

Alternative

• provides a choice from a given set of features. It can be seen as
“exactly one of m different features”.

Cambridge 2012 –10– c©Andreas Zelend



High-Level Constraints

Exclusion

• Two features are not allowed to be within the same product.

• Ex: If a product P has a 64-bit implementation of foo(), P is not
allowed to have a 32-bit implementation of the same method.

Implication

• A second feature is required.

• Ex: If P provides a method (feature) to allocate memory, another
feature for deallocation has to be provided.

Requirements

• The dependences between features are given by the feature model or
the user.

• Ex: A customer demands the implementation of a printer driver
whenever a function print () is implemented.

Cambridge 2012 –11– c©Andreas Zelend



Constraints in Feature Algebra

The main idea is to use triples (i, d, c) consisting of

• an introduction i

• a collection d of structural dependences,
again represented by an introduction

• a condition c

Cambridge 2012 –12– c©Andreas Zelend



Constraints in Feature Algebra

Example

//feature PRINT LIST
package util;

class List{

public void printList(){
ListNode iter = first;
while (iter != null){
System.out.print(iter.toString()+”,”);
iter = iter.next; }

}
}

class ListNode{
Object value;

}

Figure : Implementation of PRINT

util

List

first

package

class

field

Figure : Structural
Dependence of PRINT

Cambridge 2012 –13– c©Andreas Zelend



Constraints in Feature Algebra

Example

• The introduction of PRINT (impl) is just its FSF

• Its structural dependence (sdpl) is the FSF given before

• PRINT does not impose any condition, i.e., its condition is the
constant predicate true

The design Dp can now be defined as (impl, sdpl, true).

Cambridge 2012 –14– c©Andreas Zelend



Constraints in Feature Algebra

Example

util

List

first

package

class

field

util

List ListNode

printList value

package

class

method field

util

List ListNode

cons first printList next value

• Dp does not satisfy its dependence (sdpl 6⊆ impl).

• In contrast CONS + PRINT does, since it includes sdpl as a
subtree. (sdpl ⊆ CONS + PRINT)

Cambridge 2012 –15– c©Andreas Zelend



Constraints in Feature Algebra

We model the classes of constraints using a predicate has(F )(i) that
checks whether a feature F is included in a given Feature Algebra
element i ∈ I. If F can be represented as an introduction f , this can be
expressed as the condition has(f)(i) ⇐⇒df f ≤ i.

• Feature exclusion: has(F )(i) =⇒ ¬has(G)(i)

• Feature implication: has(F )(i) =⇒ has(G)(i).

• Abstract class constraints (and interface constraints):
extendsD(i) =⇒ has(foo())(i)

Cambridge 2012 –16– c©Andreas Zelend



Constraints in Feature Algebra

Definition
Let A = (M, I,+, ◦, ·, 0, 1) be a Feature Algebra and PI be the set of all
predicates over the introductions I of A.

• A design over A is an element of I × I × PI

• A design (i, d, c) satisfies its dependence d iff d ≤ i

• A design (i, d, c) satisfies its condition c iff c(i) = true

• A design that satisfies its dependence and its condition is called a
product

Definition
The conjunction of predicates p, q ∈ PI is defined by
(p ∧ q)(i) =df p(i) ∧ q(i) for all i ∈ I. The predicate that maps every
element of I to true is denoted by true.

Cambridge 2012 –17– c©Andreas Zelend



Constraints in Feature Algebra

Definition
Assume an arbitrary set I, the set of predicates PI over I and predicates
p, q ∈ PI .

• By PT I we denote the set of all predicate transformers

• A predicate transformer t is conjunctive if t(p ∧ q) = t(p) ∧ t(q)
holds for all p, q ∈ PI (e.g. id(p) = p is conjunctive)

• The set of all conjunctive predicate transformers over A is denoted
by CT I .

• A predicate p is called stable iff p(i) =⇒ p(i+ j) for all j.

Cambridge 2012 –18– c©Andreas Zelend



Constraints in Feature Algebra

Lemma
For a set I of introductions the structure (CT I ,PI , ∧ , ◦, ·, true, id)
forms a Feature Algebra.

Now the following result is immediate by universal algebra.

Theorem
For a Feature Algebra A = (M, I,+, ◦, ·, 0, 1) the structure
DESA =df (M ×M × CT I , I × I × PI ,+, ◦, ·,0,1) forms a Feature
Algebra of designs if 0 =df (0, 0, true), 1 =df (1, 1, id) and the
operations as well as modifications are lifted pointwise.

Cambridge 2012 –19– c©Andreas Zelend



Constraints in Feature Algebra

Lemma
If the designs f = (i, d, b) and g = (j, e, c) are products and b and c are
stable then the composition f + g is also a product. Furthermore if f is a
product and (t · b)(m · i) = b(i) then (m,m, t) · f is a product.

• A design with a stable condition can be composed with another
design while the condition does not change its value

• For example all has(f)(i) conditions are stable

Cambridge 2012 –20– c©Andreas Zelend



Conclusion and Outlook

• We have shown how constraints can be embedded into the abstract
structure of Feature Algebra

• Future work will be directed towards representative case studies to
gain a better insight into Feature Algebra and constraints

Cambridge 2012 –21– c©Andreas Zelend


