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Motivation

The Coloring Algebra

• originally proposed by Don Batory et al.1

• axiomatization for feature oriented programming inspired by
Kästner’s Colored IDE (CIDE)

• no concrete models were known

Goals

• Find models of the coloring algebra

• Gain a better understanding of the algebra and its models

1Batory, Höfner, Kim: Feature interactions, products, and composition. (GPCE’11)
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The Coloring Algebra

Example (Fire and flood control)

fire× flood = fire · flood+ fire+ flood

fire · flood indicates an interaction between the features fire and flood
and resolves the conflicts between fire and flood.
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The Coloring Algebra

Coloring Algebra

A CA is a structure (F,+, ·, 0) such that (F,+, 0) is a (commutative)
involutive group and (F, ·) is a commutative, involutive semigroup.
Moreover, feature interaction distributes over composition:

f · (g + h) = f · g + f · h and (g + h) · f = g · f + h · f

Hence a CA is an involutive and commutative ring without multiplicative
unit.

Definition
For a given coloring algebra (F,+, ·, 0) the cross product is defined by

f × g =df f · g + f + g .
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The Coloring Algebra

Some properties of Composition and Interaction

neutrality: f + 0 = f

involution: f + f = 0

annihilation (no interaction): f · 0 = 0

involution: f · f = 0

Intuition

• + is feature composition, which removes all features occurring twice.

• f · g describes conflicts between both and offers “repairs”.
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Counted Stack

class Stack { 

}   

(a) Base 

class Stack { 

   

   String s = new String();  

   void empty() { 

 

      s = “”; 

   } 

   void push(char a)  { 

       

      s = String.valueOf(a) 

             .concat(s); 

   } 

   void pop() { 

 

      s = s.substring(1); 

   }  

   char top() { 

      return s.charAt(0); 

   } 

}   

(b) Stack  Base 

class Stack { 

   int ctr = 0; 

   int size() {  

      return ctr; 

   } 

}   

(c) Counter  Base 

class Stack { 

   int ctr = 0; 

   int size() {  

      return ctr; 

   } 

 

   String s = new String();  

   void empty() { 

      ctr = 0; 

      s = “”; 

   } 

   void push(char a)  { 

      ctr++; 

      s = String.valueOf(a) 

             .concat(s); 

   } 

   void pop() { 

      ctr--; 

      s = s.substring(1); 

   }  

   char top() { 

      return s.charAt(0); 

   } 

}   

vp1 

vp2 

vp3 

vp4 

vp5 

(b) Counter  Stack  Base 
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Consequences

Lemma
A repair cannot introduce new conflicts, i.e., f · g = h⇒ f · h = 0.

Lemma
If f 6= 0 then f · g 6= f , and if f + g 6= 0 (i.e., f 6= g) then f · g 6= f + g.

Hence in a full interaction f × g = f · g + f + g with f, g 6= 0 and f 6= g
none of the components f, g is deleted entirely.

Lemma
Repairs are mutually exclusive: f · h1 = g ∧ g · h2 = f =⇒ f = 0.

This can be extended to finite chains. Hence Colors cannot repair each
other in “cycles”.
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Consequences

The absence of cycles makes the divisibility relation w.r.t. · into a strict
partial order on non-empty colors: we define

f < g ⇐⇒df f, g ∈ F −{0} ∧ ∃h ∈ F : f · h = g .

Lemma
Composition + and interaction · are not isotone w.r.t. <.

Intuition
f < g means that g is a repair of which f is a part. Hence, between
repairs < is a dependence relation.
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Interaction Equivalence

It is useful to group colors according to their behaviour under interaction.
To achieve this we define an equivalence relation ∼ by

f ∼ g ⇐⇒df ∀h : f · h = g · h .

The equivalence class of f under ∼ is denoted by [f ] =df {g | f ∼ g}.
Elements f ∈ [0] are called annihilators, since ∀ g ∈ F : f · g = 0.

Lemma
An element of F −{0} is an annihilator iff it is maximal w.r.t. <.
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Interaction Equivalence

Some properties of ∼

(a) ∼ is a congruence w.r.t. + and ·.

(b) f ∼ g ⇐⇒ f · g = 0.

(c) Composition is cancellative w.r.t. ∼, i.e., f + g ∼ f +h ⇐⇒ g ∼ h.

(d) [f ] = [f ] + [0] =df {h+ g |h ∈ [f ], g ∈ [0]}.
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Models—Feature Composition

• Every element has order 2 (due to involution)

• Any finite 2-group is a power of ZZ 2 (the two element group).

• By the Kronecker Basis Theorem there is exactly one finite model
satisfying these axioms for each of the cardinalities 2, 4, 8, . . . .
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Models—Feature Composition

Theorem
Every finite algebra satisfying the axioms for feature composition is
isomorphic to a model that can be obtained by using symmetric
difference on a power set of a finite set.

With a set B of base colors, (2B ,4, 0) satisfies the axioms for feature
composition, where 4 is the symmetric difference of sets, defined, for
M,N ∈ 2B , as

M 4 N =df (M ∪N)− (M ∩N) .

A first model for CA is given by (2B ,4, ·, 0), where for sets M,N ∈ 2B ,
we define M ·N =df 0.
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Base Colors

Definition
In general we call a color f of a CA F base iff it is isomorphic to a
singleton set. Additionally the ”empty color” 0 is a base color. The set of
all base colors is again denoted by B.

If F is finitely generated, every element is a sum of base colors, i.e., for
all f ∈ F

f = Σ
i∈I

ai

for an index set I and base colors ai ∈ B.
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Base Colors

Consequence

Due to distributivity of · over + it is possible to reduce general
interaction to that between base colors only.

f · g = (Σ
i∈I

ai) · (Σ
j∈J

bj) = Σ
i∈I

Σ
j∈J

(ai · bj) .

Intuition: only the interactions (conflicts) of base features have to be
considered.
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A General Model for Coloring Algebra

Recapitulation

• We have a set B of base colors and set F as 2B

• The only possibility for composition is f + g = f 4 g

• Interaction need only be considered at the level of base colors

Now we assume:

• Interaction of base colors yields again a base color

• An associative interaction operator ◦ on B

• A special element e ∈ B that satisfies the annihilation properties
e ◦ a = e = a ◦ e and a ◦ a = e for all a ∈ B

The structure (B, ◦, e) is called a base color semigroup.
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A General Model for Coloring Algebra

Based on that, feature interaction (·) can be defined as

f · g =df 4
a∈f
4
b∈g

ι(a ◦ b) ,

where the injection ι : B → F is given by ι(e) = 0 and ι(a) = {a} for
a ∈ B − {e}.
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A General Model for Coloring Algebra

A concrete definition of this operation could be:

• Assume a finite set P of pigments.

• Base Colors are certain sets of pigments.

• Colors are then sets of base colors.

Formally, a set of base colors is a non-empty subset B ⊆ 2P that is
downward closed: a ∈ B ∧ b ⊆ a =⇒ b ∈ B. Hence every set of base
colors contains ∅. The set B is called full iff B = 2P .
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A General Model for Coloring Algebra

For two base colors (sets of pigments) a, b∈B we define a no-conflict
predicate noconf by

noconf (a, b) ⇐⇒df a 6= ∅ ∧ b 6= ∅ ∧ a ∩ b = ∅ .

The interaction ◦ : B ×B → B of base colors is defined by

a ◦ b =df

{
a ∪ b if noconf (a, b) ∧ a ∪ b ∈ B ,

∅ otherwise.
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A General Model for Coloring Algebra

Theorem
The structure (B, ◦, ∅) is a base color semigroup that can be used to
create a CA with the feature composition f + g = f 4 g and the feature
interaction f · g =df 4

a∈f
4
b∈g

ι(a ◦ b).

Example
Assume three pigments r, g, b and B = 2{r,g,b}. We can define a color
that consists of all base colors containing the pigment r as

red =df {{r}, {r, g}, {r, b}, {r, g, b}} = r + rg + rb+ rgb .

As an example how interaction · on colors works, consider

(r + rg + rb+ rgb) · (b+ rb+ g)

= rb+ ∅+ rg + rgb+ ∅+ ∅+ ∅+ ∅+ rbg + ∅+ ∅+ ∅
= rb+ rg .
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A Model with Variation Points

Idea: The elements are now total functions p : VP → 2VP∪C which map
each variation point in VP to a set of code fragments (C) and variation
points (VP).

Now, semantically : if p(vp) 6= ∅ and vp ∈ VP , then the value of p(vp)
is installed at variation point vp; else the variation point remains empty.

We only consider code fragments that commutate, e.g, entire functions
or field declarations.
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A Model with VariatiMon Points

We define composition and interaction pointwise:

(p+ q)(vp) =df p(vp)4 q(vp)

(p · q)(vp) =df p(vp) · q(vp)

In the concrete model this turns into

(p · q)(vp) =df 4
a∈p(vp)

4
b∈q(vp)

ι(a ◦ b)

with the pigment set P =df VP ∪ C and the full base color set
B =df 2P .
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From the Model to FOP

Example

To build a program from the functions a(vp), b(vp), c(vp) we

• Build the cross product p(vp) = a(vp)× b(vp)× c(vp)

• Replace all occurrences of each vp by its value (only possible if there
are no cycles)

• Choose one variation point as the start point
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From the Model to FOP

white(vp) =

{ {
class Stack{ vp1 vp2 }

}
if vp = start

∅ otherwise .

green(vp) =



{
String S = ...

vp3...

vp4...

vp5...
}

if vp = vp2
∅ otherwise .

blue(vp) =



{
int ctr = 0; . . . ctr;}

}
if vp = vp1{

ctr = 0;
}

if vp = vp3{
ctr++;

}
if vp = vp4{

ctr--;
}

if vp = vp5
∅ otherwise .

p(vp) =



{
class Stack{ vp1 vp2 }

}
if vp = start{

String S = ...
}

if vp = vp2{
int ctr = 0; . . . ctr;}

}
if vp = vp1{

ctr = 0;
}

if vp = vp3{
ctr++;

}
if vp = vp4{

ctr--;
}

if vp = vp5
∅ otherwise .
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Conclusion and Outlook

Conclusion

• Composition is always isomorphic to symmetric difference in a set
model

• We presented a set based model of a Coloring algebra

• We presented a concrete model for Feature Orientation

Outlook

• The repair of two base colors is always a base color itself

• Hence the only freedom to define interaction is given by the
underlying base color semigroup
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