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MOTIVATION

The Coloring Algebra

e originally proposed by Don Batory et al.!

e axiomatization for feature oriented programming inspired by
Kastner's Colored IDE (CIDE)

e no concrete models were known

GOALS

e Find models of the coloring algebra
e Gain a better understanding of the algebra and its models

1Batory, Hofner, Kim: Feature interactions, products, and composition. (GPCE'11)
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THE COLORING ALGEBRA

EXAMPLE (FIRE AND FLOOD CONTROL)

fire x flood = fire- flood + fire + flood

fire- flood indicates an interaction between the features fire and flood
and resolves the conflicts between fire and flood.
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THE COLORING ALGEBRA

Coloring Algebra

A CA is a structure (F,+,-,0) such that (F,+,0) is a (commutative)
involutive group and (F,-) is a commutative, involutive semigroup.
Moreover, feature interaction distributes over composition:

f-(g+h)=f-g+f-h and (g+h)-f=g-f+h-f

Hence a CA is an involutive and commutative ring without multiplicative
unit.

DEFINITION
For a given coloring algebra (F,+,-,0) the cross product is defined by

fxg=a [-9+f+g.
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THE COLORING ALGEBRA

Some properties of Composition and Interaction

neutrality: f+0=7f
involution: f+f=0
annihilation (no interaction): f-0=0
involution: f-f=20

Intuition
e + is feature composition, which removes all features occurring twice.

e f g describes conflicts between both and offers “repairs”.

CAMBRIDGE 2012 —5— (© ANDREAS ZELEND



COUNTED STACK

class Stack {
}

(a) Base

class Stack {
int ctr = 0;
int size() {
return ctr;
}
}

class Stack {

(c) Counter x Base

(b) Stack x Base

class Stack {
—>%int ctr = 0;

int size() {
return ctr;

(b) Counter x Stack x Base
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CONSEQUENCES

LEMMA
A repair cannot introduce new conflicts, i.e., f-g=h= f-h=0.

LEMMA
Iff#0then f-g# f,andif f+g#0 (ie, f#g)then f-g# f+g.

Hence in a full interaction f x g=f-g+ f+gwith f,g#0and f#g
none of the components f, g is deleted entirely.

LEMMA
Repairs are mutually exclusive: f-hy =g N g-ho=f = f=0.

This can be extended to finite chains. Hence Colors cannot repair each
other in “cycles”.

CAMBRIDGE 2012 -7- (© ANDREAS ZELEND



CONSEQUENCES

The absence of cycles makes the divisibility relation w.r.t. - into a strict
partial order on non-empty colors: we define

f<g <=4y f[LgcF—{0} AJheF:f-h=g.

LEMMA
Composition + and interaction - are not isotone w.r.t. <.

Intuition
f < g means that g is a repair of which f is a part. Hence, between
repairs < is a dependence relation.
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INTERACTION EQUIVALENCE

It is useful to group colors according to their behaviour under interaction.
To achieve this we define an equivalence relation ~ by

fr~g <4 Yh:f-h=g-h.

The equivalence class of f under ~ is denoted by [f

] =ar {9 | ~ g}
Elements f € [0] are called annihilators, since Vg€ F : f-g =

LEMMA
An element of F'—{0} is an annihilator iff it is maximal w.r.t. <.
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INTERACTION EQUIVALENCE

Some properties of ~

(a) ~ is a congruence w.r.t. + and

(b) frg = f-g=0

(c) Composition is cancellative w.r.t. ~,ie, f+g~ f+h < g~h
(d) [f1=[f1+10] =4 {h+glhelfl,g<l0]}
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MODELS—FEATURE COMPOSITION

e Every element has order 2 (due to involution)
e Any finite 2-group is a power of Z (the two element group).

e By the Kronecker Basis Theorem there is exactly one finite model
satisfying these axioms for each of the cardinalities 2, 4, 8, ....
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MODELS—FEATURE COMPOSITION

THEOREM

Every finite algebra satisfying the axioms for feature composition is
isomorphic to a model that can be obtained by using symmetric
difference on a power set of a finite set.

With a set B of base colors, (25, 2, 0) satisfies the axioms for feature
composition, where A is the symmetric difference of sets, defined, for
M,N €258 as

MAN =4 (MUN)—(MNN).

A first model for CA is given by (25, A, -,0), where for sets M, N € 25,
we define M - N =4 0.
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BASE COLORS

DEFINITION

In general we call a color f of a CA F base iff it is isomorphic to a
singleton set. Additionally the "empty color” 0 is a base color. The set of
all base colors is again denoted by B.

If F'is finitely generated, every element is a sum of base colors, i.e., for

all fe F
f=2a

icl

for an index set I and base colors a; € B.
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BASE COLORS

Consequence

Due to distributivity of - over + it is possible to reduce general
interaction to that between base colors only.

frg=(2a) (X b) =2 2 (ab).

iel = i€l jEJ

Intuition: only the interactions (conflicts) of base features have to be
considered.
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A GENERAL MODEL FOR COLORING ALGEBRA

Recapitulation
e We have a set B of base colors and set F' as 27
e The only possibility for compositionis f + 9= fa g
e Interaction need only be considered at the level of base colors

Now we assume:
e Interaction of base colors yields again a base color
e An associative interaction operator o on B

e A special element e € B that satisfies the annihilation properties
eoa=e=aoeandaoa=cforalla€e B

The structure (B, o,e) is called a base color semigroup.
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A GENERAL MODEL FOR COLORING ALGEBRA

Based on that, feature interaction (-) can be defined as

frg9=a AN Nilaob),

acfbeg

where the injection ¢ : B — F'is given by 1(e) = 0 and «(a) = {a} for
a € B—{e}.
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A GENERAL MODEL FOR COLORING ALGEBRA

A concrete definition of this operation could be:
e Assume a finite set P of pigments.
e Base Colors are certain sets of pigments.

e Colors are then sets of base colors.

Formally, a set of base colors is a non-empty subset B C 2F that is
downward closed: a € B A b C a = b€ B. Hence every set of base
colors contains (). The set B is called full iff B = 27,
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A GENERAL MODEL FOR COLORING ALGEBRA

For two base colors (sets of pigments) a,b € B we define a no-conflict
predicate noconf by

noconf(a,b) <=q a#0 ANb#D Nanb=10.

The interaction o : B x B — B of base colors is defined by

aUb  if noconf(a,b) N aUbe B,
aob =g .
0 otherwise.
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A GENERAL MODEL FOR COLORING ALGEBRA

THEOREM
The structure (B, o,0) is a base color semigroup that can be used to

create a CA with the feature composition f + g = f A g and the feature

interaction f - g =qr /\ /\t(aob).
acfbeg

EXAMPLE
Assume three pigments r, g, b and B = 2{"9:%} We can define a color

that consists of all base colors containing the pigment r as
red =df {{’I"}, {rvg}a {7’7 b}7 {’f’,g, b}} =r+ rg +7b+ Tgb .
As an example how interaction - on colors works, consider

(r+rg+rb+rgh)-(b+rb+g)
rh+0+rg+rgb+D+0+0+0+7bg+0+0+0

= rb+rg.
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A MODEL WITH VARIATION POINTS

Idea: The elements are now total functions p : VP — 2VPYC which map
each variation point in VP to a set of code fragments (C') and variation
points (VP).

Now, semantically : if p(vp) # () and vp € VP, then the value of p(vp)
is installed at variation point vp; else the variation point remains empty.

We only consider code fragments that commutate, e.g, entire functions
or field declarations.
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A MODEL WITH VARIATIMON POINTS

We define composition and interaction pointwise:
(p+@)(vp) =ar p(vp) 2 gq(vp)

(p-q)(vp) =ar p(vp) - q(vp)

In the concrete model this turns into

(r-9)vp) =ar A /A laod)

a€p(vp) beq(vp)

with the pigment set P =4+ VP UC and the full base color set
B =4 2%,
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FroM THE MODEL TO FOP

EXAMPLE
To build a program from the functions a(vp), b(vp), c(vp) we
e Build the cross product p(vp) = a(vp) x b(vp) x ¢(vp)

e Replace all occurrences of each vp by its value (only possible if there
are no cycles)

e Choose one variation point as the start point
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FroMm THE MODEL TO FOP

class Stack {
white(vp) — { {class stack{ vp, vp, }}  if vp = start vpl |—>kint ctr = 0;
0 otherwise . int size() {
return ctr;
{ Str1ng S=... }
reen(v,
g o { } if vp = vp, vp2
otherwise .
vp3
[ {1nt ctr = 0; ...ctr;}} if vp = vp,
{our = 03) it vp = von
blue(vp {ctr++; } if vp = vp,
{ctr—; } if vp = vpy vp4d
0 otherwise .
{class Stack{ vp, vp, } }  if vp =start
{Strlng S = } if vp = vp,
{int ctr=0; ..ctr;}} ifvp=vp, vp5
p(vp) { {ctr = 0;} if vp = vp,
{ctr++; } if vp = vp,
{ ctr--; } if vp = vpy
0 otherwise .
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CONCLUSION AND OUTLOOK

Conclusion

e Composition is always isomorphic to symmetric difference in a set
model

e We presented a set based model of a Coloring algebra

e We presented a concrete model for Feature Orientation

Outlook

e The repair of two base colors is always a base color itself

e Hence the only freedom to define interaction is given by the
underlying base color semigroup
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