Foundations of Coloring Algebra with Consequences for Feature-Oriented Programming

Peter Höfner¹³, Bernhard Möller², Andreas Zelend²

13th Int'l Conference on Relational and Algebraic Methods in Computer Science

20. September 2012

MOTIVATION

The Coloring Algebra

- originally proposed by Don Batory et al.¹
- axiomatization for feature oriented programming inspired by Kästner's Colored IDE (CIDE)
- no concrete models were known

GOALS

- Find models of the coloring algebra
- · Gain a better understanding of the algebra and its models

¹Batory, Höfner, Kim: Feature interactions, products, and composition. (GPCE'11)

The Coloring Algebra

EXAMPLE (FIRE AND FLOOD CONTROL)

 $fire \times flood = fire \cdot flood + fire + flood$

 $fire \cdot flood$ indicates an interaction between the features fire and flood and resolves the conflicts between fire and flood.

The Coloring Algebra

Coloring Algebra

A **CA** is a structure $(F, +, \cdot, 0)$ such that (F, +, 0) is a (commutative) involutive group and (F, \cdot) is a commutative, involutive semigroup. Moreover, feature interaction distributes over composition:

 $f \cdot (g+h) \,=\, f \cdot g + f \cdot h \quad \text{ and } \quad (g+h) \cdot f \,=\, g \cdot f + h \cdot f$

Hence a CA is an involutive and commutative ring without multiplicative unit.

DEFINITION

For a given coloring algebra $(F, +, \cdot, 0)$ the **cross product** is defined by

$$f\times g \,=_{d\!f}\, f\cdot g + f + g \ .$$

The Coloring Algebra

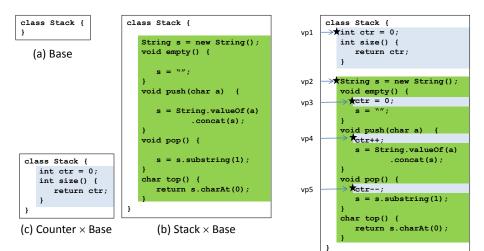
Some properties of Composition and Interaction

neutrality:	f + 0 = f
involution:	f + f = 0
annihilation (no interaction):	$f \cdot 0 = 0$
involution:	$f \cdot f = 0$

Intuition

- \bullet + is feature composition, which removes all features occurring twice.
- $f \cdot g$ describes conflicts between both and offers "repairs".

COUNTED STACK



(b) Counter \times Stack \times Base

CONSEQUENCES

LEMMA

A repair cannot introduce new conflicts, i.e., $f \cdot g = h \Rightarrow f \cdot h = 0$.

LEMMA

If $f \neq 0$ then $f \cdot g \neq f$, and if $f + g \neq 0$ (i.e., $f \neq g$) then $f \cdot g \neq f + g$.

Hence in a full interaction $f \times g = f \cdot g + f + g$ with $f, g \neq 0$ and $f \neq g$ none of the components f, g is deleted entirely.

LEMMA

Repairs are mutually exclusive: $f \cdot h_1 = g \land g \cdot h_2 = f \implies f = 0.$

This can be extended to finite chains. Hence Colors cannot repair each other in "cycles".

CONSEQUENCES

The absence of cycles makes the divisibility relation w.r.t. \cdot into a strict partial order on non-empty colors: we define

$$f < g \iff_{df} f, g \in F - \{0\} \land \exists h \in F : f \cdot h = g \; .$$

LEMMA

Composition + and interaction \cdot are not isotone w.r.t. <.

Intuition

 $f < g \mbox{ means that } g \mbox{ is a repair of which } f \mbox{ is a part. Hence, between repairs } < \mbox{ is a dependence relation.}$

INTERACTION EQUIVALENCE

It is useful to group colors according to their behaviour under interaction. To achieve this we define an equivalence relation \sim by

$$f \sim g \iff_{d\!f} \forall h : f \cdot h = g \cdot h \ .$$

The equivalence class of f under \sim is denoted by $[f] =_{df} \{g | f \sim g\}$. Elements $f \in [0]$ are called *annihilators*, since $\forall g \in F : f \cdot g = 0$.

LEMMA An element of $F - \{0\}$ is an annihilator iff it is maximal w.r.t. <.

INTERACTION EQUIVALENCE

Some properties of \sim

(a) \sim is a congruence w.r.t. + and $\cdot.$

(b)
$$f \sim g \iff f \cdot g = 0.$$

(c) Composition is cancellative w.r.t. ~, i.e., $f + g \sim f + h \iff g \sim h$.

 $({\rm d}) \ [f] = [f] + [0] \ =_{d\!f} \ \{h + g \, | \, h \in [f], g \in [0]\}.$

MODELS—FEATURE COMPOSITION

- Every element has order 2 (due to involution)
- Any finite 2-group is a power of \mathbb{Z}_2 (the two element group).
- By the Kronecker Basis Theorem there is exactly one finite model satisfying these axioms for each of the cardinalities 2, 4, 8,

MODELS—FEATURE COMPOSITION

Theorem

Every finite algebra satisfying the axioms for feature composition is isomorphic to a model that can be obtained by using symmetric difference on a power set of a finite set.

With a set B of **base colors**, $(2^B, \triangle, 0)$ satisfies the axioms for feature composition, where \triangle is the symmetric difference of sets, defined, for $M, N \in 2^B$, as

$$M \bigtriangleup N =_{df} (M \cup N) - (M \cap N)$$
.

A first model for CA is given by $(2^B, \triangle, \cdot, 0)$, where for sets $M, N \in 2^B$, we define $M \cdot N =_{df} 0$.

BASE COLORS

DEFINITION

In general we call a color f of a CA F base iff it is isomorphic to a singleton set. Additionally the "empty color" 0 is a base color. The set of all base colors is again denoted by B.

If F is finitely generated, every element is a sum of base colors, i.e., for all $f \in F$

$$f = \sum_{i \in I} a_i$$

for an index set I and base colors $a_i \in B$.

BASE COLORS

Consequence

Due to distributivity of \cdot over + it is possible to reduce general interaction to that between base colors only.

$$f \cdot g \,=\, (\sum_{i \in I} \,a_i) \cdot (\sum_{j \in J} \,b_j) \,=\, \sum_{i \in I} \,\sum_{j \in J} \,\left(a_i \cdot b_j\right)\,.$$

Intuition: only the interactions (conflicts) of base features have to be considered.

Recapitulation

- We have a set B of base colors and set F as 2^B
- The only possibility for composition is $f+g=f \mathop{\scriptscriptstyle \bigtriangleup} g$
- Interaction need only be considered at the level of base colors

Now we assume:

- Interaction of base colors yields again a base color
- An associative interaction operator \circ on B
- A special element $e \in B$ that satisfies the annihilation properties $e \circ a = e = a \circ e$ and $a \circ a = e$ for all $a \in B$

The structure (B, \circ, e) is called a **base color semigroup**.

Based on that, feature interaction (\cdot) can be defined as

$$f \cdot g =_{df} \bigwedge_{a \in f} \bigwedge_{b \in g} \iota(a \circ b) ,$$

where the injection $\iota:B\to F$ is given by $\iota(e)=0$ and $\iota(a)=\{a\}$ for $a\in B-\{e\}.$

A concrete definition of this operation could be:

- Assume a finite set P of **pigments**.
- Base Colors are certain sets of pigments.
- Colors are then sets of base colors.

Formally, a set of base colors is a non-empty subset $B \subseteq 2^P$ that is downward closed: $a \in B \land b \subseteq a \implies b \in B$. Hence every set of base colors contains \emptyset . The set B is called full iff $B = 2^P$.

For two base colors (sets of pigments) $a,b \in B$ we define a no-conflict predicate noconf by

$$noconf(a,b) \iff_{df} a \neq \emptyset \land b \neq \emptyset \land a \cap b = \emptyset$$
.

The interaction $\circ: B \times B \rightarrow B$ of base colors is defined by

$$a \circ b =_{df} \begin{cases} a \cup b & \text{if } noconf(a,b) \land a \cup b \in B \\ \emptyset & \text{otherwise.} \end{cases}$$

THEOREM

The structure (B, \circ, \emptyset) is a base color semigroup that can be used to create a CA with the feature composition $f + g = f \triangle g$ and the feature interaction $f \cdot g =_{df} \triangle (a \circ b)$.

EXAMPLE

Assume three pigments r, g, b and $B = 2^{\{r,g,b\}}$. We can define a color that consists of all base colors containing the pigment r as

$$red =_{df} \{\{r\}, \{r, g\}, \{r, b\}, \{r, g, b\}\} = r + rg + rb + rgb .$$

As an example how interaction \cdot on colors works, consider

$$\begin{array}{l} (r+rg+rb+rgb)\cdot(b+rb+g)\\ = & rb+\emptyset+rg+rgb+\emptyset+\emptyset+\emptyset+\emptyset+rbg+\emptyset+\emptyset+\emptyset\\ = & rb+rg \ . \end{array}$$

A Model with Variation Points

Idea: The elements are now total functions $p: VP \rightarrow 2^{VP \cup C}$ which map each variation point in VP to a set of code fragments (C) and variation points (VP).

Now, semantically : if $p(vp) \neq \emptyset$ and $vp \in VP$, then the value of p(vp) is installed at variation point vp; else the variation point remains empty.

We only consider code fragments that commutate, e.g, entire functions or field declarations.

A Model with VariatiMon Points

We define composition and interaction pointwise:

$$(p+q)(\mathtt{vp}) =_{df} p(\mathtt{vp}) riangle q(\mathtt{vp})$$

 $(p \cdot q)(\mathtt{vp}) =_{df} p(\mathtt{vp}) \cdot q(\mathtt{vp})$

In the concrete model this turns into

$$(p \cdot q)(\mathtt{vp}) \,=_{df} \,\, \bigwedge_{a \in p(\mathtt{vp})} \, \bigwedge_{b \in q(\mathtt{vp})} \iota(a \circ b)$$

with the pigment set $P =_{df} VP \cup C$ and the full base color set $B =_{df} 2^{P}$.

FROM THE MODEL TO FOP

EXAMPLE

To build a program from the functions $a(\mathtt{vp}), b(\mathtt{vp}), c(\mathtt{vp})$ we

- Build the cross product $p(vp) = a(vp) \times b(vp) \times c(vp)$
- Replace all occurrences of each vp by its value (only possible if there are no cycles)
- Choose one variation point as the start point

FROM THE MODEL TO FOP

$$white(vp) = \left\{ \begin{array}{l} \{class \ Stack\{ vp_1 \ vp_2 \}\} & if \ vp = start \\ 0 & otherwise . \end{array} \right. vp1 \\ green(vp) = \left\{ \begin{array}{l} \{String \ S = \ \dots \\ vp_3 \ \dots \\ vp_4 \ \dots \\ vp_5 \ \dots \\ vp_6 \ \dots \\ vp_$$

CONCLUSION AND OUTLOOK

Conclusion

- Composition is always isomorphic to symmetric difference in a set model
- We presented a set based model of a Coloring algebra
- We presented a concrete model for Feature Orientation

<u>Outlook</u>

- The repair of two base colors is **always** a base color itself
- Hence the only freedom to define interaction is given by the underlying base color semigroup