On Completeness of ω -regular Algebras

G Struth, M R Laurence, {mike,g.struth}@dcs.shef.ac.uk

Computer Science Department, University of Sheffield, UK Introduction to Regular algebras

Definition A *regular algebra* is an algebra D with operations 0, +, ., + that satisfies the following axioms;

(D, +, ., 0) is an idempotent semiring and

$$x + xx^+ = x^+, \qquad xy \le y \Rightarrow x^+y \le y$$

hold, where

$$x \le z \Leftrightarrow x + z = z.$$

A *unital regular algebra* is a regular algebra with a multiplicative identity 1.

Examples;

 $\operatorname{Reg}_{\Sigma}^{\pm}$ (the algebra of regular languages not containing ϵ) is a regular algebra,

 Reg_{Σ} is a unital regular algebra.

The empty word property for Regular languages and Regular terms

We define

$$o(L) = \begin{cases} 1 & \epsilon \in L \\ 0 & \epsilon \notin L. \end{cases}$$

For regular expressions over alphabet Σ , we define

$$o(0) = 0$$

$$o(\sigma) = 0 \text{ if } \sigma \in \Sigma$$

$$o(s+t) = o(s) + o(t)$$

$$o(st) = o(s)o(t)$$

$$o(s^+) = o(s)^+.$$

Hence $o(\llbracket t \rrbracket) = o(t)$ always holds.

Lemma. For every regular term s, there exists a term t with o(t) = 0 such that

$$s = o(s) + t$$

holds in unital regular algebra.

ω -Regular algebras

Definition Let R be a regular algebra. An Rmodule is a structure (R, L, :) in which (L, +)is a semilattice with least element 0_{ω} , and operation : has type $R \times L \to L$, and the following axioms hold:

$$x : (X + Y) = x : X + x : Y,$$

$$(x + y) : Z = x : Z + y : Z,$$

$$(xy) : Z = x : (y : Z),$$

$$0 : Z = 0_{\omega},$$

$$x : 0_{\omega} = 0_{\omega}$$

An R-module is unital if R is unital and

$$1: X = X$$

holds.

4

A unital R-module is a unital Wagner algebra if it has a further operation $^{\omega}$: R \rightarrow L such that

$$o(s) = 0 \Rightarrow s^{\omega} = (ss^*)^{\omega},$$

$$o(st) = 0 \Rightarrow (st)^{\omega} = s(ts)^{\omega},$$

$$o(s+t) = 0 \land (s+t)^{\omega} = t(s+t)^{\omega} + S$$

$$\Rightarrow$$

$$(s+t)^{\omega} = t^{\omega} + t^*S.$$

A complete axiomatisation of valid equalities for ω -regular languages

Theorem[Wagner 1976] For an alphabet Σ ,

 $\llbracket T \rrbracket = \llbracket T' \rrbracket$

holds for ω -regular terms T, T' over Σ iff

$$T = T'$$

is derivable from unital Wagner axioms.

Embedding a regular algebra in a unital regular algebra

Lemma

A regular algebra can be embedded in a unital regular algebra.

Sketch proof.

Let K be a regular algebra, then for $\mathbb{B} = \{0, 1\}$ (the 2-element Boolean algebra),

 $\mathbb{B}\times K$

is a unital regular algebra, with the definitions

$$(m, x) + (n, y) = (m + n, x + y)$$

$$(m, x)(n, y) = (mn, my + nx + xy)$$

$$(m, x)^{+} = (m, x^{+})$$

and thus $\begin{cases} (1,0) & \text{is identity for multiplication} \\ (0,0) & \text{is zero element.} \end{cases}$

6

Corollary

Let s, t be terms with operations 0, +, ., + over a variable set; then

> regular algebras $\models s = t$ \Leftrightarrow unital regular algebras $\models s = t$

holds.

Definition A (non-unital) Wagner algebra is an R-module (R, L) (for a non-unital regular algebra R) that has an additional function

 $\omega : R \to L$

satisfying the following;

$$x^{\omega} = x^{+\omega},\tag{1}$$

$$x^{\omega} = xx^{\omega},\tag{2}$$

$$(xy)^{\omega} = x(yx)^{\omega}, \tag{3}$$

$$(xy + y)^{\omega} = x(yx + y)^{\omega} + (yx + y)^{\omega}, \quad (4)$$

(xy + x)^{\omega} = x(yx + x)^{\omega}, (5)

$$(x+y)^{\omega} = y(x+y)^{\omega} + X$$

$$\Rightarrow$$

$$(x+y)^{\omega} = y^{\omega} + x^{+}X + X.$$
(6)

8

Theorem Any non-unital Wagner algebra (K, L) can be 'embedded' in a Wagner algebra (K', L), where K' is unital regular algebra.

Sketch Proof.

Le $K' = \mathbb{B} \times K$, then define

$$(0, x)(m, X) = (m, xX),$$

$$(1, x)(m, X) = (m, X) + (m, xX),$$

$$(0, x)^{\omega} = (0, x^{\omega}).$$

Main Theorem

For 1-free ω -regular terms T, T',

non-unital Wagner algebras $\models T = T'$ \Leftrightarrow unital Wagner algebras $\models T = T'$ holds.

Corollary

The non-unital Wagner algebras axiomatise the set of universal equalities T = T' for which

$$\llbracket T \rrbracket = \llbracket T' \rrbracket$$

holds.