An Evaluation of Automated Theorem Proving in Regular Algebra (Student Paper)

Alasdair Armstrong

Department of Computer Science University of Sheffield, UK a.armstrong@dcs.shef.ac.uk

September 20, 2012

< □ > < □ > < □ > < □ > < □ > < □ > = □

Experiments and Hypothesis

Method

Results

Conclusion

Experiments and Hypothesis

Method

Results

Conclusion

Experiment 1

- Many different first-order regular algebras
- Kleene algebras are commonly used, but action algebras permit a purely equational axiomatisation

Experiment 1

- Many different first-order regular algebras
- Kleene algebras are commonly used, but action algebras permit a purely equational axiomatisation

Which of action algebras or Kleene algebras is better from an ATP standpoint?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Experiment 1 - Background

- A dioid is an algebra (D, +, ·, 0, 1) where (D, +, 0) is a semilattice with least element 0, (D, ·, 1) is a monoid, · distributes over + from both the left and right, and 0 · x = 0 = x · 0.
- We can prove many properties about dioids, which can be used in both Kleene algebra and action algebra
- ► A Kleene algebra is an algebra (K, +, ·, 0, 1,*) where (K, +, ·, 0, 1) is a dioid, satisfying the following 4 axioms:

$$1 + xx^* \le x^*, \qquad 1 + x^*x \le x^*$$

$$z + xy \le y \Rightarrow x^*z \le y, \qquad z + yx \le y \Rightarrow zx^* \le y.$$

Experiment 1 - Background

An action algebra is an algebra $(A,+,0,\cdot,1,\leftarrow,\rightarrow,^*)$ such that $(A,+,\cdot,0,1)$ is a dioid, and satisfying

$$\begin{aligned} x &\leq z \leftarrow y \stackrel{L}{\Leftrightarrow} xy \leq z \stackrel{R}{\Leftrightarrow} y \leq x \rightarrow z, \\ 1 + x^* x^* + x \leq x^*, & 1 + yy + x \leq y \Rightarrow x^* \leq y \end{aligned}$$

Pratt's main result is that there exists an equivalent set of axioms for action algebra which are purely equational, shown below

$$\begin{split} x &\to y \leq x \to (y+z), \qquad & x(x \to y) \leq y \leq x \to xy, \\ y &\leftarrow x \leq (y+z) \leftarrow x, \qquad & (y \leftarrow x) \cdot x \leq y \leq yx \leftarrow x, \\ & x^* \leq (x+y)^*, \qquad & 1+x^*x^*+x \leq x^*, \end{split}$$

Experiment 1 - Hypothesis

 One might expect that purely equational axioms would be more amenable to ATP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Experiment 1 - Hypothesis

 One might expect that purely equational axioms would be more amenable to ATP

 On the other hand, a larger set of axioms and a larger signature may slow down the prover

Experiment 1 - Hypothesis

- One might expect that purely equational axioms would be more amenable to ATP
- On the other hand, a larger set of axioms and a larger signature may slow down the prover
- Maybe there is no difference between the two algebras?

Experiment 2

- Two ways of formalising algebras in Isabelle
- With and without explicit carrier sets
- Carrier sets are necessary for real mathematics

(ロ)、(型)、(E)、(E)、 E) の(の)

Experiment 2

- Two ways of formalising algebras in Isabelle
- With and without explicit carrier sets
- Carrier sets are necessary for real mathematics

Exactly how much do carrier sets impact the usefulness of ATP and SMT tools?

・ロト・日本・モート モー うへぐ

Experiment 2 - Background

class kleene_algebra = dioid + star_op + fixes star :: "'a \Rightarrow 'a" ("_" [101] 100) assumes star_unfoldl: "1 + xx* \leq x*" and star_unfoldr: "1 + x*x \leq x*" and star_inductl: "z+xy \leq y \rightarrow x*z \leq y" and star_inductr: "z+yx \leq y \rightarrow zx* \leq y"

Experiment 2 - Background

```
record 'a kleene_algebra = "'a dioid" +
star :: "'a \Rightarrow 'a" ("_{-i}^{*}" [101] 100)
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Experiment 2 - Hypothesis

- Explicit carrier sets make our axioms more expressive
- But also more complicated
- We can reasonably assume that we will pay a price of this increased expressivity in terms of ATP usefulness and performance

Experiments and Hypothesis

Method

Results

Conclusion

- Isabelle's built in benchmarking tool Mirabelle is used to benchmark the ATP systems
- Our interest is in comparing the algebras, not various provers, so we stick to using the default set of provers sledgehammer uses
 - ► E
 - Z3 (Remote)
 - Vampire (Remote)
 - SPASS
- Each prover is still tested individually, so the results on still a per prover basis

- To ensure fairness only properties that could be derived directly from the axioms within a 300 second period were considered.
- This approach has a downside only a small amount of lemmas can be derived fully automatically from both the axioms of Kleene and action algebra
- For the first experiment, there are 20 available properties satisfying this criterion

▶ For the second, there are only 18

- To ensure fairness only properties that could be derived directly from the axioms within a 300 second period were considered.
- This approach has a downside only a small amount of lemmas can be derived fully automatically from both the axioms of Kleene and action algebra
- For the first experiment, there are 20 available properties satisfying this criterion
- ▶ For the second, there are only 18

Why is this restriction necessary?

- In an ordinary Isabelle workflow, one starts by proving useful lemmas which are then used in later proofs.
- For example, I want to prove $x \leq y \Rightarrow x^* \leq y^*$
- To prove this easily, I might need some auxiliary lemmas
- However, depending on which axiom set I start with, the ideal set of lemmas for the shortest proof may be different
- In practice, the order in which things are proved is very important
- Selecting a specific order would invariably favour one algebra

Experiments and Hypothesis

Method

Results

Conclusion

		е		remote_z3			
#	KLE	ACT	diff	KLE	ACT	diff	
1	110.61	110.2	-0.41	F	F	F	
2	103.36	0.78	-102.58	F	1.53	F	
3	1.58	F	F	1.44	F	F	
4	1.06	116.19	115.13	1.42	F	F	
5	1.11	116.52	115.42	1.41	F	F	
6	100.66	111.01	10.35	F	F	F	
7	36.45	100.33	63.93	1.49	F	F	
8	0.84	0.94	0.1	1.42	1.45	0.03	
9	0.80	1.91	1.12	1.39	1.4	0.01	
10	105.05	0.99	-104.06	22.57	1.4	-21.18	
11	139.5	100.98	-38.52	F	3.24	F	
12	1.97	41.36	39.4	F	F	F	
13	105.2	0.87	-104.29	25.2	1.39	-23.82	
14	102.1	39.72	-62.38	3.27	F	F	
15	100.89	0.91	-99.98	1.47	1.41	-0.06	
16	114.02	100.83	-13.2	F	F	F	
17	F	F	F	F	3.14	F	
18	61.82	100.85	39.03	1.82	F	F	
19	0.36	0.37	0.02	1.38	1.34	-0.04	
20	0.82	0.84	0.03	1.6	F	F	
			-140.92			-45.09	
		•		•		▶ 《唐》《唐》	 6

remote_vampire				spass			
#	KLE	ACT	diff	KLE	ACT	diff	
1	7.25	10.15	2.90	193.06	1.39	-191.67	
2 3	6.02	2.00	-4.02	100.47	0.10	-100.37	
3	1.10	72.61	71.51	0.12	100.42	100.30	
4	1.08	3.78	2.71	0.09	3.95	3.85	
5	1.07	13.2	12.13	0.09	3.97	3.89	
6	41.24	44.77	3.53	134.07	F	F	
7	37.95	2.21	-35.74	100.41	100.25	-0.16	
8	1.86	3.00	1.15	0.09	1.50	1.41	
9	1.89	1.98	0.10	0.08	0.11	0.02	
10	29.36	28.01	-1.35	104.88	0.89	-103.10	
11	27.04	29.14	2.10	113.64	100.21	-13.43	
12	1.50	3.20	1.60	135.05	F	F	
13	3.90	1.95	-1.93	100.77	0.13	-100.64	
14	1.39	7.66	6.27	114.47	153.76	39.29	
15	F	2.01	F	0.49	0.23	-0.27	
16	125.65	40.98	-84.67	F	51.97	F	
17	F	31.29	F	F	10.37	F	
18	29.31	2.23	-27.07	100.35	100.46	0.10	
19	1.09	F	F	0.11	0.09	-0.01	
20	1.13	1.09	-0.04	0.10	0.11	0.01	
		-50.75 -361.66					
					· • • • • •	▶ < 臣 > < 臣 >	3

At first glance action algebras appear slightly faster

#	KLE	ACT	difference #		KLE	ACT	diff
1	7.25	1.39	-5.86	11	27.04	3.24	-23.80
2	6.02	0.10	-5.91	12	1.50	3.20	1.70
3	0.12	72.61	72.49	13	3.88	0.13	-3.75
4	0.09	3.78	3.69	14	1.39	7.66	6.27
5	0.09	3.97	3.89	15	0.49	0.23	-0.27
6	41.24	44.77	3.53	16	114.02	40.98	-73.04
7	1.49	2.21	0.72	17	0.00	3.14	3.14
8	0.09	0.94	0.85	18	1.82	2.23	0.42
9	0.08	0.11	0.02	19	0.10	0.09	-0.01
10	22.57	0.89	-21.69	20	0.10	0.11	0.01

At first glance action algebras appear slightly faster

However, there is no statistically significant difference when we look at the results with all provers taken into account

- The null hypothesis was correct—there is no difference in ATP performance between action algebras and Kleene algebras
- How did the individual provers perform?
 - SPASS tends to perform either extremely well, or extremely poorly
 - It seems to be noticeably better at Kleene algebra (but the small sample size could make this misleading)
 - Z3 is always very fast when it can find a proof
 - E is often the fastest
 - Vampire is the most consistent
- The time it takes to find a proof in action algebra and Kleene algebra is somewhat correlated

- These results compare how quickly properties can be derived from the axioms
- However, we are also interested in what can be automatically derived from the axioms, and not just how fast
- ► For example in Kleene algebra one can automatically derive:

- The sliding rule, $(xy)^*x \leq x(yx)^*$
- $\blacktriangleright x^*x \le xx^*$
- $\blacktriangleright x^* \leq (x^*)^*$
- $\blacktriangleright \ x \leq y \Longrightarrow x^* \leq y^*$
- $\blacktriangleright \ xy \leq y \Rightarrow x^*y \leq y \text{ and } yx \leq y \Rightarrow yx^* \leq y$

- These results compare how quickly properties can be derived from the axioms
- However, we are also interested in what can be automatically derived from the axioms, and not just how fast
- ► For example in Kleene algebra one can automatically derive:

- The sliding rule, $(xy)^*x \leq x(yx)^*$
- $\blacktriangleright x^*x \le xx^*$
- $\blacktriangleright x^* \leq (x^*)^*$
- $\bullet \ x \le y \Longrightarrow x^* \le y^*$
- $\blacktriangleright \ xy \leq y \Rightarrow x^*y \leq y \text{ and } yx \leq y \Rightarrow yx^* \leq y$
- Kleene algebra is clearly superior here

Results - Explicit vs Non-Explicit Carrier Sets

#	NE	E	diff	#	NE	E	diff
1	0.19	0.45	-0.26	10	0.12	0.32	-0.20
2	0.15	0.38	-0.23	11	76.47	31.50	44.96
3	2.30	21.86	-19.56	12	1.16	4.38	-3.22
4	0.13	0.46	-0.33	13	1.32	102.46	-101.14
5	0.11	0.78	-0.67	14	1.12	1.14	-0.01
6	0.11	1.25	-1.15	15	1.22	102.00	-100.78
7	0.12	0.77	-0.65	16	0.12	0.24	-0.12
8	0.11	1.27	-1.16	17	1.21	66.15	-64.94
9	0.60	1.38	-0.77	18	1.22	63.60	-62.38

(ロ)、

Results - Explicit vs Non-Explicit Carrier Sets

- It is clear that there is a statistically significant difference between using explicit carrier sets and not using explicit carrier sets
- ATP systems work much better without carrier sets
- ► One one problem that was better with carrier sets was showing 1 + x + x*x* ≤ x*
- This is probably because it was quite hard for the provers

- SPASS proved it with carrier sets
- E proved it without
- Using multiple provers minimises cases like this

Experiments and Hypothesis

Method

Results

Conclusion

Conclusion

 Choice of regular algebra axioms largely irrelevant from an ATP performance perspective

- Kleene algebra axioms seem more usable though
- Explicit carrier sets have a negative impact on ATP performance
- However, in some cases they are necessary