Automated Reasoning in Higher-Order Regular Algebra

Alasdair Armstrong and Georg Struth

Department of Computer Science University of Sheffield, UK {a.armstrong,g.struth}@dcs.shef.ac.uk

September 18, 2012

(中) (종) (종) (종) (종) (종)

Overview

- Taken a large repository for first-order regular algebra in Isabelle/HOL
- Extended it towards higher order variants based on quantales
- Implemented substantial amounts of lattice theory to support this approach
- Developed useful theories and tools for working with regular algebra e.g.

- Galois connections
- Backhouse's fixpoint calculus
- Order duality

Overview

Evaluated the effectiveness of ATP in this higher order setting

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Four case studies:
 - 1. Galois Connections
 - 2. Action Algebras
 - 3. Recursive Regular Equations
 - 4. Language Quantales

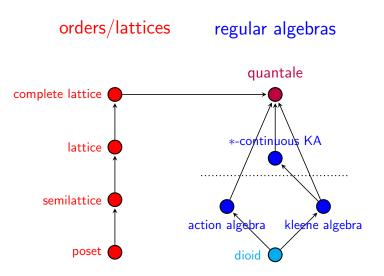
Overview

Evaluated the effectiveness of ATP in this higher order setting

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Four case studies:
 - 1. Galois Connections
 - 2. Action Algebras
 - 3. Recursive Regular Equations
 - 4. Language Quantales

The Repository - An (Incomplete) Overview



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quantales

► A quantale is a structure (Q, ≤, ·) such that (Q, ≤) is a complete lattice, · is associative, and satisfying the infinite distributivity laws

$$x\left(\bigvee_{y\in Y}y\right)=\bigvee_{y\in Y}xy\qquad\text{and}\qquad\left(\bigvee_{y\in Y}y\right)x=\bigvee_{y\in Y}yx$$

- It is unital if · has an identity element 1
- The Kleene star can be defined as $x^* = \mu y$. 1 + yx
- Finite or infinite and infinite iteration,

$$x^{\omega} = \nu y. \ 1 + yx$$
 and $x^{\infty} = \mu y. \ xy$

Quantales - Without Explicit Carrier Sets

 The simplest way to define an algebraic structure in Isabelle is to use a class

class quantale = complete_lattice + fixes qmult :: "'a \Rightarrow 'a \Rightarrow 'a" (infixl "." 80) assumes qmult_assoc: "(x \cdot y) \cdot z = x \cdot (y \cdot z)" and inf_distl: "x $\cdot \bigvee Y = \bigvee ((\lambda y. x \cdot y) \cdot Y)$ " and inf_distr: " $\bigvee Y \cdot x = \bigvee ((\lambda y. y \cdot x) \cdot Y)$ "

 Carrier set of the algebra is never explicitly mentioned—it's implicit in the type of qmult

Quantales - With Explicit Carrier Sets

The alternative is to use locales and explicit carrier sets

 $\begin{array}{l} \mbox{locale quantale} = \mbox{fixes A (structure)} \\ \mbox{assumes quantale_complete_lattice: "complete_lattice A"} \\ \mbox{and mult_type: "op \cdot \in carrier A \rightarrow carrier A \rightarrow carrier A"$ \\ \mbox{and mult_assoc: "[[x \in carrier A; y \in carrier A; z \in carrier A]]$ \\ \implies (x \cdot y) \cdot $z $= $x \cdot (y \cdot $z)"$ \\ \mbox{and inf_distl: "[[x \in carrier A; Y \subseteq carrier A]]$ \\ \qquad \implies x \cdot $\bigvee Y $= $\bigvee ((\lambda y. $ $x $\cdot y) $` Y)"$ \\ \mbox{and inf_distr: "[[x \in carrier A; Y \subseteq carrier A]]$ \\ \qquad \implies $\bigvee Y \cdot $x $= $\bigvee ((\lambda y. $ $y $\cdot x) $` Y)"$ \\ \end{array}$

Now we can use any arbitrary Isabelle set as our carrier set

Fixpoints

- Many useful fixpoint theorems in the repository
 - Knaster-Tarski theorem
 - Kleene's fixed point theorem
 - Fixpoint Fusion
- Rules from fixpoint calculus implemented, and useful for reasoning with fixed points
- Iteration operators in quantales defined as fixed points

definition is_lfp :: "('a, 'b) ord_scheme \Rightarrow 'a \Rightarrow ('a \Rightarrow 'a) \Rightarrow bool" where "is_lfp A x f \equiv f x = x \land (\forall y \in carrier A. f y = y \longrightarrow x \leq_A y)"

 $\begin{array}{l} \mbox{definition least_fixpoint :: "('a, 'b) ord_scheme \Rightarrow ('a \Rightarrow 'a) \Rightarrow 'a" \\ ("\mu_{-"}" [0,1000] 100) \mbox{ where} \\ "least_fixpoint A f \equiv THE x. is_lfp A x f" \end{array}$

Knaster-Tarski (for least fixed points)

theorem knaster_tarski_lpp:

assumes cl_A: "complete_lattice A" and f_closed: "f \in carrier A \rightarrow carrier A" and f_iso: "isotone A A f" shows "∃!x. is_lpp A \times f" proof

let ?H = "{u. f u \leq_A u \land u \in carrier A}" let ?a = " \bigwedge_A ?H"

have H_carrier: "?H \subseteq carrier A" by (metis (lifting) mem_Collect_eq subsetl) hence a_carrier: "?a \in carrier A"

by (smt order.glb_closed complete_meet_semilattice.is_glb_glb ...)

Knaster-Tarski (for least fixed points)

have "is_pre_fp A ?a f" proof have " $\forall x \in ?H$. ?a $\leq_A x$ " by (smt H_carrier ...) hence " $\forall x \in ?H$. f ?a $\leq_A f x$ " by (safe, rule_tac ?f = f in use_iso1, metis f_iso, metis a_carrier, auto) hence " $\forall x \in ?H$. f ?a $\leq_A x$ " by (smt CollectD a_carrier cl_A ...) hence "f ?a \leq_A ?a" by (smt complete_meet_semilattice.glb_greatest ...) thus ?thesis by (smt a_carrier cl_A cl_to_order f_closed is_pre_fp_def) qed

moreover show " $\land x$. is_lpp A x f $\Longrightarrow x = ?a$ "

by (smt H_carrier calculation cl_A cl_to_cms ...)

ultimately show "is_lpp A ?a f"

by (smt H_carrier cl_A cl_to_cms complete_meet_semilattice.glb_least \dots) qed

Knaster-Tarski (for greatest fixed points)

- Dual theorems can easily be proved
- The # operator maps an order to it's dual
- \blacktriangleright We state the dual of the theorem we want to prove using \sharp
- The simplifier can then simplify away all the instances of \$\\$, proving the theorem we want

```
theorem knaster_tarski_gpp:
```

```
assumes cl_A: "complete_lattice A" and f_closed: "f \in carrier A \rightarrow carrier A"
and f_iso: "isotone A A f"
shows "\exists!x. is_gpp A x f"
proof -
have dual:
"[[complete_lattice (A#); f \in carrier (A#) \rightarrow carrier (A#); isotone (A#) (A#) f]]
\implies \exists!x. is_lpp (A#) \times f"
by (smt knaster_tarski_lpp)
thus ?thesis by (simp, metis cl_A f_closed f_iso)
ged
```

Quantales - Example Proof

We can show that
$$x^*$$
 is equivalent to $\bigvee_{n \in \mathbb{N}} x^n$ using

Kleene's fixed point theorem

For any Scott-continuous function f over a complete partial order, the least fixed point of f is also the least upper bound of the ascending Kleene chain of f

$$\mu(f) = \bigvee_{n \in \mathbb{N}} f^n(\bot)$$

This shows us that

$$x^* = 1 + (1 + x) + (1 + x + x^2) + (1 + x + x^2 + x^3) + \dots$$

Quantales - Example Proof

• We can then use the rule that in any complete lattice (A, \leq) ,

$$\bigvee \left\{ \bigvee Y \middle| Y \in X \right\} = \bigvee \left(\bigcup X \right) \quad \text{where } X \subseteq \mathcal{P}(A)$$

to complete to proof \Box

The repository allows this reasoning to be used within Isabelle.

 Availability of theorems from fixpoint calculus and lattice theory makes reasoning in regular algebra much easier lemma star_power: assumes xc: "x \in carrier A" shows "x* = Σ (powers x)" proof -

let ?STAR_FUN = " λ y. 1 + x·y"

```
have star_chain: "\mu_A?STAR_FUN = \Sigma (carrier (kleene_chain A ?STAR_FUN))"
proof (rule kleene_fixed_point, unfold_locales)
```

```
show ":STAR_FUN \in carrier A \rightarrow carrier A"
```

by (smt ftype_pred one_closed mult_closed join_closed xc)

next

```
show "isotone A A ?STAR_FUN"
```

```
by (simp add: isotone_def, safe, metis quantale_order, smt ...)
next
```

fix D assume "D \subseteq carrier A" and "directed (carrier = D, le = op \leq , ... = ord.more A)"

thus " $1 + x \cdot \Sigma D = \Sigma ((\lambda y. 1 + x \cdot y) \cdot D)$ "

by (metis assms star_scott_continuous)

qed

have " μ_A ?STAR_FUN = Σ {z. $\exists i. z = \Sigma$ (powersUpTo i x)}"

by (simp add: star_chain kleene_chain_def iter_powersUpTo)

moreover have "... = Σ (Σ ' {z. $\exists i. z = powersUpTo i x$ })"

by (rule_tac ?f = " λ Y. Σ Y" in arg_cong, safe, auto+)

moreover have "... = Σ (\bigcup {z. $\exists i. z = powersUpTo i x$ })"

by (rule lub_denest, safe, auto, simp add: powersUpTo_def, safe, metis ...) moreover have "... = Σ (powers x)"

apply (rule_tac ?f = " λ Y. Σ Y" in arg_cong, safe, auto+)

apply (simp_all add: powersUpTo_def powers_def, metis)

by (metis (lifting, full_types) le_add2 mem_Collect_eq)

ultimately show ?thesis

by (metis star_def)

qed

Case Study 1 - Galois Connections

▶ A Galois connection between two posets (A, \leq_A) and (B, \leq_B) is a pair of functions $f : A \to B$ and $g : B \to A$ such that forall $x \in A$ and $y \in B$

$$f(x) \leq_A y \longleftrightarrow x \leq_A g(y)$$

• Theorems for free! For example, $f: A \to B$ is the lower adjoint in a Galois connection between two complete lattices iff

$$\bigvee_{x \in X} f(x) = f(\bigvee_{x \in X} x)$$

Galois Connections in Isabelle

locale galois_connection = **fixes** orderA :: "('a, 'c) ord_scheme" (" α ") and orderB :: "('b, 'd) ord_scheme" (" β ") and lower :: "a \rightarrow 'b" (" π^{*} ") and upper :: "'b \rightarrow 'a" (" π_* ") assumes is order A: "order α " and is_order_B: "order β " and lower_closure: " $\pi^* \in \text{carrier } \alpha \to \text{carrier } \beta$ " and upper_closure: " $\pi_* \in \text{carrier } \beta \to \text{carrier } \alpha$ " and galois_property: " $[\pi^* \times \in \text{ carrier } \beta; \times \in \text{ carrier } \alpha; y \in \text{ carrier } \beta; \pi_* y \in \text{ carrier } \alpha]$

 $\implies \pi^* \mathsf{x} \leq_{\beta} \mathsf{y} \longleftrightarrow \mathsf{x} \leq_{\alpha} \pi_* \mathsf{y}''$

Galois Connections - ATP Support

- Multiple orders with carrier sets necessary for many interesting applications
- Galois connections between two endofunctions without carrier sets can easily be reasoned about with ATP

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Without carrier sets proofs become much more manual

Case Study 2 - Action Algebras

Kleene algebra expanded with two residuation operations

$$(A, +, 0, \cdot, 1, \leftarrow, \rightarrow,^*)$$

Axioms:

$$xy \le z \Leftrightarrow x \le z \leftarrow y$$
 and $xy \le z \Leftrightarrow y \le x \to z$

 $1+x^*x^*+x\leq x^* \quad \text{and} \quad 1+yy+x\leq y \Rightarrow x^*\leq y$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Properties of residuation can be instantiated from Galois connections
- First-order regular algebra trivial for ATP systems

Quantales - Galois Connections

Recall that f is the lower adjoint in a Galois connection iff

$$\bigvee_{x \in X} f(x) = f(\bigvee_{x \in X} x)$$

- This immediately implies that (x·) has an upper adjoint
- Preimplication/residuation operator $(x \rightarrow)$
- $(\cdot x)$ also has an upper adjoint $(\leftarrow x)$
- ▶ Trivial to show that $(Q, +, 0, \cdot, 1, \leftarrow, \rightarrow, ^*)$ is an action algebra

Theorems from action algebra then availabe in quantales

Conclusion

- Heirachy of lattices and regular algebras formalised in Isabelle
- Additional theories such as fixpoints and Galois connections provide powerful proof support
- Automated tools still useful in a Higher-order setting
- Usable for many applications
- Available online:
- https://github.com/Alasdair/IsabelleAlgebra

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <