
Automated Reasoning in Higher-Order Regular
Algebra

Alasdair Armstrong and Georg Struth

Department of Computer Science
University of Sheffield, UK

{a.armstrong,g.struth}@dcs.shef.ac.uk

September 18, 2012



Overview

I Taken a large repository for first-order regular algebra in
Isabelle/HOL

I Extended it towards higher order variants based on quantales

I Implemented substantial amounts of lattice theory to support
this approach

I Developed useful theories and tools for working with regular
algebra e.g.

I Galois connections
I Backhouse’s fixpoint calculus
I Order duality



Overview

I Evaluated the effectiveness of ATP in this higher order setting
I Four case studies:

1. Galois Connections
2. Action Algebras
3. Recursive Regular Equations
4. Language Quantales



Overview

I Evaluated the effectiveness of ATP in this higher order setting
I Four case studies:

1. Galois Connections
2. Action Algebras
3. Recursive Regular Equations
4. Language Quantales



The Repository - An (Incomplete) Overview

poset

lattice

complete lattice

orders/lattices regular algebras

quantale

dioid

semilattice

∗-continuous KA

action algebra kleene algebra



Quantales

I A quantale is a structure (Q,≤, ·) such that (Q,≤) is a
complete lattice, · is associative, and satisfying the infinite
distributivity laws

x

∨
y∈Y

y

 =
∨
y∈Y

xy and

∨
y∈Y

y

x =
∨
y∈Y

yx

I It is unital if · has an identity element 1

I The Kleene star can be defined as x∗ = µy. 1 + yx

I Finite or infinite and infinite iteration,

xω = νy. 1 + yx and x∞ = µy. xy



Quantales - Without Explicit Carrier Sets

I The simplest way to define an algebraic structure in Isabelle is
to use a class

class quantale = complete lattice +

fixes qmult :: “‘a ⇒ ‘a ⇒ ‘a” (infixl “·” 80)

assumes qmult assoc: “(x · y) · z = x · (y · z)”

and inf distl: “x ·
∨

Y =
∨

((λy. x·y) ‘ Y)”

and inf distr: “
∨

Y · x =
∨

((λy. y·x) ‘ Y)”

I Carrier set of the algebra is never explicitly mentioned—it’s
implicit in the type of qmult



Quantales - With Explicit Carrier Sets

I The alternative is to use locales and explicit carrier sets

locale quantale = fixes A (structure)

assumes quantale complete lattice: “complete lattice A”

and mult type: “op · ∈ carrier A → carrier A → carrier A”

and mult assoc: “Jx ∈ carrier A; y ∈ carrier A; z ∈ carrier AK
=⇒ (x · y) · z = x · (y · z)”

and inf distl: “Jx ∈ carrier A; Y ⊆ carrier AK

=⇒ x ·
∨

Y =
∨

((λy. x·y) ‘ Y)”

and inf distr: “Jx ∈ carrier A; Y ⊆ carrier AK

=⇒
∨

Y · x =
∨

((λy. y·x) ‘ Y)”

I Now we can use any arbitrary Isabelle set as our carrier set



Fixpoints

I Many useful fixpoint theorems in the repository
I Knaster-Tarski theorem
I Kleene’s fixed point theorem
I Fixpoint Fusion

I Rules from fixpoint calculus implemented, and useful for
reasoning with fixed points

I Iteration operators in quantales defined as fixed points

definition is lfp :: “(‘a, ‘b) ord scheme ⇒ ’a ⇒ (’a ⇒ ’a) ⇒ bool” where

”is lfp A x f ≡ f x = x ∧ (∀y∈carrier A. f y = y −→ x ≤A y)”

definition least fixpoint :: “(‘a, ‘b) ord scheme ⇒ (‘a ⇒ ‘a) ⇒ ‘a”

(“µ ” [0,1000] 100) where

“least fixpoint A f ≡ THE x. is lfp A x f”



Knaster-Tarski (for least fixed points)

theorem knaster tarski lpp:

assumes cl A: “complete lattice A” and f closed: “f ∈ carrier A → carrier A”

and f iso: “isotone A A f”

shows “∃!x. is lpp A x f”

proof

let ?H = “{u. f u ≤A u ∧ u ∈ carrier A}”

let ?a = “
∧

A?H”

have H carrier: “?H ⊆ carrier A” by (metis (lifting) mem Collect eq subsetI)

hence a carrier: “?a ∈ carrier A”

by (smt order.glb closed complete meet semilattice.is glb glb . . . )



Knaster-Tarski (for least fixed points)

have “is pre fp A ?a f”

proof -

have “∀x∈?H. ?a ≤A x” by (smt H carrier . . . )

hence “∀x∈?H. f ?a ≤A f x”

by (safe, rule tac ?f = f in use iso1, metis f iso, metis a carrier, auto)

hence “∀x∈?H. f ?a ≤A x” by (smt CollectD a carrier cl A . . . )

hence “f ?a ≤A ?a” by (smt complete meet semilattice.glb greatest . . . )

thus ?thesis by (smt a carrier cl A cl to order f closed is pre fp def)

qed

moreover show “∧x. is lpp A x f =⇒ x = ?a”

by (smt H carrier calculation cl A cl to cms . . . )

ultimately show “is lpp A ?a f”

by (smt H carrier cl A cl to cms complete meet semilattice.glb least . . . )

qed



Knaster-Tarski (for greatest fixed points)
I Dual theorems can easily be proved
I The ] operator maps an order to it’s dual
I We state the dual of the theorem we want to prove using ]
I The simplifier can then simplify away all the instances of ],

proving the theorem we want

theorem knaster tarski gpp:

assumes cl A: “complete lattice A” and f closed: “f ∈ carrier A → carrier A”

and f iso: “isotone A A f”

shows “∃!x. is gpp A x f”

proof -

have dual:

“Jcomplete lattice (A]); f ∈ carrier (A]) → carrier (A]); isotone (A]) (A]) fK
=⇒ ∃!x. is lpp (A]) x f”

by (smt knaster tarski lpp)

thus ?thesis by (simp, metis cl A f closed f iso)

qed



Quantales - Example Proof

We can show that x∗ is equivalent to
∨
n∈N

xn using

Kleene’s fixed point theorem

For any Scott-continuous function f over a complete partial order,
the least fixed point of f is also the least upper bound of the
ascending Kleene chain of f

µ(f) =
∨
n∈N

fn(⊥)

This shows us that

x∗ = 1 + (1 + x) + (1 + x+ x2) + (1 + x+ x2 + x3) + . . .



Quantales - Example Proof

I We can then use the rule that in any complete lattice (A,≤),∨{∨
Y
∣∣∣Y ∈ X} =

∨(⋃
X
)

where X ⊆ P(A)

to complete to proof

I The repository allows this reasoning to be used within Isabelle.

I Availability of theorems from fixpoint calculus and lattice
theory makes reasoning in regular algebra much easier



lemma star power: assumes xc: “x ∈ carrier A” shows “x∗ = Σ (powers x)”

proof -

let ?STAR FUN = “λy. 1 + x·y”

have star chain: “µA?STAR FUN = Σ (carrier (kleene chain A ?STAR FUN))”

proof (rule kleene fixed point, unfold locales)

show “?STAR FUN ∈ carrier A → carrier A”

by (smt ftype pred one closed mult closed join closed xc)

next

show “isotone A A ?STAR FUN”

by (simp add: isotone def, safe, metis quantale order, smt . . . )

next

fix D assume “D ⊆ carrier A”

and “directed Lcarrier = D, le = op ≤, . . . = ord.more AM”

thus “1 + x · Σ D = Σ ((λy. 1 + x · y) ‘ D)”

by (metis assms star scott continuous)

qed



have “µA?STAR FUN = Σ {z. ∃i. z = Σ (powersUpTo i x)}”
by (simp add: star chain kleene chain def iter powersUpTo)

moreover have “... = Σ (Σ ‘ {z. ∃i. z = powersUpTo i x})”

by (rule tac ?f = “λY. Σ Y” in arg cong, safe, auto+)

moreover have “... = Σ (
⋃
{z. ∃i. z = powersUpTo i x})”

by (rule lub denest, safe, auto, simp add: powersUpTo def, safe, metis . . . )

moreover have “... = Σ (powers x)”

apply (rule tac ?f = “λY. Σ Y” in arg cong, safe, auto+)

apply (simp all add: powersUpTo def powers def, metis)

by (metis (lifting, full types) le add2 mem Collect eq)

ultimately show ?thesis

by (metis star def)

qed



Case Study 1 - Galois Connections

I A Galois connection between two posets (A,≤A) and
(B,≤B) is a pair of functions f : A→ B and g : B → A such
that forall x ∈ A and y ∈ B

f(x) ≤A y ←→ x ≤A g(y)

I Theorems for free! For example, f : A→ B is the lower
adjoint in a Galois connection between two complete lattices
iff ∨

x∈X
f(x) = f(

∨
x∈X

x)



Galois Connections in Isabelle

locale galois connection =

fixes orderA :: “(‘a, ‘c) ord scheme” (“α”)

and orderB :: “(‘b, ‘d) ord scheme” (“β”)

and lower :: “‘a → ‘b” (“π∗”)

and upper :: “‘b → ‘a” (“π∗”)

assumes is order A: “order α”

and is order B: “order β”

and lower closure: “π∗ ∈ carrier α → carrier β”

and upper closure: “π∗ ∈ carrier β → carrier α”

and galois property:

“Jπ∗ x ∈ carrier β; x ∈ carrier α; y ∈ carrier β; π∗ y ∈ carrier αK
=⇒ π∗ x ≤β y ←→ x ≤α π∗ y”



Galois Connections - ATP Support

I Multiple orders with carrier sets necessary for many interesting
applications

I Galois connections between two endofunctions without carrier
sets can easily be reasoned about with ATP

I Without carrier sets proofs become much more manual



Case Study 2 - Action Algebras

I Kleene algebra expanded with two residuation operations

(A,+, 0, ·, 1,←,→,∗ )

I Axioms:

xy ≤ z ⇔ x ≤ z ← y and xy ≤ z ⇔ y ≤ x→ z

1 + x∗x∗ + x ≤ x∗ and 1 + yy + x ≤ y ⇒ x∗ ≤ y

I Properties of residuation can be instantiated from Galois
connections

I First-order regular algebra — trivial for ATP systems



Quantales - Galois Connections

I Recall that f is the lower adjoint in a Galois connection iff∨
x∈X

f(x) = f(
∨
x∈X

x)

I This immediately implies that (x·) has an upper adjoint

I Preimplication/residuation operator (x→)

I (·x) also has an upper adjoint (← x)

I Trivial to show that (Q,+, 0, ·, 1,←,→,∗ ) is an action algebra

I Theorems from action algebra then availabe in quantales



Conclusion

I Heirachy of lattices and regular algebras formalised in Isabelle

I Additional theories such as fixpoints and Galois connections
provide powerful proof support

I Automated tools still useful in a Higher-order setting

I Usable for many applications

I Available online:

I https://github.com/Alasdair/IsabelleAlgebra


