Automated Reasoning in Higher-Order Regular
Algebra

Alasdair Armstrong and Georg Struth

Department of Computer Science
University of Sheffield, UK
{a.armstrong,g.struth}@dcs.shef.ac.uk

September 18, 2012



Overview

» Taken a large repository for first-order regular algebra in
Isabelle/HOL

» Extended it towards higher order variants based on quantales

» Implemented substantial amounts of lattice theory to support
this approach

» Developed useful theories and tools for working with regular
algebra e.g.

» Galois connections
» Backhouse's fixpoint calculus
» Order duality



Overview

» Evaluated the effectiveness of ATP in this higher order setting
» Four case studies:

1. Galois Connections

2. Action Algebras

3. Recursive Regular Equations

4. Language Quantales



Overview

» Evaluated the effectiveness of ATP in this higher order setting
» Four case studies:

1. Galois Connections

2. Action Algebras

3. Recursive Regular Equations

4. Language Quantales



The Repository - An (Incomplete) Overview

orders/lattices

complete lattice @)

regular algebras

quantale

lattice @

semilattice @

poset @

*-coptinpous KA

action alg klegfie algebra



Quantales

v

A quantale is a structure (@, <,-) such that (Q,<) is a
complete lattice, - is associative, and satisfying the infinite
distributivity laws

T \/y :\/:L‘y and \/y a::\/yzz;

yey yey yey yey
» It is unital if - has an identity element 1
> The Kleene star can be defined as z* = py. 1 + yz

v

Finite or infinite and infinite iteration,

¥ =vy. 1+yx and x> = py. xy



Quantales - Without Explicit Carrier Sets

» The simplest way to define an algebraic structure in Isabelle is
to use a class

class quantale = complete_lattice +
fixes gmult :: "'a = 'a = "a” (infixl " 80)
assumes gmult_assoc: “(x -y) -z =x-(y-z)"
and infdistl: “x - \/ Y =\/ ((\y. xy) " Y)"
and infdistr: “\/ Y - x=\/ ((\y. yx) ' Y)"

» Carrier set of the algebra is never explicitly mentioned—it’s
implicit in the type of gmult



Quantales - With Explicit Carrier Sets

» The alternative is to use locales and explicit carrier sets

locale quantale = fixes A (structure)
assumes quantale_complete_lattice: “complete_lattice A”
and mult_type: “op - € carrier A — carrier A — carrier A"
and mult_assoc: “[x € carrier A; y € carrier A; z € carrier A]
— (xy)z=x-(y-2)
and inf_distl: “[x € carrier A; Y C carrier A

:>><-\/Y:\/ ((Ay. xy) Y)Y

and inf_distr: “[x € carrier A; Y C carrier A

= \/Y‘X:\/ ((A\y. yx) YY)

» Now we can use any arbitrary Isabelle set as our carrier set



Fixpoints

» Many useful fixpoint theorems in the repository
» Knaster-Tarski theorem
> Kleene's fixed point theorem
» Fixpoint Fusion
» Rules from fixpoint calculus implemented, and useful for
reasoning with fixed points

> lteration operators in quantales defined as fixed points

definition is_Ifp :: “(‘a, 'b) ord_scheme = 'a = ('a = 'a) = bool” where
"isdfp Axf=fx=xA (Vyccarrier A. fy=y — x <ay)"
definition least_fixpoint :: “(‘a, 'b) ord_scheme = (‘a = ‘a) = ‘a”
(“p.-" [0,1000] 100) where
“least_fixpoint A f = THE x. is_Ifp A x "



Knaster-Tarski (for least fixed points)

theorem knaster_tarski_lpp:
assumes cl_A: “complete_lattice A" and f_closed: “f € carrier A — carrier A”
and f_iso: “isotone A A f”

shows “JIx. is_Ipp A x "

proof
let 7H = "{u. fu <4 u A u € carrier A}"
let 7a = /\4?H

have H_carrier: "7H C carrier A" by (metis (lifting) mem_Collect_eq subsetl)
hence a_carrier: “7a € carrier A"

by (smt order.glb_closed complete_meet_semilattice.is_glb_glb ...)



Knaster-Tarski (for least fixed points)

have “is_pre_fp A 7a f”
proof -
have “Vxe?H. 7a <4 x" by (smt H_carrier ...)
hence "Vxe7H. f 7a <4 fx"
by (safe, rule_tac ?f = f in use_isol, metis f_iso, metis a_carrier, auto)
hence "“vxe?H. f 7a <4 x" by (smt CollectD a_carrier cl A ...)
hence “f 7a <. 7a" by (smt complete_meet_semilattice.glb_greatest ...)
thus ?thesis by (smt a_carrier cl_A cl_to_order f_closed is_pre_fp_def)
ged
moreover show “Ax. islpp A x f = x = 73"
by (smt H_carrier calculation cl_A cl_tocms ...)
ultimately show “is_lpp A 7a "
by (smt H_carrier cl_A cl_to_cms complete_meet_semilattice.glb_least .. .)

qed



Knaster-Tarski (for greatest fixed points)

Dual theorems can easily be proved

The # operator maps an order to it's dual

We state the dual of the theorem we want to prove using {
The simplifier can then simplify away all the instances of ,
proving the theorem we want

vV vVvYyys.y

theorem knaster_tarski_gpp:
assumes cl_A: “complete_lattice A" and f_closed: “f € carrier A — carrier A"
and f_iso: “isotone A A f"
shows “JIx. is_gpp A x f”
proof -
have dual:
“[complete_lattice (Af); f € carrier (Af) — carrier (Af); isotone (Af) (Af) f]
= JIx. is_Ipp (Af) x "
by (smt knaster_tarski_lpp)
thus ?thesis by (simp, metis cl_A f_closed f_iso)
qed



Quantales - Example Proof

We can show that x* is equivalent to \/ x™ using
neN

Kleene's fixed point theorem

For any Scott-continuous function f over a complete partial order,
the least fixed point of f is also the least upper bound of the
ascending Kleene chain of f

p(f) ="\ L)

neN

This shows us that

gt=1+1+2)+(Q+z+2)+A+z+2”+2°)+...



Quantales - Example Proof

» We can then use the rule that in any complete lattice (A4, <),

\/ {\/Y‘Y c X} —\/ (UX) where X C P(A)

to complete to proof [
» The repository allows this reasoning to be used within Isabelle.

» Availability of theorems from fixpoint calculus and lattice
theory makes reasoning in regular algebra much easier



lemma star_power: assumes xc: “x € carrier A” shows “x” = ¥ (powers x)"
proof -
let ?STAR_FUN = “Ay. 1 + x-y"

have star_chain: “147STAR_FUN = X (carrier (kleene_chain A 7STAR_FUN))"
proof (rule kleene_fixed_point, unfold_locales)
show “?STAR_FUN € carrier A — carrier A”
by (smt ftype_pred one_closed mult_closed join_closed xc)
next
show “isotone A A 7STAR_FUN"
by (simp add: isotone_def, safe, metis quantale_order, smt ...)
next
fix D assume "D C carrier A"
and “directed (carrier = D, le = op <, ... = ord.more A)"
thus “1 4+ x-S D=3 ((\y. 1 +x-y) ‘D)
by (metis assms star_scott_continuous)

qged



have “14?STAR_FUN = X {z. 3Ji. z = X (powersUpTo i x)}"
by (simp add: star_chain kleene_chain_def iter_powersUpTo)

moreover have “... = ¥ (X ' {z. 3i. z = powersUpTo i x})"
by (rule_tac ?f = “AY. X Y” in arg_cong, safe, auto+)

moreover have “... = % (U {z. 3i. z = powersUpTo i x})"

by (rule lub_denest, safe, auto, simp add: powersUpTo_def, safe, metis ...)

moreover have “... = 3 (powers x)
apply (rule_tac ?f = “AY. X Y” in arg_cong, safe, auto+)
apply (simp_all add: powersUpTo_def powers_def, metis)
by (metis (lifting, full_types) le_add2 mem_Collect_eq)

ultimately show ?thesis
by (metis star_def)

qed



Case Study 1 - Galois Connections

» A Galois connection between two posets (A4, <,4) and
(B,<p) is a pair of functions f : A — B and g : B — A such
that forall x € Aand y € B

f(@) <ay— 2 <a9(y)

» Theorems for free! For example, f: A — B is the lower

adjoint in a Galois connection between two complete lattices
iff

\ f@)=rC\ 2

rzeX zeX



Galois Connections in Isabelle

locale galois_connection =
fixes orderA :: “(‘a, ‘c) ord_scheme” (“a’")
and orderB :: “('b, ‘d) ord_scheme” (“/")
and lower :: “a — ‘b" (“7™")
and upper ;@ “'b — ‘a” (“m.”
assumes is_order_A: “order o
and is_order_B: “order (3"
and lower closure: “m" € carrier o — carrier 3"
and upper_closure: “m. € carrier 3 — carrier o
and galois_property:
“[[7r* X € carrier [3; X € carrier «; y € carrier 3; w. y € carrier aﬂ

= 1 x<gy+—x<q Ty



Galois Connections - ATP Support

» Multiple orders with carrier sets necessary for many interesting
applications

» Galois connections between two endofunctions without carrier
sets can easily be reasoned about with ATP

» Without carrier sets proofs become much more manual



Case Study 2 - Action Algebras

v

Kleene algebra expanded with two residuation operations
(A7 +7 07 y 17 F7 _>7* )

Axioms:

v

ry<zer<z<+y and zy<zey<zr—z

14z 4+ <2z" and 14+yyt+z<y=z"<y

v

Properties of residuation can be instantiated from Galois
connections

v

First-order regular algebra — trivial for ATP systems



Quantales - Galois Connections

v

Recall that f is the lower adjoint in a Galois connection iff

\ f@)=f(\ =)

zeX zeX

v

This immediately implies that (z-) has an upper adjoint

v

Preimplication /residuation operator (z —)

v

(-x) also has an upper adjoint (+ x)

v

Trivial to show that (@, +,0,-,1,<—,—.*) is an action algebra

v

Theorems from action algebra then availabe in quantales



Conclusion

» Heirachy of lattices and regular algebras formalised in Isabelle

» Additional theories such as fixpoints and Galois connections
provide powerful proof support

» Automated tools still useful in a Higher-order setting
» Usable for many applications

> Available online:

> https://github.com/Alasdair/IsabelleAlgebra



