
Transitive Separation Logic

Han-Hing Dang, Bernhard M�oller

RAMiCS 2012

Dang/M�oller { 1 { RAMiCS 2012

Trans. Sep. Logic

1 Introduction

• purpose of separation logic (SL): reasoning about linked ob-

ject/record structures

• original sequential version has also been extended to concurrent

contexts

• this talk: concentrate on the data structure level

• algebraic description of control structure level

has been given elsewhere

Dang/M�oller { 2 { RAMiCS 2012

phenomena to be treated:

• reachability (garbage collection)

• (absence of) sharing

• cycle detection

• preservation of substructures under destructive assignments

we sketch some algebraic tools for and some useful extensions of SL

Dang/M�oller { 3 { RAMiCS 2012

2 Brief Recap of SL

extends Hoare logic

formulas talk not only about program variables, but also about

heap portions (heaplets) i.e., partial functions from addresses to

values (which include addresses)

central new connective: separating conjunction

P1 ∗ P2

holds for a given heaplet h i�

• h can be partitioned into heaplets h1, h2

• i.e., h = h1 ∪ h2 and ph1 ∩ ph2 = ∅ (p is the domain operator)

• and Pi holds for hi

Dang/M�oller { 4 { RAMiCS 2012

3 A Limitation

in many cases the separation expressed by ph1 ∩ ph2 = ∅ is too weak

Example immediate sharing

assume addresses x1, x2, x3

h1 : x1 7→ x3 h2 : x2 7→ x3

satisfy the above separation property, but h = h1 ∪ h2
does not appear very separated ut

Dang/M�oller { 5 { RAMiCS 2012

Example a simple cycle

addresses x1, x2

h1 : x1 7→ x2 h2 : x2 7→ x1

again, h1, h2 satisfy the separation property ut

we want to �nd a stronger separation condition that takes such

phenomena into account

Dang/M�oller { 6 { RAMiCS 2012

4 Image and Reachability

central notion: reachability (in one or more steps)

abstraction: forget about non-pointer attributes of objects and

about multiple links from one object to another

then a linked object structure corresponds to an

access relation a between objects

more abstract view: take a to be an element of a modal Kleene

algebra (S,+, 0, ·, 1,∗ , p, q)

Dang/M�oller { 7 { RAMiCS 2012

let p ≤ 1 be a test representing a set of objects (identi�ed by

pointers)

the modal diamond operator 〈〈a||p yields the image of p under a:,

i.e., the set of immediate successors of p-objects under a:

〈〈a||p =df (p · a)q

where p · a is the restriction of a to start objects in p and q is the

codomain operator

as usual the re
exive transitive closure of an access element a is a∗

the reachability function can now be de�ned as

reach(p, a) =df 〈〈a∗||p

Dang/M�oller { 8 { RAMiCS 2012

5 Strong Separation

now we can formulate a stronger separation relation ©#

a1©# a2 ⇔df reach(pa1, a) · reach(pa2, a) = 0
where a = a1 + a2

this rules out the above two examples

Dang/M�oller { 9 { RAMiCS 2012

by p ≤ 〈〈b∗||p for all p, b, the new separation condition indeed

implies the analogue of the old one:

a1©# a2 ⇒ pa1 · pa2 = 0

moreover, ©# is downward closed by isotony of reach

central property:
a©# b ⇔ a · b = 0

where a =df pa+ aq is the set of nodes of access element a

Dang/M�oller { 10 { RAMiCS 2012

using ©# we de�ne a stronger variant of ∗
P1 ©∗ P2

holds for an access relation a i�

• a can be strongly partitioned into some a1, a2

• i.e., a = a1 + a2 and a1©# a2,

• and Pi holds for ai

Lemma ©∗ is commutative and associative

Dang/M�oller { 11 { RAMiCS 2012

why does \classical" SL get along without this stronger notion?

some aspects of it can be welded implicitly into recursive data type

predicates

Example singly linked lists (x, y addresses)

h |= list(nil) ⇔ h = ∅

x 6= nil ⇒
(h |= list(x) ⇔ ∃y : h |= [x 7→ y] ∗ list(y))

we will elaborate on this in the next section

note that using ©∗ instead of ∗ would not work, because the

heaplets used are not strongly separate

Dang/M�oller { 12 { RAMiCS 2012

6 Nil and Closed Access Relations

2 is a special element characterising the pseudo-pointer nil/null

call a proper if 2 u pa = 0 (equivalently 2 · a = 0) and

closed if bq ≤ pb+ 2 (no dangling pointers)

Lemma For proper and closed ai we have pa1 · pa2 = 0 ⇒ a1©# a2

it can be shown by induction that all access relations characterised

by the analogue of the list predicate are closed

this is why for a large part of SL the weak separation su�ces

Dang/M�oller { 13 { RAMiCS 2012

7 An Algebra of Linked Structures

call an access element a

• acyclic i� for all atomic tests p 6= 2 we have p · a+ · p = 0, where

a+ = a · a∗

• deterministic i� ∀p : 〈〈a|| ||a〉〉p ≤ p, where the dual diamond is

de�ned by ||a〉〉p = p(a · p)

• injective if ∀p : ||a ′〉〉 〈〈a ′||p ≤ p where a ′ = a · ¬2

Dang/M�oller { 14 { RAMiCS 2012

assume now a �nite set L of selector names, e.g., left or right in

binary trees, and a modal Kleene algebra S.

• A linked structure is a family a = (al)l∈L of proper and determin-

istic access elements al ∈ S (access along each particular selector

is deterministic)

• associated overall access element: Σl∈L al, again denoted by a

• a is a forest if a is acyclic and injective

• a forest a is a tree if a = 〈〈a∗|| r for some atomic test r, called the

root of a

Dang/M�oller { 15 { RAMiCS 2012

we now de�ne programming constructs and assertions

• a store is a mapping from program identi�ers to atomic tests

• a state is a pair (s, a) with a store s and an access element a

• for identi�er i and selector name l we de�ne the semantics

[[i.l]](s,a) =df 〈〈al|| (s(i))

• program commands are relations between states

• the semantics of plain assignment i := e and Hoare triples

is de�ned as usual

assignments of the form i.l := e will be discussed below

Dang/M�oller { 16 { RAMiCS 2012

assume atomic tests with p · q = 0 ∧ p · 2 = 0

• a twig is a tree of the form p 7→ q =df p · > · q

• the corresponding update is (p 7→ q) | a =df (p 7→ q) + ¬p · a

• intuitively, the single node of p is connected to the single node in

q, while a is restricted to links that start from ¬p only

• For identi�er i, selector name l and expression e we set

i.l := e =df { ((s, a), (s, (s(i) 7→ [[e]](s,a)) |al) : s(i) 6= 2, s(i) ≤ pa }

in general such an assignment does not preserve treeness

Dang/M�oller { 17 { RAMiCS 2012

8 Directed Separation

assume a tree a

• the set of terminal nodes is terms(a) =df aq − pa

• we de�ne directed combinability (assuming a2 to be a tree) by

a1 . a2 ⇔df pa1 · a2 = 0 ∧ a1q · a2q ≤ 2∧

a1q · pa2 = root(a2)

• guarantees domain disjointness and excludes cycles, since

pa1 · a2 = 0 ⇔ pa1 · pa2 = 0 ∧ pa1 · terms(a2) = 0

• excludes links from non-terminal a1-nodes to non-root a2-nodes

• ensures that a1 and a2 can be combined by identifying some non-

nil terminal node of a1 with the root of a2

Dang/M�oller { 18 { RAMiCS 2012

we set tree =df {a : a is a tree }

for P1, P2 ⊆ tree we de�ne directed combinability ©. by

P1©. P2 =df {a1 + a2 : ai ∈ Pi , a1 . a2}

this allows, conversely, talking about decomposability: if

a ∈ P1©. P2 then a can be split into two disjoint parts a1, a2 such

that a1 . a2 holds

Dang/M�oller { 19 { RAMiCS 2012

for selector name l, an l-context is a linked structure a such that

al is a linkable cell, i.e., has an atomic domain

hence a has a \hole" as its l-branch

the corresponding predicate is l context =df {a : a is an l-context }

Lemma (Structure preservation) For predicates Q,R and

selector name l ∈ L we have

{ (l context(i)©. Q)©∗ R(j) } i.l := j { (l context(i)©. R(j))©∗ Q }

{ (Q©. l context(i))©∗ R(j) } i.l := j {Q©. (l context(i)©. R(j)) }

{ l context(i))©. Q } j := i.l { l context(i)©. Q(j) }

Dang/M�oller { 20 { RAMiCS 2012

9 Example: In-Situ List Reversal

• list is the set of all trees with the only selector next

• abstraction function lia for a ∈ list

lia(p) =df

 〈〉 if p · pa = 0 ,

〈p〉 • lia(〈〈a||p) otherwise ,

where • is concatenation and 〈〉 is the empty word

• semantics of the expression i→ for a program identi�er i:

[[i→]](s,a) =df lia(s(i))

Dang/M�oller { 21 { RAMiCS 2012

algorithm:

j := 2 ; while (i 6= 2) do
(
k := i.next ; i.next := j ; j := i ; i := k

)
invariant († is word reversal):

I ⇔df (j→)† • i→ = α

Dang/M�oller { 22 { RAMiCS 2012

I ⇔df (j→)† • i→ = α

{ list (i) ∧ i→ = α }

j := 2 ; { (list (i)©∗ list (j)) ∧ I }

while (i 6= 2) do
(

{ ((l cell (i)©. list (i.next))©∗ list (j)) ∧ I }

k := i.next ; { ((l cell (i)©. list (k))©∗ list (j)) ∧ (j→)† • i • k→ = α }

{ ((l cell (i)©. list (k))©∗ list (j)) ∧ (i • j→)† • k→ = α }

i.next := j ; { ((list (i)©∗ list (k)) ∧ (i→)† • k→ = α }

j := i ; i := k ; { (list (j)©∗ list (i)) ∧ I })
{ list (j) ∧ (j→)† = α }

{ list (j) ∧ j→ = α† }

Dang/M�oller { 23 { RAMiCS 2012

• each assertion consists of a structural part and a part connecting

the concrete and abstract levels of reasoning

• unlike standard SL we hide the existential quanti�ers that were

necessary there to describe the sharing relationships

• structural correctness properties of the occurring data structures

and their interrelationship captured by the the new separation

predicates

• quanti�ers to state functional correctness not needed due to use

of the abstraction function

• hence the formulas become easier to read and more concise

Dang/M�oller { 24 { RAMiCS 2012

10 Conclusion and Outlook

achievements

• relating the approach of pointer Kleene algebra with SL

• algebra useful for stating and proving reachability conditions

• extended operations, similar to separating conjunction, that ad-

ditionally assert structural properties of linked object structures

• concrete predicates and operations on linked lists and trees that

enabled correctness proofs of an in-situ list-reversal algorithm and

tree rotation

• a novel use of assertions with an abstraction function to further

reduce the amount of quanti�ers

Dang/M�oller { 25 { RAMiCS 2012

future work

• explore more complex or other linked object structures such as

doubly-linked lists or threaded trees

• tackle more complex algorithms like Schorr-Waite Graph Marking

or concurrent garbage collection

Dang/M�oller { 26 { RAMiCS 2012

	Introduction
	Brief Recap of SL
	A Limitation
	Image and Reachability
	Strong Separation
	Nil and Closed Access Relations
	An Algebra of Linked Structures
	Directed Separation
	Example: In-Situ List Reversal
	Conclusion and Outlook

