
A Hierarchically Typed Relation Algebra

Patrick Roocks

Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
roocks@informatik.uni-augsburg.de

Abstract. We consider a typed relation algebra which is used for a
calculus of database preferences. So far, the typing mechanism does not
cover unions of differently typed elements, which means that the global
identity and the greatest element are not typable in the calculus. We
suggest a hierarchical type structure to remedy this.

1 Introduction

Database preferences can be modelled as homogeneous binary relations over the
type domains given by their attributes (i.e., database columns). In our previous
papers [MRE12, MR12] we developed a calculus where an algebra of typed el-
ements is used to represent database preferences. But the union of differently
typed elements is up to now not typable with our mechanism. This implies that
the global 1 and > elements, algebraically equivalent to the sum of all typed 1
and > elements, are not typable. We suggest a hierarchy of types, which covers
such unions and show some properties.

A similar concept of a type hierarchy in the scope of databases is described in
the Higher Order Entity Relationship Model (HERM) [Tha93], where “clusters”
form the counterpart to our multitypes.

2 Typed tuples and relations

In this section we recapitulate the definions of typed tuples and the join from
[MRE12]. First we define a typing mechanism for tuples and a join operation for
sets of typed tuples.

2.1 Typed tuples

Definition 2.1. Let A be a set of attribute names. For each A ∈ A we assume
a set DA, called the type domain of A. We define the following notions:

– A type is a subset T ⊆ A with T 6= ∅.
– A T -tuple is a mapping

t : T →
⋃
A∈A

DA where ∀A ∈ T : t(A) ∈ DA.

– The type domain DT is the set of all T -tuples, i.e., DT =
∏

A∈T DA.
– The set U =df

⋃
T⊆ADT is called the universe.

– For a tuple t and a set of tuples M we introduce the following abbreviations:

t :: T ⇔df t ∈ DT , M :: T ⇔df M ⊆ DT .

Definition 2.2 (Join). The join of two types T1, T2 is the union of their
attributes: T1 1 T2 =df T1 ∪ T2. For sets of tuples Mi :: Ti (i = 1, 2), the join is
defined as the set of all consistent combinations of Mi-tuples:

M1 1 M2 =df {t :: T1 1 T2 | t|Ti
∈Mi, i = 1, 2} .

The term “join” is used to point out the analogy to the natural join in
databases. When two sets are joined, only those tuples are joined who have
identical values in the common attributes of both sets. We illustrate this in the
following example:

Example 2.3. Assume a database of cars with a unique ID and further at-
tributes for model and horsepower. Hence the attribute names, i.e., the types,
are ID,model and hp. The tuples are written as explicit mappings. Assume the
following sets:

M1 =df {{ID 7→ 1, model 7→ ’BMW 7’}, {ID 7→ 3, model 7→ ’Mercedes CLS’}},
M2 =df {{ID 7→ 2, hp 7→ 230}, {ID 7→ 3, hp 7→ 315}}.

The sets have the types M1 :: ID 1 model and M2 :: ID 1 hp. Now we consider
the join M1 1 M2 :: ID 1 model 1 hp. We have (ID 1 model)∩ (ID 1 hp) = ID.
The only tuple t :: ID 1 model 1 hp which fulfills both t|T1 ∈M1 and t|T2 ∈M2

is the one with ID 7→ 3. Hence the join is given by:

M1 1 M2 = {{ID 7→ 3, model 7→ ’Mercedes CLS’, hp 7→ 315}} .

In [MRE12] also some useful properties of the 1-operator are given, e.g., 1
is associative, commutative, distributes over ∪ and is isotone.

In [MRE12, MR12] this concept is applied to database preferences, which are
modelled as homogeneous binary relations. To this end the typing mechanism
above is extended to relations. This is straight forward by the definitions

(t1, t2) :: T 2 ⇔df ti ∈ DT , R :: T 2 ⇔df R ⊆ DT ×DT .

Analogously to the case of sets of tuples, a join operator on relations can be
defined, and similar properties hold. But we will not go into detail here, as it is
not important for the rest of the paper.

2.2 Typed abstract relation algebra

Now we will generalize the above definitions. Homogeneous binary relations over
a set form an idempotent semiring with choice ∪ and composition “;”, which

2

have ∅ and the identity relation as their respective units. In the abstract relation
algebra choice is denoted by “+” and composition by “;”. We assume that for
every type T our algebra contains a test 1T ≤ 1 representing the type domain
DT . Sets M ⊆ DT are modelled as tests p, and can be characterised as sub-
identities, i.e., p ≤ 1T . Thereby “≤” is the subsumption order, which is defined
by x ≤ y ⇔ x + y = y.

For general elements, by convention named a, b, c, ..., we define the type as-
sertions:

a :: T 2 ⇔df a ≤ 1T ·a·1T .

The tests, i.e. sub-identities, are typed as follows:

p :: T ⇔df p ≤ 1T .

For types T 6= U we assume 1T ·1U = 0, where 0 is the smallest element in the
algebra and corresponds to the empty set in the concrete instance. By fulfilling
all type assertions, it has no explicit type. Further we assume a largest element
>T corresponding to the full relation. For every x :: T 2 we have 0 ≤ x ≤ >T .

Tests of arbitrary type fulfil p ≤ 1, where 1 represents the universe U . And
we assume a greatest element >with x ≤ > for all x, independent of their type,
if any. Note that 1 and > have up to now no type.

3 Multitypes

Assume distinct attributes A,B and consider two tests pA :: {A} and pB :: {B}.
The supremum of two elements (i.e., the union in the relational setting) can be
denoted as pA+pB ; but can we also determine its type in our calculus? Note that
pA +pB :: {A,B} does not hold: By definition we have {A}∪{B} = {A} 1 {B},
but pA +pB does not contain the join of elements of types {A} and {B}. In fact,
elements like a+ b where a and b are differently typed, are not typable with our
“::” operator.

For the preference-related operations occurring in [MRE12, MR12] this does
not matter as there such elements do not occur. But for the uniformity of the
algebra this is a drawback. Note that for the subsumption order the following is
valid by definition:

pA ≤ pA + pB ≤ 1 ≤ >

But (pA + pB), 1 and > are all not typable with the “::” operator. The reason
for this is that “inhomogeneous unions” are not covered by our current typing
mechanism. While this seems to be a minor technical flaw for the suprema like
pA + pB it is a lack of uniformity that the “global” identity and top element is
untyped. This problem asks for a general and formally consistent solution.

3.1 A type hierarchy

Consider again the definition of the universe U =
⋃

T⊆ADT (which is represented
by “1”). There T ranges over all subsets of the attribute names A, except the

3

empty set (D∅ is not defined). Hence the set TU =df P(A)−∅, where P denotes
the power set, gives us the types of all type domains contained in U . Thus it
seems to be reasonable to say that TU is the type of U . We formalize this idea
in the following, by suggesting a type hierarchy.

Definition 3.1. For a finite set of attribute names A we define:

1. The set of fundamental types F , consisting of:
(a) Base types: If A ∈ A, then {A} is a base type.
(b) Complex types: Let T1 and T2 both fundamental (i.e., base or complex)

types. Then T1 ∪ T2 is also a complex type.
In summary, the set of fundamental types equals F = P(A)− ∅.

2. Multitypes: The set of multitypes M consists of all subsets M ⊆ F of fun-
damental types, i.e., M = P(F) = P(P(A)− ∅).

The names of the different sets of fundamental types stems from the terms
Base Preference and Complex Preference in Preference SQL [KEW11]. Ac-
cording to our calculus [MRE12] the type of an element representing a base (or
complex) preference is also a base (or complex) type.

In the relational case the type assertions for a multitype M ∈M evolve to

R :: M ⇔df R ⊆
⋃

T⊆M

DT

R :: M2 ⇔df R ⊆
⋃

T⊆M

(DT × DT)

A natural order on multitypes is given by the inclusion order ⊆. The maximal
type is F and this gives us the typing of the 1 and > elements:

1 :: F , > :: F2

In the algebraic setting the type assertions for general multityped elements
can be expressed as

a :: M2 ⇔df a ≤
∑
T∈M

1T · a · 1T for M ∈M .

Note that these assertions allow only relations between tuples of the same fun-
damental type as the following example shows.

Example 3.2. Assume attributes A,B with type domains DA = {A1, A2} and
DB = {B1, B2}. The set X = {(A1, A2), (B1, B2)} fulfils the type assertion

X :: {{A}, {B}}2

In contrast the set Y = {(A1, B1)} does not fulfil the assertion Y :: {{A}, {B}}2
as Y /∈ (DA×DA)∪ (DB ×DB). This is intended, as inhomogeneous preference
relations are not allowed. But note that Y :: {A} 1 {B} is true, because (A1, B1)
is not interpreted as a preference relation, but as a tuple of a dataset with the
attributes A,B, i.e., as contained in a database table with columns A,B.

4

The set of multitypes M is the power set of F , hence multitypes are closed
under union and intersection. The fundamental types are not contained in M,
but any fundamental type T ∈ F has a corresponding multitype {T}. Hence
we can generalize the union of arbitrary types, which we will need later on for
specifying the type of an addition:

T1 ∪m T2 =df T ′1 ∪ T ′2 where T ′ :=

{
{T} for T ∈ F
T for T ∈M

Completely analogous to this we define the multitype intersection ∩m.

3.2 Properties of multityped elements

Now we want to study some consequences of the multitype setting and give some
useful properties.

Assume an element a :: T . By definition of the type assertions, this fulfils
also the type assertions a :: M for any element M ⊆ A with T ∈ M . Hence
an element has its “real type” and simultaneously the type of all “supertypes”.
Something similar happens in object oriented programming where an object is
simultaneously the instance of its actual class and all its super classes in the
class hierarchy.

The empty set ∅ is also a multitype, and the only elements fulfilling x :: ∅ is
the smallest element of our algebra, i.e., 0. But still 0 :: T holds for all T ∈ F ,
additionally 0 :: M for all M ∈ M. To get rid of this ambiguity, we define the
minimal type as the smallest multitype which fulfils the type assertion, formally
stated in the following definition.

Definition 3.3 (Minimal type). The minimal type for a general element x
is defined as follows:

x
min
:: M2 ⇔df M =

⋂
{N ∈M | x :: N2}

where “min” is w.r.t. to the inclusion order ⊆ on multitypes.

As a consequence of the multitype setting we can determine the resulting
type of an addition of arbitrary typed elements.

Corollary 3.4 (Type of an addition). Let a :: M2
a , b :: M2

b . Then we have

a + b :: (Ma ∪m Mb)
2

Proof. Assume Mx to be multitypes for x ∈ {a, b}. From the type assertions of
a and b we have a ≤

∑
T∈Ma

1T ·a·1T and b ≤
∑

T∈Mb
1T ·b·1T . By adding both

inequations, and using 1T ·a·1T = 0 for T /∈ Ma and analogously 1T ·b·1T = 0
for T /∈Mb we conclude:

a + b ≤
∑

T∈Ma

1T ·a·1T +
∑

T∈Mb

1T ·b·1T

≤
∑

T∈Ma

1T ·(a + b)·1T +
∑

T∈Mb

1T ·(a + b)·1T =
∑

T∈Ma∪mMb

1T ·(a + b)·1T

5

This is the type assertion equivalent to the claim. If Mx is no multitype, consider
its corresponding multitype {Mx} and the same argument holds. ut

In the relational setting this corollary holds also when “::” is replaced by “
min
:: ”.

Corollary 3.5 (Type of a composition). Let a :: M2
a , b :: M2

b . Then we have

a · b :: (Ma ∩m Mb)
2

Proof. Analogously to the proof of Corollary 3.4 assume Ma,Mb to be multi-
types. Using 1T · 1U = 0 for T 6= U we conclude

a·b ≤
∑

T∈Ma

1T ·a·1T ·
∑

T∈Mb

1T ·b·1T ≤
∑

T∈Ma∩mMb

1T ·a·1T ·b·1T

≤
∑

T∈Ma∩mMb

1T ·a·b·1T

which is the claimed type assertion. ut

Note that this corollary does not hold if “::” is replaced by “
min
:: ” as the

composition may be of smaller type. For example the composition of disjoint

tests of the same type equals 0, and we have 0
min
:: ∅.

4 Conclusion and further work

We have sketched an extended typing mechanism for our algebra where arbi-
trary inhomogeneous unions of general elements are covered. This allows also a
consistent typing of 1 and > in the algebra. This is important for the uniformity
of the typing mechanism although the inhomogeneous unions have currently no
interpretation in our field of application, the database preferences.

But they could be useful for algebraic models of databases, e.g., a set of views
of database schemas can be typed by a multitype. Algebraically it is an inter-
esting question how this multitype setting could be extended to more complex
algebras, e.g., inhomogeneous relation algebras or elements causing side-effects.

References

[KEW11] W. Kießling, M. Endres, F. Wenzel: The Preference SQL System – An
Overview. In IEEE Data Eng. Bull., Vol. 34 (2), 11–18, 2011.

[MR12] B. Möller, P. Roocks: An Algebra of Layered Complex Preferences.
To appear in Relational and Algebraic Methods in Computer Science
(RAMiCS ’12).

[MRE12] B. Möller, P. Roocks, M. Endres: An Algebraic Calculus of Database
Preferences. In Mathematics of Program Construction (MPC ’12), 241–
262, 2012.

[Tha93] B. Thalheim: Foundations of entity–relationship modeling. In Annals of
Mathematics and Artificial Intelligence, 197–256, 1993.

6

	A Hierarchically Typed Relation Algebra

