Constraints in Feature Algebra

Andreas Zelend

Institut fir Informatik, Universitat Augsburg, Germany
zelend@informatik.uni-augsburg.de

Abstract. Feature Algebra captures the commonalities of feature ori-
ented software development (FOSD), such as introductions, refinements
and quantification. So far constraints have not been integrated into this
algebraic framework. They arise in feature elicitation, feature depen-
dence, feature exclusion, feature interaction etc. This paper presents a
possibility for integrating such constraints into Feature Algebra.

1 Introduction

The paradigm of feature orientation (FO) (e.g. [2]) provides formalisms, meth-
ods, languages, and tools for building variable, customisable and extensible soft-
ware. Applications include network protocols [2], database systems and software
product lines [6]. Informally, a feature reflects an increment in functionality or
in the software development. A product is an executable collection of features.

Complex features are composed of simpler ones. Hence there may be con-
straints that further features need to be added to get a product. Other con-
straints might be that a product/program must satisfy a requirement given by
a stakeholder, etc.

Abstract reasoning about FO can be done in Feature Algebra [I]. The algebra
abstracts from the detailed definition of a feature, in particular, from concrete
programming languages, and covers the common concepts of FO such as intro-
ductions, refinements and quantification. A standard model (instance) is based
on feature structure forests (FSFs) that reflect the hierarchical structure of the
features’ implementations and hide details from a certain depth on.

In this paper we show how constraints can be introduced into Feature Alge-
bra, even without using fundamentally new concepts: we define an enrichment
that satisfies the axioms of Feature Algebra and allows the formulation of all
common types of constraints. It is able to reflect whether constraints are met.
The approach strongly builds upon results from [3] and [7].

2 Types of Constraints

There is a wide variety of constraints to be considered in FO. In this section we
classify them by focusing on the formalization of low- and high-level constraints
in Feature Algebra.

Low-level constraints are inferred from the code; they describe all constraints
that are based on implementation details. Some are discussed w.r.t. jak in [10].

References describe all code-level constraints where a method, a class, etc.
refers to another object. The code can neither be compiled nor executed when
the referenced part is not included in the overall product. The same type of
constraint occurs when program parts are imported.

Refinements are similar to references. In jak, the keyword refines indicates
that a feature builds on another. The Java keyword extends has the same effect.

Abstract Class Constraints and Interface Constraints are two other
types presented in [I0]. A concrete subclass class C of an abstract class or
interface A must implement all inherited abstract methods. Features may in-
troduce new classes inheriting from A or may introduce new abstract methods
into A. If new descendants of A are introduced by a feature, only the new code
has to be checked. Yet, if a feature introduces new abstract methods into the
supertype A, all descendants of A now have a new implementation obligation.

We call references and refinements, which behave similarly, structural depen-
dences and represent them by a special kind of abstract constraints in Section

High-level constraints are semantic dependences that can only partially be
inferred from the implementation. For example, they can be derived from the
given domain model [0], are specified by a customer who wants a particular
product or product line or are given as invariants. Others, sometimes called
primitives, can be encoded in the corresponding feature model (e.g. [519]):

Mandatority means that a certain feature has to be present in a product.
An example is given by a user requiring a toString ()-method for each class.

Optionality refers to an entire product line. The optional feature F may be
part of product P, whereas another product @) does not have F.

Alternative provides a choice from a given set of features. It can be seen as
“exactly one of m different features”.

Exclusion describes that two features are not allowed to be within the same
product. For example, if product P has a 64-bit implementation of foo(), P is
not allowed to have a 32-bit implementation of the same method.

Implication describes the contrary of an exclusion: a second feature is not
forbidden, but required. For example, if P provides a method (feature) to allocate
memory, another feature for deallocation has to be provided.

Requirements are similar to the reference constraints of the previous sub-
section and to implications. But this time the dependence is given by the feature
model or the user. For example, a customer demands the implementation of a
printer driver whenever a function print () is implemented.

3 Constraints in Feature Algebra

We briefly recapitulate the formal definitions of Feature Algebra [I]. A Feature
Algebra comprises a set I of introductions that abstractly represent features and
a set M of modifications that allow changing the introductions. The central op-
erations are feature addition +, application - of a modification to an introduction
and modification composition o.

Definition 3.1 Formally, a Feature Algebra is a tuple (M, I, +,0,-,0,1) satisfy-
ing the following properties for m,n € M and 4,5 € I. Addition + is associative
and commutative and satisfies the additional axiom of distant idempotence, i.e.,
1+ j+ 1 =j+ i This means that adding a feature that is already present has
no effect. Moreover, 0 is required to be the neutral element of +. Modification
composition o is a binary inner operation on M and 1 is an element of M repre-
senting the identity modification. M operates via - : M x I — I on I, satisfying
(mon)-i=m-(n-i),1-i=i,m-(i+j)=(m-i)+(m-j)and m-0=0.

For additional properties that follow from these axioms, see e.g. [1[4]. We now
present a fundamental notion for comparing features.

Definition 3.2 [I] The associative and distantly idempotent operation + in-
duces a subsumption preorder by i < j g4 i1+ 7 =7.

A relation i < j means that all elementary features of i are contained in j.
Lemma 3.3 The modification application - is isotone w.r.t <.

Proof. Assume 4, j with ¢ < j and a modification m. Then we have i < j &
itj=j=m-(i+j))=m-jem-i+m-j=m-j < m-i<m-j. O

//feature PRINT_LIST

package util;
//feature CONS
package util; class List{
class List{ public void printList(){
ListNode first; ListNode iter = first;
while (iter != null){
void cons(ListNode n){ System.out.print(iter.toString()+",");
n.next = first; iter = iter.next; }
first = n; } }
}
class ListNode{ class ListNode{
ListNode next; Object value;
} }
(a) Implementation of CONS (b) Implementation of PRINT

Fig. 1: Features CONS and PRINT

The standard model of Feature Algebra uses feature structure forests (FSFs)
as introductions. FSFs capture the essential hierarchical structure of a given
system (e.g. [1]) and therefore contain less details than abstract syntax trees.

An example for a FSF is given in Fig. [2| It represents a feature PRINT, an
extension of CONS. The feature offers a method to print the content of a list
constructed using the method cons. The corresponding code is given in Fig. [IH]
Formally, a feature structure forest is a labelled forest; the labels correspond to,
e.g., directory names or packages and classes, while the leaves contain the com-
ponents of the modules. The tree structure expresses the hierarchical structure
in a language-independent way. It is well known that FSFs can be expressed by
prefix-closed sets of tree paths (e.g. [4]).

util package
Eﬂ class

ListNode

first field [cons] [first]| [printList | [next | [value]
(a) Dependence (b) Composition of CONS and PRINT

Fig. 3: Structural Dependence of Feature PRINT

In that model < coincides with inclusion of
path sets. In this standard model, addition + co-
incides with tree superimposition [§], i.e., recursive
merging of FSFs. Each modification consists of a
query that selects a subset of introductions and
a change function that specifies how to modify
the selected introductions. More details concern- printList value
ing this model can be found in [I]. : :

Now we discuss how constraints can be repre-
sented algebraically. The main idea is to use triples Fig. 2: FSF of PRINT
(i,d, c) consisting of an introduction %, a collection
d of structural dependences and a condition c. Since structural dependences es-
sentially have the same nature as introductions, both ¢ and d are represented by
elements of some Feature Algebra A. The component c is a predicate on the set
of introductions I.

- package

1 ListNode

method field

Definition 3.4 Let A = (M,I,+,0,-,0,1) be a Feature Algebra and P; be the
set of all predicates over the introductions I of A. A design over A is an element
of I xIxPyr. A design (i,d, c) satisfies its dependence d iff d < i. A design (i,d, ¢)
satisfies its condition c iff ¢(i) = true. A design that satisfies its dependence and
its condition is called a product.

Definition 3.5 The conjunction of predicates p,q € Pr is defined by (p A
q)(2) =ay p(i) A g(@) for all ¢ € I. The predicate that maps every element of
I to true is denoted by true.

Let us look at an example. We will derive a design D, for the feature PRINT
presented in Fig.[1] The introduction of PRINT (impl) is the FSF given in Fig.
Its structural dependence (sdpl) is the FSF given in Fig. The feature PRINT
does not impose any condition, i.e., its condition is the constant predicate true.
The design D,; can now be defined as (impl, sdpl, true). Obviously, sdpl is not
contained in impl, i.e., sdpl Z impl. Hence D, does not satisfy its dependence. In
contrast, the composed FSF of PRINT and CONS (cf. Fig. satisfies sdpl , since
it includes sdpl as a subtree. In the set-based representation this is expressed by
sdpl € CONS + PRINT.

Using designs it is now easy to model the classes of constraints identified
in Section [2| For most of them it is useful to assume a predicate has(F')(7)
that checks whether a feature F' is included in a given Feature Algebra ele-
ment ¢ € I. When F can be represented as an introduction f, this can be

expressed as the condition has(f)(i) <4 f < i. We now show how exclu-
sions and implications can be formalised. Since the third component of designs
is based on predicates, we freely use the logical connectives A,V,=-,—, etc.
These operations are, like A, defined by pointwise lifting. Feature exclusion is ex-
pressed as has(F)(i) = —has(G)(7). Similarly, feature implication is expressed
as has(F)(i) = has(G)(7). Last, we have a look at abstract class constraints;
interface constraints can be characterised in a similar way. These constraints
have the form “If a class C extends the class D then it must provide a method
foo().” This can be formalised as an implication: extendsp (i) = has(foo())(7).

We now make the set of designs over A into a Feature Algebra itself. Since
designs are elements of a Cartesian product, the idea is to define the necessary
operations componentwise. For the first two components we can simply use the
corresponding operations from A. For the third component we have to decide
how to define the sum and the set of modifications together with application and
composition. Since the constraints of a combined design should be the joined
constraints of the parts, it seems reasonable to use conjunction of predicates
here; the neutral element is true. For modifying predicates, we can use the
well-known concept of predicate transformers.

Definition 3.6 Assume an arbitrary set I, the set of predicates P; over I and
predicates p,q € Pr. By PT; we denote the set of all predicate transformers.
A predicate transformer ¢ is conjunctive if t(p A q) = t(p) A t(q) holds for all
p,q € Pr. In particular id, id(p) = p for all p € Py, is conjunctive. The set of all
conjunctive predicate transformers over A is denoted by CT ;. A predicate p is
called stable iff p(i) = p(i + j) for all j.

Stable predicates are closed under conjunction and disjunction. A design with a
stable condition can be composed with another design while the condition does
not change its value. For example optionality and all has(f)(i) conditions are
stable.

Lemma 3.7 For a set I of introductions the structure (CT 1, Py, N\, o, -, true,id)
forms a Feature Algebra.

Now the following result is immediate by universal algebra.

Theorem 3.8 For a Feature Algebra A = (M,I,+,0,-,0,1) the structure
DESA =4f (M x M xCT1,Ix1IxPr,+,0,-,0,1) forms a Feature Algebra of
designs if 0 =q7(0,0,true), 1 =4 (1,1,4d) and the operations as well as modi-
fications are lifted pointwise.

Lemma 3.9 If the designs f = (i,d,b) and g = (j,e,c) are products and b and
c are stable then the composition f + g is also a product. Furthermore if [is a
product and (t - b)(m - i) = b(i) then (m,m,t) - f is a product.

Proof. Since f and g are products, they both satisfy their dependences, i.e., d < i
and e < j. Since + is isotone [4] and by transitivity of <, d+ e <1+ j follows.
Since b and c are stable we have b(i) A ¢(j) = b(i+j) A c(i+j) < (bAc)(i+7),
i.e., f + g satisfies its condition. In sum (i + j,d + e, (b A ¢)(i + j)) is a product.

For the second part we have (m,m,t)- f = (m-i, m-d, t-b). By Lemma
m-d < m-17 holds. The satisfaction of the condition is preserved by the additional
assumption (¢ - b)(m - i) = b(4). O

4 Conclusion

In this paper we have shown how constraints can be embedded into the ab-
stract structure of Feature Algebra. This is important, since feature interactions
are an immanent problem of FOSD, so that measures helping to handle them
are requisite. Providing proper instruments for the formulation of constraints is
one step in this direction, which is why we think that constraints are a major
construct of FOSD and should be included in the abstract model. Future work
will be directed towards representative case studies. They will help to further
understand the structure of Feature Algebra and constraints.

Acknowledgements I thank P. Hofner and B. Moller who guided me in this
direction. The research was partially sponsored by DFG, Project FeatureFoun-
dation.

References

1. S. Apel, C. Lengauer, B. Moller, and C. Kéastner. An algebraic foundation for
automatic feature-based program synthesis. Science of Computer Programming,
75(11):1022-1047, 2010.

2. D. Batory and S. O’Malley. The design and implementation of hierarchical soft-
ware systems with reusable components. ACM Trans. Softw. Engineering and
Methodology, 1(4):355-398, 1992.

3. P. Hofner, S. Mentl, B. Moller, W. Scholz, and A. Zelend. Constraints in feature
algebra. Unpublished manuscript, 2012.

4. P. Hofner and B. Moéller. An extension for feature algebra — Extended abstract.
In Workshop on Feature-Oriented Software Development (FOSD 09), pages 75-80.
ACM Press, 2009.

5. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, Carnegie-Mellon University Software Engineering Institute, 1990.

6. R. Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line
methodologies. In J. Bosch, editor, Conference on Generative and Component-
Based Software Engineering (GCSE 01), volume 2186 of LNCS, pages 10-24.
Springer, 2001.

7. S. Mentl. Requirements in feature algebra. Master’s thesis, Institut fiir Informatik,
Universitat Augsburg, 2010.

8. H. Ossher and H. Harrison. Combination of inheritance hierarchies. In Object-
Oriented Programming, Systems, Languages, and Applications, pages 25-40. ACM
Press, 1992.

9. P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps. Generic semantics
of feature diagrams. Computer Networks, 51:456-479, 2007.

10. S. Thaker, D. Batory, D. Kitchin, and W. R. Cook. Safe composition of product
lines. In Generative Programming and Component Engineering (GPCE 07)), pages
95-104. ACM Press, 2007.

	Constraints in Feature Algebra

