Isabelle Tutorial 2: Inductively Defined Sets

Lawrence C Paulson Computer Laboratory University of Cambridge

Set Theory Primitives

- The type α set, which is similar to $\alpha \Rightarrow bool$
- The membership relation: \in
- The subset relation: \subseteq
 - Reflexive, anti-symmetric, transitive
- The empty set: { }
- The universal set: UNIV

Basic Set Theory Operations

 $e \in \{x, P(x)\} \iff P(e)$ $e \in \{x \in A, P(x)\} \iff e \in A \land P(e)$ $e \in -A \iff e \notin A$ $e \in A \cup B \iff e \in A \lor e \in B$ $e \in A \cap B \iff e \in A \land e \in B$ $e \in Pow(A) \iff e \subseteq A$

Big Union and Intersection

$$e \in \left(\bigcup x. B(x)\right) \iff \exists x. e \in B(x)$$
$$e \in \left(\bigcup x \in A. B(x)\right) \iff \exists x \in A. e \in B(x)$$
$$e \in \bigcup A \iff \exists x \in A. e \in x$$

And the analogous forms of intersections...

A Simple Set Theory Proof

000	🏽 Exa	imples.thy	\bigcirc
oo co ⊼ ⊲ ► ⊻ ⊨	🚔 🔎 🚺 🐖	🗢 🤣 🚏	
lemma "(INT x: A Un B. ((INT x: A. C x))	C x Un D) = Int (INT x: B. C	x)) Un D"	Ô
• done			
			-
-u-: Examples.thy	2% L9 (Isar	Utoks Abbrev; Script	ing)
proof (prove): step 1			Π
goal: No subgoals!			
J. J			
			A
-u-:%%- *goals*	Top L1 (Isar	Proofstate Utoks Abb	rev;)
tool-bar next			11.

Finite Set Notation

$\{a_{1,...,a_n}\} = \text{insert } a_1 (... (\text{insert } a_n \{\})_{...})$

where

$x \in \text{insert } a \ B \iff x = a \lor x \in B$

Finite Sets

A finite set is defined *inductively* in terms of {} and insert

 $\texttt{finite}(A \cup B) = (\texttt{finite} A \land \texttt{finite} B)$

 $\texttt{finite}\, A \Longrightarrow \texttt{card}(\texttt{Pow}\, A) = 2^{\texttt{card}\, A}$

Proving Theorems about Sets

- It is not practical to learn all the built-in lemmas.
- Instead, try an automatic proof method:
 - auto
 - force
 - blast
- Each uses the built-in library, comprising hundreds of facts, with powerful heuristics.

Finding Theorems about Sets

6 🕙 🔿	Step I: click this button!
🚥 🚥 🗶 🔺 🕨 🗶 🛀 🆀	A 🚺 📨 🖨 🤣 🚏
<pre>lemma fixes c :: "real" shows "finite A ⇒ setsum apply (induct A rule: finite apply auto apply (auto simp add: algebra done</pre>	<pre>Find theorems n (%x. c * f x) A = c * setsum f A" e_induct) ra_simps)</pre>
-u-: Examples.thy 5%	L13 (Isar Utoks Abbrev; Scripting)
lemma finite ?A ⇒ (∑x∈?A.	<pre>?c * ?f x) = ?c * setsum ?f ?A</pre>
-u-:%%- *response* All	L1 (Isar Messages Utoks Abbrev;)

Finding Theorems about Sets

Which Theorems Were Found?

```
000
                                     *response*
                                                                                😳 😳 🛣 🔺 🕨 🗶 🖂 🕌 🖉 😒 💱
searched for:
found 2 theorems in 0.120 secs:
Finite_Set.card_Un_Int:
  [finite ?A; finite ?B]
  \Rightarrow card ?A + card ?B = card (?A \cup ?B) + card (?A \cap ?B)
Finite_Set.card_Un_disjoint:
  [finite ?A; finite ?B; ?A \cap ?B = {}] \implies card (?A \cup ?B) = card ?A + card ?B
                       A11 L2
-u-:%%- *response*
                                  (Isar Messages Utoks Abbrev;)------
```

Inductively Defined Sets

Defining a Set Inductively

- The set of even numbers is the least set such that
 - 0 is even.
 - If n is even, then n+2 is even.
- These can be viewed as introduction rules.
- We get an *induction principle* to express that no other numbers are even.
- Induction is used throughout mathematics, and to express the semantics of programming languages.

Inductive Definitions in Isabelle

$\odot \odot \odot$			Ind.thy	\Box
🗴 00 🕰	< > X >	। 🖀 🔎 👩	🕼 🤤 🤣 🙀	
theory Ind imports Mai begin	.n			C
subsection{	[*Inductive of	definition of	of the even numbers*}	
inductive_s ZeroI: "@	set Ev :: "no) : Ev"	at set" <mark>whe</mark>	'e	
Add2I: "r	n : Ev ==> Si	uc(Suc n) :	Ev"	
-u-:**- Ind	1.thy	Top L10	(Isar Utoks Abbrev; Scripting)
Proofs for Proving m	inductive p onotonicity	redicate(s)	"Evp"	
-u-:%%- *re	esponse*	All L2	(Isar Messages Utoks Abbrev;))(

Even Numbers Belong to Ev

Proving Set Membership

Finishing the Proof

Rule Induction

- Proving something about every element of the set.
- It expresses that the inductive set is *minimal*.
- It is sometimes called "induction on derivations"
- There is a *base case* for every non-recursive introduction rule
- ...and an *inductive step* for the other rules.

Ev Has only Even Numbers

An Example of Rule Induction

One Tricky Goal Left!

000	Ind.th	у		0
co co ⊼ ◀ ▶ ⊻	H 🖀 🔎 🕦 🐖 🖨 🕇	9 🚏		
text{*All elements of lemma " $n \in Ev \implies \exists k$. apply (induct n rule:	<pre>this set are even.*} n = 2*k" Ev.induct)</pre>			Ô
<pre>apply auto apply arith done</pre>				
				4
-u-:**- Ind.thy	13% L40 (Isar Uto	ks Abbrev; Script	ing)	¥.
proof (prove): step 2				Π
goal (1 subgoal): 1. ∧k. 2 * k ∈ Ev =	⇒ ∃ka. Suc (Suc (2 * k)) = 2 * ka		
	Too difficult f	for auto,		
-u-:%%- *goals*	but easy for	arith!	ev;)	A Y
tool-bar next				11.

A Final Example

Defining Finiteness

The Union of Two Finite Sets

A Subset of a Finite Set

A Critical Point in the Proof

$\odot \odot \odot$	Ind.thy	0
∞ ∞ エ ◀ ► 포 ⋈ (🖀 🔎 🚯 🐖 😄 🤣 🚏	
lemma "[$ A \in Fin; B \subseteq A$ apply (induct A arbitrary)] ==> B ∈ Fin" v: B rule: Fin.induct)	Ô
apply auto		0
		U
		Ā
-u-:**- Ind.thy 275	% L80 (Isar Utoks Abbrev; Scripting)	
proof (prove): step 2		N
goal (1 subgoal):		
1. ∧A a B. [∧B. B ⊆ A =	$\Rightarrow B \in Fin; B \subseteq insert a A \implies B \in Fin$	
	now what??	
		U
		Ă
-u-:%%- *goals* To	op L1 (Isar Proofstate Utoks Abbrev;)	
tool-bar next		11.

Time to Try Sledgehammer!

🗯 Emacs	File Edit	Options Tools	Isabelle	Proof-Genera	J.	Maths	Tokens	Buffers	Help
0 0			Logics	thy	►				0
00 CO 👗	< > 1	🗆 🛏 🆀 📣 🚯	Comma	nds		Refu	te (C-c C	-a <r>)</r>	
lemma "El	$\Delta \in Fin:$	$B \subseteq A] => B$	Show M	e		Quic	kcheck (C	-c C-a C	-q)
apply (ind	uct A arb	itrary: B rule:	Favouri	tes	►	Disn	lav Draft	(C-cC-a)	a (c-s)
apply auto			Settings		►	Print	Draft (C-	-c C-a C-	p)
			Start Isa Exit Isal Set Isab	abelle (C-c C-s belle (C-c C-x) elle Command	;))				
			Help		▶				- 1
-u-:**- In	d.thy	27% L80	(Isar Ut	oks Abbrev;	S	cripti	ng)		Å
-u-:%%- *r	esponse*	All L1	(Isar Me	ssages Utok	s	Abbrev	;)		

Success!

The Completed Proof

$\odot \odot \odot$		Ind.thy		\odot
∞ ∞ エ ◀ ► ⊻ ►	🔒 🔎 🌔	💉 🖨 😌 🚏 👘		
<pre>lemma "[A ∈ Fin; B ⊆ apply (induct A arbitro apply auto apply (metis Fin.inser* •_def subset_insert)</pre>	A] ==> B ary: B rule: tI Int_absort	€ Fin" Fin.induct) b1 Int_commute Int_i	insert_right Int_lower1 m	em 20
) 4 14
-u-:**- Ind.thy	27% L85	(Isar Utoks Abbrev;	Scripting)	
<pre>proof (prove): step 3 goal: No subgoals!</pre>				
-u-:%%- *goals*	Top L6	(Isar Proofstate Uto	oks Abbrev;)	

Notes on Sledgehammer

- It is always available, but it cannot work miracles.
- It does not prove the goal, but returns a call to metis. This command usually works...
- The minimise option removes redundant theorems, increasing the likelihood of success.
- Calling metis directly is difficult unless you know exactly which lemmas are needed.

Counterexample Finding

- Don't waste time trying to prove impossible statements!
- Isabelle can find counterexamples quickly...
 - *quickcheck*: random testing of executable specifications (broadly interpreted)
 - *nitpick*: a more general, SAT-based counterexample finder
- Consider switching on "auto quickcheck" or "auto nitpick", although they can be slow!

Nitpick Example

	Aquama	cs	File	Edit	Options	Tools	Isabelle	Proof-General	Tokens	Maths	Window	Help
0	0						BT.th	y				En C
00	00	T	•	•	X H		-0 6		0			•
8	Def.thy	/	1	8	BT.thy	2						
lemma app ap dor	a refle oly (in oply au ne	ct_r duct to	refle t t)	ct_i	dent: "re	eflect	(reflect	: t) = t"				
lemmo	ı "refl	ect	t =	t"								
u-:**-	BT.thy	(62% (1	7,1)	(Isar Utoks A	bbrev; So	ripting)					
0	*respon	se*	_	8	*goals*	2						
Nitpi	cking	torr	nula.	••								- 11
Nitpi Fre t	.ck fou ee vari : = Br	nd a able a1 (a cou e: (Br a	ntere 12 Lf	example f	or ca	rd 'a = 4	:				
uU:%%-	*respon	se*	All (6	i,30)	(Isar Messag	jes Utoks	Abbrev)					

Other Things to Learn

- structural operational semantics (SOS): definitions and proofs
- the lsar structured proof language
- axiomatic type classes
- locales and contexts
- code generation