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Isabelle

® |sabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

® |ntegrated tool support for
* Automated provers
* Counter-example finding
* (Code generation from logical terms

e LaTeX document generation
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Higher-Order Logic

® First-order logic extended with functions and sets
® Polymorphic types, including a type of truth values
® No distinction between terms and formulas

® ML-style functional programming

“HOL = functional programming + logic”
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Basic Syntax of Formulas

formulas A, B, ... can be written as

(A) t=u ~A
A&B Al B A-->B
A<->B ALL x.A EX x. A

(Among many others)

Isabelle also supports symbols such as
<2FAV IV
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Basic Syntax of Terms

® The typed A-calculus:
* constants,c

e variables, x and flexible variables, ?x

* abstractions AX.t
* function applications t u

® Numerous infix operators and binding operators
for arithmetic, set theory, etc.
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Types

Every term has a type; Isabelle infers the types of
terms automatically. Ve write 7 :: 7

Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

A formula is simply a term of type bool.

There are types of ordered pairs and functions.

Other important types are those of the natural
numbers (nat) and integers (1nt).
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Function Types

® |nfix operators are curried functions

e + :: nat => nat => nat
e & :: bool => bool => bool

* Curried function notation: Ax y. ¢

® Function arguments can be paired

e Example:nat*nat => nat

* Paired function notation: A(x,y). ¢
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Arithmetic Types

® nat:the natural numbers (nonnegative integers)
* inductively defined: 9, Suc n
e operatorsinclude + - * div mod
* relations include < < dvd (divisibility)

® int:the integers,with+ - * div mod ...

® rat,real: + - * / sin cos ln..

® arithmetic constants and laws for these types
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Lists in Isabelle

® We illustrate data types and functions using a
reduced Isabelle theory that lacks lists.

® [he standard Isabelle environment has a
comprehensive list library:

 Functions # (cons), @ (append), map, filter,
nth, take, drop, takeWhile, dropWhile,...

e Cases:(casexsof []=1[] | xttxs = ..)

e Over 600 theorems!
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nhame of the

saieyn. ATiny Theory

theory BT imports Main begin

datatype 'a bt = the theory it builds upon
Lf

| BP Ia llla btll IIla btll ;
- declarations of types,

fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"

| "reflect (Br a tl t2) = Br a (reflect t2) (reflect t1)"

lemma reflect reflect ident: "reflect (reflect t) = t"
apply (induct t)

apply auto ‘s\\‘\\\ :
done proving a theorem

end
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Basic Constant Definitions

9 O C Def.thy
QO Z 4P Yo 0w o 6 F
theory Def imports Main begin M

text{*The square of a natural number*}
definition square :: where

text{*The concept of a prime number*}

definition prime :: where
-u-:**-  Def.thy<2> Top L10O (Isar Utoks Abbrev; Scripting )========cecccaaaa-
constants 2

prime :: "nat = bool"

-u-:%%- *response* All L2 (Isar Messages Utoks Abbrev;)----------cccccee---
Auto-saving. . .done
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Basics of Proof General

® You create or visit an Isabelle theory file within the
text editor, Emacs.

® Moving forward executes Isabelle commands; the
processed text turns blue.

® Moving backward undoes those commands.

® (o to end processes the entire theory; you can also
go to start, or go to an arbitrary point in the file.

® (o to home takes you to the end of the blue
(processed) region.
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Proof General Tools

forward and back |8 find theore

subsection{* Ackermann's Function *}

fun ack :: "nat => nat => nat" where
"ack @ n = Suc n"
| "ack (Sucm) @ = ack m 1"
| "ack (Suc m) (Suc n) = ack m Cack (Suc m) n)"
lemma less_ack2 [iff]: "j < ack 1 7"
apply (induct i1 j rule: ack.induct)
Popply auto

-u-:--- Primrec.thy 3% L16 (Isar Utoks Abbrev; Scripting )

& )

proof (prove): step 1

goal (3 subgoals):
1. An. n<ack @ n
2. Am. 1 <ackm1l = 0 < ack (Suc m) 0

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) ndl
=> Suc n < ack (Suc m) (Suc n)

Wrote /Users/1pl5/.emacs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)----=====---
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Proof by Induction

> Demolist.thy
QRO Z 4P Y. .o = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N N M

& ]

datatype 'a list = Nil | Cons 'a

fun app :: : where
' structural induction
e on the list xs
» applv auto
~u-:--- DemoList.thy Top L12 (Isar Utoks_Abk
G S base case and M

goal (2 subgoals): inductive Step
1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

induction hypothesis

-u-:%%- *goals* Top L1 (Isar
tool-bar next
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Finishing a Proof

> Demolist.thy
WO XA 4P XYM .o = 6 F
datatype 'a list = Nil | Cons 'a )

N N M

fun app :: where
I
lemma [simp]: | .
apply (induct xs)
apply auto < auto proves both subgoals
» done
~u-:--- DemolList.thy 7% L4 (Isar Utoks Abbrev; Scripting J======ecccccccaaaax
)
proof (prove): step 2
goal:
No subgoals!
VVe must still issue “done”™ 9
to register the theorem .
-u-:%%- *goals* Top L1 . e Vi o Arasai it s SRR
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Another Proof Attempt

NN Y S,

> Demolist.thy

QRO Z 4P Y. .o = 6P

done 2
P, - list reversal function

lemma rev_rev:
oply (induct xs)
» poply auto
done A

-u-:--- DemoList.thy 22% L20  (Isar Utoks Abbrev; Scripting )----=====eeccecaa--

proof (prove): step 1

goal (2 subgoals):
1. rev (rev Nil) = Nil
2. Na xs. rev (rev xs) = xs = rev (rev (Cons a xs)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----====ecccccaa-- -
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy
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Stuck!

> Demolist.thy
QDA 4P Yo = 6P
done P

N NN

fun revl wherg ()
I

lemma rev_rev: ,
apply (induct xs)
apply auto

» done

auto made progress
but didn’t finish

-u-:--- DemolList.thy 22% L22 (Isar Utoks Abbrev; Scrifft

proof (prove): step 2

goal (1 subgoal):
1. Aa xs. rev (rev xs) = xs = rev (app (rev xs) (Cons a Nil)) = Cons a xs

looks like we need a lemma

relating rev and app!

-u-:%%- *goals* Top L1 (Isa
tool-bar next
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Stuck Again!

> Demolist.thy

QDR 4P Yo = 6P

fun rev where -

[t (e s ne N N

™ /N M

lemma [simp]: .
apply (induct xs
apply auto

» done

lemma rev_rev:
apply (induct xs)
-u-:--- DemolList.thy 21% L24 (Isar Utoks Abbrev; Scripting )

proof (prove): step 2
goal (1 subgoal): But it needs another lemma!

1. Aa xs.

rev (app xs ys) = app (rev ys) Crey xs) — IECCISUIS NI Tal-R o SRV]of-{eE:1))

app (app i(rev ysyi(rev xs)) KCons_a Nil) =

app «(rev ys) Capp rev xs )i {Cons a Ni

-u-:%%- *goals*® Top L1 (Isar Proofstate Utoks Abbrev;)-------ceeecaaaaaax
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy |
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The Final Piece of the Jigsaw

Demolist.thy

QDA 4 P X2 G . O o P

Iun rev wnhere
I

lemma [simp]:
(induct xs)
[ auto
done

lemma [simp]:
(induct xs)
-u-:**- DemolList.thy 22% L20  (Isar Utoks Abbrev; Scripting )----------ccceeeono

proof (prove): step 1

goal (2 subgoals):
1. app (app Nil ys) zs = app Nil (app ys zs)
2. N\a xs.
app (app xs ys) zs = app xs (app ys zs) =
app (app (Cons a xs) ys) zs = app (Cons a xs) (app ys zs)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------=-cccecaaaaax
tool-bar goto
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The Finished Proof

DO E 4> Y -

fun rev where
|

lemma [simp]:
apply (induct xs)
apply auto
done
lemma [simp]:
apply (induct xs)

nply auto
done

lemma rev_rev:
oply (induct xs)

> Demolist.thy

O S oF

cﬁO.g auto
done
-u-:--- DemoList.thy 18% L35 (Isar Utoks Abbrev;)-=======cecccccccccccccccccn--

Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/Demolist.thy
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Now, a deeper look...
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Goals and Subgoals

® We start with one subgoal: the statement to be
proved.

® Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

* But certain methods, notably auto and
simp_all, operate on all outstanding subgoals.

® We finish when no subgoals remain. The theorem is
proved!
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Structure of a Subgoal

®0O0 » BT.thy
DCOE 4 P> Y .o 0w o 0P
datatype 'a bt = F
Lf 2
| Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt = "a bt" where

"reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect tl1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"

apply (induct t)
» apply auto ?
done v
-u-:**- BT.thy 10% L3 (Isar Utoks Abbrev; Scripting )---------------- =

assumptions (two

induction hypotheses)

2. N\a t1 t2.
[reflect (reflect tl1) = tl; reflect (reflect t2) = t2]

%> reflect (reflect (Br a t1 t2)) = Br a tl1 t2

Top L1 (Isar Proofstate Utoks Abbrevi)-----------------.

parameters (arbitrary

local variables)

conclusion
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Proof by Rewriting

app (Cons x xs) ys=)Cons x (app XS ys) <
rev (Cons x xs)=papp (rev xs) (Cons x Nil)
rev (app xs ys)=papp (rev ys) (rev xs)« induction hyp
app (app xs ys) zs=papp XS (app YS ZS) <« M

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =

rev (Cons a (app Xs ys)) =

app (rev (app xs ys)) (Cons a Nil) =

app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))
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Conditional Rewrite Rules

Xxs # [] = hd (xs @ ys) = hd Xxs
n<m= (Suc m) - n=Suc (m - n)
[|la # @; b # 8|] = b / (a*b) =1 / a

® first match the left-hand side, then recursively
prove the conditions by simplification.

® |f successful, applying the resulting rewrite rule.
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The Methods simp and auto

® simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

e auto simplifies all subgoals, not just the first.
® auto also applies all obvious logical steps

e Splitting conjunctive goals and disjunctive
assumptions

* Performing obvious quantifier removal
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Unusual Recursions

elole. s Primrec.thy )

Two variables in gRMEE "
the indUCtion! ermann’'s Func

Two variables in
the recursion!

ue

s "nat => nat => nat

1) (Suc n) = ack m Cack (Suc m) n)" A SPeCiaI indUCtion

lemma less_ax iff): "j < ack i 3/
apply (induct i1 j rule: ack.induct)
Popply auto
-u-:--- Primrec.thy 3% L16

The subgoals follow

proof (prove): step 1 the recursion!

goal (3 subgoals):

1. An. n<ack @ n

2. A\m. 1 <ackml1l = 0 < ack (Suc m) @

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) n)l
= Suc n < ack (Suc m) (Suc n)

-/

A

v

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)---------=---c----
Wrote /Users/1pl5/.emacs 4

Tuesday, 18 September 12



Recursion: Key Points

® Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

® Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

fun produces a special induction rule.
fun can handle nested recursion.

fun also handles pattern matching, which it
completes.
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Another Unusual Recursion

000 s MergeSort.thy recursive calls are
RS N NAR BN AR R cuarded by conditions
fun merge :: "'a list = 'a list = 'a list"
where
"merge (x#xs) (y#ys) =
(1f x < y then x # merge xs (y#ys) else y # merge (x#xs) ys)" [

| "merge xs [] = xs"
| "merge [] ys = ys"

lemma set_merge[simp]: "set (merge xs ys) = set xs U set ys"
apply(induct xs ys rule: merge.induct)

»apply auto A
done v
-u-:--- MergeSort.thy 19% L : : e sy DELTRELELEEEE
2 induction hypotheses, i
proof (prove): step 1 ot
guarded by conditions!
goal (3 subgoals):
1. Ax xs y ys.
[x <y = set (merge xs (y # ys)) = set xs U set (y # ys);
= x £y = set (merge (x # xs) ys) = set (x # xs) U set ysl
=> set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs []) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] U set (v # va) '

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----=-cccccceaa--
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy
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A Helpful Tip

-gcs File Edit Options Tools WG E s Tokens Buffers Help
enNnon geSot  Logics s

R C e e @ Commands 3

— : Show Me P

lemma ordered_merge [simp]: “ordered (merge )

apply (induct xs ys rule: merge.induct) Favourltes .

opply simp_all

+ Use Lnear Undo

opply (auto split: list.split

. simp “1% Start Isabelle (C~c C~s) Use Find Theorems Form
Exit Isabelle (C-c C-x) Display B
proof (prove): step 3 Set Isabelle Command Advanced Display 3
. . , IR  Auto Nipick
No subgoals! elp | b Auto Solve Time Limit
| i v Auto Solve
Reset Settings v Auto Quickcheck
Save Settings Auto Counterexample Time Limit
Theorem Dependencies
Debugging
Clobal Timing
Trace Unification
Trace Rules
Trace Simplifier Depth
TracerSimplifier
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)----------ceeeeeea-

’
S
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