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Isabelle

• Isabelle is a generic interactive theorem prover, 
developed by Lawrence Paulson (Cambridge) and 
Tobias Nipkow (Munich). First release in 1986.

• Integrated tool support for

• Automated provers

• Counter-example finding

• Code generation from logical terms 

• LaTeX document generation
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Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

• ML-style functional programming

“HOL = functional programming + logic”
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Basic Syntax of Formulas
formulas A, B, ... can be written as

(A) t = u ~A

A & B A | B A -­‐-­‐> B

A <-­‐> B ALL x. A EX x. A

(Among many others)

Isabelle also supports symbols such as 
≤ ≥ ≠ ∧ ∨ → ↔ ∀ ∃
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Basic Syntax of Terms

• The typed λ-calculus: 

• constants, c 

• variables, x and flexible variables, ?x

• abstractions λx. t 

• function applications t u

• Numerous infix operators and binding operators 
for arithmetic, set theory, etc.
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Types

• Every term has a type; Isabelle infers the types of 
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type 
classes (inspired by the Haskell language) that 
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

• Other important types are those of the natural 
numbers (nat) and integers (int).
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Function Types

• Infix operators are curried functions

• +	
  ::	
  nat	
  =>	
  nat	
  =>	
  nat

• &	
  ::	
  bool	
  =>	
  bool	
  =>	
  bool

• Curried function notation: λx y. t

• Function arguments can be paired

• Example: nat*nat	
  =>	
  nat

• Paired function notation: λ(x,y). t
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Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0,  Suc n

• operators include +	
  -­‐	
  *	
  div	
  mod

• relations include <	
  ≤	
  dvd (divisibility)

• int: the integers, with +	
  -­‐	
  *	
  div	
  mod ...

• rat, real:  +	
  -­‐	
  *	
  /	
  sin	
  cos	
  ln ...

• arithmetic constants and laws for these types
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Lists in Isabelle

• We illustrate data types and functions using a 
reduced Isabelle theory that lacks lists.

• The standard Isabelle environment has a 
comprehensive list library:

• Functions # (cons), @ (append), map, filter, 
nth, take, drop, takeWhile, dropWhile, ...

• Cases: (case xs of [] ⇒ [] | x#xs ⇒ ...)

• Over 600 theorems!
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A Tiny Theory
theory	
  BT	
  imports	
  Main	
  begin

datatype	
  'a	
  bt	
  =
	
  	
  	
  	
  Lf
	
  	
  |	
  Br	
  'a	
  	
  "'a	
  bt"	
  	
  "'a	
  bt"

fun	
  reflect	
  ::	
  "'a	
  bt	
  =>	
  'a	
  bt"	
  where
	
  	
  "reflect	
  Lf	
  =	
  Lf"
|	
  "reflect	
  (Br	
  a	
  t1	
  t2)	
  =	
  Br	
  a	
  (reflect	
  t2)	
  (reflect	
  t1)"

lemma	
  reflect_reflect_ident:	
  "reflect	
  (reflect	
  t)	
  =	
  t"
	
  	
  apply	
  (induct	
  t)
	
  	
  	
  apply	
  auto
	
  	
  done

end

name of the 
new theory

the theory it builds upon

declarations of types, 
constants, etc

proving a theorem
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Basic Constant Definitions
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Basics of Proof General

• You create or visit an Isabelle theory file within the 
text editor, Emacs.

• Moving forward executes Isabelle commands; the 
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also 
go to start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue 
(processed) region.

Tuesday, 18 September 12



Proof General Tools
forward and back find theorems

stop!!

query theorem
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Proof by Induction

structural induction 
on the list xs

base case and 
inductive step

induction hypothesis
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Finishing a Proof

auto proves both subgoals

We must still issue “done” 
to register the theorem
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Another Proof Attempt

list reversal function

Can we prove both subgoals?
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Stuck!

auto made progress 
but didn’t finish

looks like we need a lemma 
relating rev and app!
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Stuck Again!

we dreamt up a lemma...

But it needs another lemma!
(Generalising this subgoal) 
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The Final Piece of the Jigsaw
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The Finished Proof
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Now, a deeper look...
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Goals and Subgoals

• We start with one subgoal: the statement to be 
proved.

• Proof tactics and methods typically replace a single 
subgoal by zero or more new subgoals.

• But certain methods, notably auto and 
simp_all, operate on all outstanding subgoals.

• We finish when no subgoals remain. The theorem is 
proved!
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Structure of a Subgoal

assumptions (two 
induction hypotheses)

conclusion

parameters (arbitrary 
local variables)
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Proof by Rewriting
app	
  (Cons	
  x	
  xs)	
  ys	
  =	
  Cons	
  x	
  (app	
  xs	
  ys)
	
  	
  	
  rev	
  (Cons	
  x	
  xs)	
  =	
  app	
  (rev	
  xs)	
  (Cons	
  x	
  Nil)
	
  	
  	
  rev	
  (app	
  xs	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  xs)
app	
  (app	
  xs	
  ys)	
  zs	
  =	
  app	
  xs	
  (app	
  ys	
  zs)

recursive defns

lemma

induction hyp

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =
rev	
  (Cons	
  a	
  (app	
  xs	
  ys))	
  =
app	
  (rev	
  (app	
  xs	
  ys))	
  (Cons	
  a	
  Nil)	
  =
app	
  (app	
  (rev	
  ys)	
  (rev	
  xs))	
  (Cons	
  a	
  Nil)	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))

app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))
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Conditional Rewrite Rules

xs	
  ≠	
  []	
  ⇒	
  hd	
  (xs	
  @	
  ys)	
  =	
  hd	
  xs

n	
  ≤	
  m	
  ⇒	
  (Suc	
  m)	
  -­‐	
  n	
  =	
  Suc	
  (m	
  -­‐	
  n)

[|a	
  ≠	
  0;	
  b	
  ≠	
  0|]	
  ⇒	
  b	
  /	
  (a*b)	
  =	
  1	
  /	
  a

• First match the left-hand side, then recursively 
prove the conditions by simplification.

• If successful, applying the resulting rewrite rule.
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The Methods simp and auto 

• simp performs rewriting (along with simple 
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first. 

• auto also applies all obvious logical steps

• Splitting conjunctive goals and disjunctive 
assumptions

• Performing obvious quantifier removal
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Unusual Recursions

Two variables in 
the recursion!

Two variables in 
the induction!

A special induction rule!

The subgoals follow 
the recursion!

Tuesday, 18 September 12



Recursion: Key Points

• Recursion in one variable, following the structure 
of a datatype declaration, is called primitive.

• Recursion in multiple variables, terminating by size 
considerations, can be handled using fun.

• fun produces a special induction rule.

• fun can handle nested recursion.

• fun also handles pattern matching, which it 
completes.
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Another Unusual Recursion

2 induction hypotheses, 
guarded by conditions!

recursive calls are 
guarded by conditions
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A Helpful Tip
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