Isabelle Tutorial I: Verifying Functional Programs

Lawrence C Paulson Computer Laboratory University of Cambridge

Isabelle

- Isabelle is a generic interactive theorem prover, developed by Lawrence Paulson (Cambridge) and Tobias Nipkow (Munich). First release in 1986.
- Integrated tool support for
 - Automated provers
 - Counter-example finding
 - Code generation from logical terms
 - LaTeX document generation

Higher-Order Logic

- First-order logic extended with functions and sets
- Polymorphic types, including a type of truth values
- No distinction between terms and formulas
- ML-style functional programming

"HOL = functional programming + logic"

Basic Syntax of Formulas formulas A, B, ... can be written as (A) ~A t = uA & B A | B A --> B A < -> B ALL x. A EX x.A (Among many others) Isabelle also supports symbols such as $\leq \geq \neq \land \lor \rightarrow \leftrightarrow \forall \exists$

Basic Syntax of Terms

- The typed λ -calculus:
 - constants, c
 - variables, x and *flexible* variables, ?x
 - abstractions $\lambda x. t$
 - function applications t u
- Numerous infix operators and binding operators for arithmetic, set theory, etc.

Types

- Every term has a type; Isabelle infers the types of terms automatically. We write $t :: \tau$
- Types can be *polymorphic*, with a system of type classes (inspired by the Haskell language) that allows sophisticated overloading.
- A formula is simply a term of type bool.
- There are types of ordered pairs and functions.
- Other important types are those of the natural numbers (nat) and integers (int).

Function Types

- Infix operators are curried functions
 - + :: nat => nat => nat
 - & :: bool => bool => bool
 - Curried function notation: $\lambda x y. t$
- Function arguments can be paired
 - Example: nat*nat => nat
 - Paired function notation: $\lambda(x,y)$. t

Arithmetic Types

- nat: the natural numbers (nonnegative integers)
 - inductively defined: 0, Suc *n*
 - operators include + * div mod
 - relations include < \leq dvd (divisibility)
- int: the integers, with + * div mod ...
- rat, real: + * / sin cos ln...
- arithmetic constants and laws for these types

Lists in Isabelle

- We illustrate data types and functions using a reduced Isabelle theory that lacks lists.
- The standard Isabelle environment has a comprehensive list library:
 - Functions # (cons), @ (append), map, filter, nth, take, drop, takeWhile, dropWhile, ...
 - Cases: (case xs of [] \Rightarrow [] | x#xs \Rightarrow ...)
 - Over 600 theorems!

Basic Constant Definitions

000			Def.thy		\bigcirc
00 00	⊼ ∢ ⊳ ⊻ →	। 🖀 🔎 🌔) 🕼 🗢 😂 👘 👘		
theory [Def imports Mai	n begin			n
text{*Th definiti "squar	ne square of a ion square :: " re n = n*n"	natural num nat => nat"	ber*} where		
text{*Th definiti	ne concept of a ion prime :: "n	<pre>prime numb at => bool"</pre>	er*} where		0
"prime	$p = (1$	∀m. m d∨d p	\rightarrow m = 1 \vee m = p))") 4 •
-u-:**-	Def.thy<2>	Top L10	(Isar Utoks Abbrev;	Scripting)	
constant prime	ts :: "nat ⇒ bool	"			
-u-:%%-	<pre>*response*</pre>	All L2	(Isar Messages Utoks	Abbrev;)	
Auto-sav	vingdone				1

Basics of Proof General

- You create or visit an Isabelle theory file within the text editor, Emacs.
- Moving forward executes Isabelle commands; the processed text turns blue.
- Moving **backward** undoes those commands.
- Go to end processes the entire theory; you can also go to start, or go to an arbitrary point in the file.
- Go to home takes you to the end of the blue (processed) region.

Proof by Induction

Finishing a Proof

Another Proof Attempt

000	DemoList.thy	\bigcirc
00 00 🛛 🔺 🕨	🗴 🛏 🖀 🗢 🚯 🕼 🗢 😵	
done fun rev where "rev Nil = Nil"	list re	versal function
<pre>lemma rev_rev: "rev ()</pre>	app (rev xs) (Cons x Nil)" rev xs) = xs"	
apply (induct xs) apply auto done		4
-u-: DemoList.thy	22% L20 (Isar Utoks Abbrev; Scripting)
<pre>proof (prove): step 1 aoal (2 subaoals):</pre>	Can we prove b	oth subgoals?
1. rev (rev Nil) = N 2. Aa xs. rev (rev)	il $(s) = xs \implies rev (rev (Cons a xs)) = Cons a$	a xs
-u-:%%- *goals*	Top L1 (Isar Proofstate Utoks Abbrev	(;)

Stuck!

Stuck Again!

The Final Piece of the Jigsaw

```
000
                                  DemoList.thy
                                                     9
\infty \infty T
                                    "© በ 🕼 🤤
                       V >-4
 fun rev where
   "rev Nil = Nil"
 "rev (Cons x xs) = app (rev xs) (Cons x Nil)"
lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
  apply (induct xs)
  apply auto
   done
lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
  apply (induct xs)
-u-:**- DemoList.thy 22% L20 (Isar Utoks Abbrev; Scripting )-
 proof (prove): step 1
 goal (2 subgoals):
 1. app (app Nil ys) zs = app Nil (app ys zs)
  2. Aa xs.
       app (app xs ys) zs = app xs (app ys zs) \Rightarrow
       app (app (Cons a xs) ys) zs = app (Cons a xs) (app ys zs)
-u-:%%- *goals*
                       Top L1
                                 (Isar Proofstate Utoks Abbrev;)------
tool-bar goto
```

The Finished Proof

```
000
                                 DemoList.thy
                                                                            \bigcirc
00 00 🔳 🔺 🕨 🗶 🛏 🖀 🔎 🗊 📨 🤤 😔 🚏
fun rev where
  "rev Nil = Nil"
"rev (Cons x xs) = app (rev xs) (Cons x Nil)"
lemma [simp]: "app (app xs ys) zs = app xs (app ys zs)"
  apply (induct xs)
  apply auto
  done
lemma [simp]: "rev (app xs ys) = app (rev ys) (rev xs)"
  apply (induct xs)
  apply auto
  done
lemma rev_rev: "rev (rev xs) = xs"
  apply (induct xs)
  apply auto
  done
-u-:--- DemoList.thy 18% L35 (Isar Utoks Abbrev;)------
Wrote /Users/lp15/Dropbox/ACS/1 - Introduction/DemoList.thy
```

Now, a deeper look...

Goals and Subgoals

- We start with one subgoal: the statement to be proved.
- Proof *tactics* and *methods* typically replace a single subgoal by zero or more new subgoals.
 - But certain methods, notably auto and simp_all, operate on *all* outstanding subgoals.
- We finish when no subgoals remain. The theorem is proved!

Structure of a Subgoal

Proof by Rewriting


```
rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))
```

```
rev (app (Cons a xs) ys) =
rev (Cons a (app xs ys)) =
app (rev (app xs ys)) (Cons a Nil) =
app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))
```

```
app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))
```

Conditional Rewrite Rules

- $xs \neq [] \Rightarrow hd (xs @ ys) = hd xs$
- $n \leq m \Rightarrow (Suc m) n = Suc (m n)$

$$[|a \neq 0; b \neq 0|] \Rightarrow b / (a*b) = 1 / a$$

- First match the left-hand side, then **recursively** prove the conditions by simplification.
- If successful, applying the resulting rewrite rule.

The Methods simp and auto

- simp performs *rewriting* (along with simple arithmetic simplification) on the *first* subgoal
- auto simplifies all subgoals, not just the first.
- auto also applies all obvious *logical steps*
 - Splitting conjunctive goals and disjunctive assumptions
 - Performing obvious quantifier removal

Unusual Recursions

Recursion: Key Points

- Recursion in one variable, following the structure of a datatype declaration, is called *primitive*.
- Recursion in multiple variables, terminating by size considerations, can be handled using fun.
 - fun produces a special induction rule.
 - fun can handle **nested recursion**.
 - fun also handles *pattern matching*, which it **completes**.

Another Unusual Recursion

recursive calls are 000 MergeSort.thy 00 00 🔳 🔺 🕨 🗶 🛏 🖀 🔎 🚺 💉 🤤 😏 guarded by conditions fun merge :: "'a list \Rightarrow 'a list \Rightarrow 'a list" where "merge (x#xs) (y#ys) =(if $x \le y$ then x # merge xs (y#ys) else y # merge (x#xs) ys)" "merge xs [] = xs""merge [] ys = ys" lemma set_merge[simp]: "set (merge xs ys) = set xs ∪ set ys" apply(induct xs ys rule: merge.induct) apply auto done -u-:--- MergeSort.thy 19% L7 2 induction hypotheses, proof (prove): step 1 guarded by conditions! goal (3 subgoals): 1. ∧x xs y ys. $[x \le y \implies set (merge xs (y # ys)) = set xs \cup set (y # ys);$ $\neg x \le y \implies$ set (merge (x # xs) ys) = set (x # xs) \cup set ys] \Rightarrow set (merge (x # xs) (y # ys)) = set (x # xs) \cup set (y # ys) 2. $\Lambda xs.$ set (merge xs []) = set xs \cup set [] 3. ∧v va. set (merge [] (v # va)) = set [] ∪ set (v # va) -u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-Wrote /Users/lp15/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

A Helpful Tip

