
 Isabelle Tutorial 1:
Verifying Functional 

Programs
Lawrence C Paulson

Computer Laboratory
University of Cambridge

Tuesday, 18 September 12



Isabelle

• Isabelle is a generic interactive theorem prover, 
developed by Lawrence Paulson (Cambridge) and 
Tobias Nipkow (Munich). First release in 1986.

• Integrated tool support for

• Automated provers

• Counter-example finding

• Code generation from logical terms 

• LaTeX document generation

Tuesday, 18 September 12



Higher-Order Logic

• First-order logic extended with functions and sets

• Polymorphic types, including a type of truth values

• No distinction between terms and formulas

• ML-style functional programming

“HOL = functional programming + logic”

Tuesday, 18 September 12



Basic Syntax of Formulas
formulas A, B, ... can be written as

(A) t = u ~A

A & B A | B A -­‐-­‐> B

A <-­‐> B ALL x. A EX x. A

(Among many others)

Isabelle also supports symbols such as 
≤ ≥ ≠ ∧ ∨ → ↔ ∀ ∃

Tuesday, 18 September 12



Basic Syntax of Terms

• The typed λ-calculus: 

• constants, c 

• variables, x and flexible variables, ?x

• abstractions λx. t 

• function applications t u

• Numerous infix operators and binding operators 
for arithmetic, set theory, etc.

Tuesday, 18 September 12



Types

• Every term has a type; Isabelle infers the types of 
terms automatically. We write t :: τ

• Types can be polymorphic, with a system of type 
classes (inspired by the Haskell language) that 
allows sophisticated overloading.

• A formula is simply a term of type bool.

• There are types of ordered pairs and functions.

• Other important types are those of the natural 
numbers (nat) and integers (int).

Tuesday, 18 September 12



Function Types

• Infix operators are curried functions

• +	
  ::	
  nat	
  =>	
  nat	
  =>	
  nat

• &	
  ::	
  bool	
  =>	
  bool	
  =>	
  bool

• Curried function notation: λx y. t

• Function arguments can be paired

• Example: nat*nat	
  =>	
  nat

• Paired function notation: λ(x,y). t

Tuesday, 18 September 12



Arithmetic Types

• nat: the natural numbers (nonnegative integers)

• inductively defined: 0,  Suc n

• operators include +	
  -­‐	
  *	
  div	
  mod

• relations include <	
  ≤	
  dvd (divisibility)

• int: the integers, with +	
  -­‐	
  *	
  div	
  mod ...

• rat, real:  +	
  -­‐	
  *	
  /	
  sin	
  cos	
  ln ...

• arithmetic constants and laws for these types

Tuesday, 18 September 12



Lists in Isabelle

• We illustrate data types and functions using a 
reduced Isabelle theory that lacks lists.

• The standard Isabelle environment has a 
comprehensive list library:

• Functions # (cons), @ (append), map, filter, 
nth, take, drop, takeWhile, dropWhile, ...

• Cases: (case xs of [] ⇒ [] | x#xs ⇒ ...)

• Over 600 theorems!

Tuesday, 18 September 12



A Tiny Theory
theory	
  BT	
  imports	
  Main	
  begin

datatype	
  'a	
  bt	
  =
	
  	
  	
  	
  Lf
	
  	
  |	
  Br	
  'a	
  	
  "'a	
  bt"	
  	
  "'a	
  bt"

fun	
  reflect	
  ::	
  "'a	
  bt	
  =>	
  'a	
  bt"	
  where
	
  	
  "reflect	
  Lf	
  =	
  Lf"
|	
  "reflect	
  (Br	
  a	
  t1	
  t2)	
  =	
  Br	
  a	
  (reflect	
  t2)	
  (reflect	
  t1)"

lemma	
  reflect_reflect_ident:	
  "reflect	
  (reflect	
  t)	
  =	
  t"
	
  	
  apply	
  (induct	
  t)
	
  	
  	
  apply	
  auto
	
  	
  done

end

name of the 
new theory

the theory it builds upon

declarations of types, 
constants, etc

proving a theorem

Tuesday, 18 September 12



Basic Constant Definitions

Tuesday, 18 September 12



Basics of Proof General

• You create or visit an Isabelle theory file within the 
text editor, Emacs.

• Moving forward executes Isabelle commands; the 
processed text turns blue.

• Moving backward undoes those commands.

• Go to end processes the entire theory; you can also 
go to start, or go to an arbitrary point in the file.

• Go to home takes you to the end of the blue 
(processed) region.

Tuesday, 18 September 12



Proof General Tools
forward and back find theorems

stop!!

query theorem

Tuesday, 18 September 12



Proof by Induction

structural induction 
on the list xs

base case and 
inductive step

induction hypothesis

Tuesday, 18 September 12



Finishing a Proof

auto proves both subgoals

We must still issue “done” 
to register the theorem

Tuesday, 18 September 12



Another Proof Attempt

list reversal function

Can we prove both subgoals?

Tuesday, 18 September 12



Stuck!

auto made progress 
but didn’t finish

looks like we need a lemma 
relating rev and app!

Tuesday, 18 September 12



Stuck Again!

we dreamt up a lemma...

But it needs another lemma!
(Generalising this subgoal) 

Tuesday, 18 September 12



The Final Piece of the Jigsaw

Tuesday, 18 September 12



The Finished Proof

Tuesday, 18 September 12



Now, a deeper look...

Tuesday, 18 September 12



Goals and Subgoals

• We start with one subgoal: the statement to be 
proved.

• Proof tactics and methods typically replace a single 
subgoal by zero or more new subgoals.

• But certain methods, notably auto and 
simp_all, operate on all outstanding subgoals.

• We finish when no subgoals remain. The theorem is 
proved!

Tuesday, 18 September 12



Structure of a Subgoal

assumptions (two 
induction hypotheses)

conclusion

parameters (arbitrary 
local variables)

Tuesday, 18 September 12



Proof by Rewriting
app	
  (Cons	
  x	
  xs)	
  ys	
  =	
  Cons	
  x	
  (app	
  xs	
  ys)
	
  	
  	
  rev	
  (Cons	
  x	
  xs)	
  =	
  app	
  (rev	
  xs)	
  (Cons	
  x	
  Nil)
	
  	
  	
  rev	
  (app	
  xs	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  xs)
app	
  (app	
  xs	
  ys)	
  zs	
  =	
  app	
  xs	
  (app	
  ys	
  zs)

recursive defns

lemma

induction hyp

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =	
  app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))

rev	
  (app	
  (Cons	
  a	
  xs)	
  ys)	
  =
rev	
  (Cons	
  a	
  (app	
  xs	
  ys))	
  =
app	
  (rev	
  (app	
  xs	
  ys))	
  (Cons	
  a	
  Nil)	
  =
app	
  (app	
  (rev	
  ys)	
  (rev	
  xs))	
  (Cons	
  a	
  Nil)	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))

app	
  (rev	
  ys)	
  (rev	
  (Cons	
  a	
  xs))	
  =
app	
  (rev	
  ys)	
  (app	
  (rev	
  xs)	
  (Cons	
  a	
  Nil))

Tuesday, 18 September 12



Conditional Rewrite Rules

xs	
  ≠	
  []	
  ⇒	
  hd	
  (xs	
  @	
  ys)	
  =	
  hd	
  xs

n	
  ≤	
  m	
  ⇒	
  (Suc	
  m)	
  -­‐	
  n	
  =	
  Suc	
  (m	
  -­‐	
  n)

[|a	
  ≠	
  0;	
  b	
  ≠	
  0|]	
  ⇒	
  b	
  /	
  (a*b)	
  =	
  1	
  /	
  a

• First match the left-hand side, then recursively 
prove the conditions by simplification.

• If successful, applying the resulting rewrite rule.

Tuesday, 18 September 12



The Methods simp and auto 

• simp performs rewriting (along with simple 
arithmetic simplification) on the first subgoal

• auto simplifies all subgoals, not just the first. 

• auto also applies all obvious logical steps

• Splitting conjunctive goals and disjunctive 
assumptions

• Performing obvious quantifier removal

Tuesday, 18 September 12



Unusual Recursions

Two variables in 
the recursion!

Two variables in 
the induction!

A special induction rule!

The subgoals follow 
the recursion!

Tuesday, 18 September 12



Recursion: Key Points

• Recursion in one variable, following the structure 
of a datatype declaration, is called primitive.

• Recursion in multiple variables, terminating by size 
considerations, can be handled using fun.

• fun produces a special induction rule.

• fun can handle nested recursion.

• fun also handles pattern matching, which it 
completes.

Tuesday, 18 September 12



Another Unusual Recursion

2 induction hypotheses, 
guarded by conditions!

recursive calls are 
guarded by conditions

Tuesday, 18 September 12



A Helpful Tip

Tuesday, 18 September 12


