Isabelle Tutorial |:
Verifying Functional
Programs

Lawrence C Paulson

Computer Laboratory
University of Cambridge

eeeeeeeeeeeeeeeeeeeee

Isabelle

® |sabelle is a generic interactive theorem prover,
developed by Lawrence Paulson (Cambridge) and
Tobias Nipkow (Munich). First release in 1986.

® |ntegrated tool support for
* Automated provers
* Counter-example finding
* (Code generation from logical terms

e LaTeX document generation

Tuesday, 18 September 12

Higher-Order Logic

® First-order logic extended with functions and sets
® Polymorphic types, including a type of truth values
® No distinction between terms and formulas

® ML-style functional programming

“HOL = functional programming + logic”

Tuesday, 18 September 12

Basic Syntax of Formulas

formulas A, B, ... can be written as

(A) t=u ~A
A&B Al B A-->B
A<->B ALL x.A EX x. A

(Among many others)

Isabelle also supports symbols such as
<2FAV IV

Tuesday, 18 September 12

Basic Syntax of Terms

® The typed A-calculus:
* constants,c

e variables, x and flexible variables, ?x

* abstractions AX.t
* function applications t u

® Numerous infix operators and binding operators
for arithmetic, set theory, etc.

Tuesday, 18 September 12

Types

Every term has a type; Isabelle infers the types of
terms automatically. Ve write 7 :: 7

Types can be polymorphic, with a system of type
classes (inspired by the Haskell language) that
allows sophisticated overloading.

A formula is simply a term of type bool.

There are types of ordered pairs and functions.

Other important types are those of the natural
numbers (nat) and integers (1nt).

Tuesday, 18 September 12

Function Types

® |nfix operators are curried functions

e + :: nat => nat => nat
e & :: bool => bool => bool

* Curried function notation: Ax y. ¢

® Function arguments can be paired

e Example:nat*nat => nat

* Paired function notation: A(x,y). ¢

Tuesday, 18 September 12

Arithmetic Types

® nat:the natural numbers (nonnegative integers)
* inductively defined: 9, Suc n
e operatorsinclude + - * div mod
* relations include < < dvd (divisibility)

® int:the integers,with+ - * div mod ...

® rat,real: + - * / sin cos ln..

® arithmetic constants and laws for these types

Tuesday, 18 September 12

Lists in Isabelle

® We illustrate data types and functions using a
reduced Isabelle theory that lacks lists.

® [he standard Isabelle environment has a
comprehensive list library:

 Functions # (cons), @ (append), map, filter,
nth, take, drop, takeWhile, dropWhile,...

e Cases:(casexsof []=1[] | xttxs = ..)

e Over 600 theorems!

Tuesday, 18 September 12

nhame of the

saieyn. ATiny Theory

theory BT imports Main begin

datatype 'a bt = the theory it builds upon
Lf

| BP Ia llla btll IIla btll ;
- declarations of types,

fun reflect :: "'a bt => 'a bt" where constants, etc
"reflect Lf = Lf"

| "reflect (Br a tl t2) = Br a (reflect t2) (reflect t1)"

lemma reflect reflect ident: "reflect (reflect t) = t"
apply (induct t)

apply auto ‘s\\‘\\\ :
done proving a theorem

end

Tuesday, 18 September 12

Basic Constant Definitions

9 O C Def.thy
QO Z 4P Yo 0w o 6 F
theory Def imports Main begin M

text{*The square of a natural number*}
definition square :: where

text{*The concept of a prime number*}

definition prime :: where
-u-:**- Def.thy<2> Top L10O (Isar Utoks Abbrev; Scripting)========cecccaaaa-
constants 2

prime :: "nat = bool"

-u-:%%- *response* All L2 (Isar Messages Utoks Abbrev;)----------cccccee---
Auto-saving. . .done

Tuesday, 18 September 12

Basics of Proof General

® You create or visit an Isabelle theory file within the
text editor, Emacs.

® Moving forward executes Isabelle commands; the
processed text turns blue.

® Moving backward undoes those commands.

® (o to end processes the entire theory; you can also
go to start, or go to an arbitrary point in the file.

® (o to home takes you to the end of the blue
(processed) region.

Tuesday, 18 September 12

Proof General Tools

forward and back |8 find theore

subsection{* Ackermann's Function *}

fun ack :: "nat => nat => nat" where
"ack @ n = Suc n"
| "ack (Sucm) @ = ack m 1"
| "ack (Suc m) (Suc n) = ack m Cack (Suc m) n)"
lemma less_ack2 [iff]: "j < ack 1 7"
apply (induct i1 j rule: ack.induct)
Popply auto

-u-:--- Primrec.thy 3% L16 (Isar Utoks Abbrev; Scripting)

&)

proof (prove): step 1

goal (3 subgoals):
1. An. n<ack @ n
2. Am. 1 <ackm1l = 0 < ack (Suc m) 0

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) ndl
=> Suc n < ack (Suc m) (Suc n)

Wrote /Users/1pl5/.emacs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)----=====---

Tuesday, 18 September 12

Proof by Induction

> Demolist.thy
QRO Z 4P Y. .o = 6P

theory DemoList imports Plain (*not Main, because lists are built-in*)
begin

N N M

&]

datatype 'a list = Nil | Cons 'a

fun app :: : where
' structural induction
e on the list xs
» applv auto
~u-:--- DemoList.thy Top L12 (Isar Utoks_Abk
G S base case and M

goal (2 subgoals): inductive Step
1. app Nil Nil = Nil
2. Na xs. app xs Nil = xs = app (Cons a xs) Nil = Cons a xs

induction hypothesis

-u-:%%- *goals* Top L1 (Isar
tool-bar next

Tuesday, 18 September 12

Finishing a Proof

> Demolist.thy
WO XA 4P XYM .o = 6 F
datatype 'a list = Nil | Cons 'a)

N N M

fun app :: where
I
lemma [simp]: | .
apply (induct xs)
apply auto < auto proves both subgoals
» done
~u-:--- DemolList.thy 7% L4 (Isar Utoks Abbrev; Scripting J======ecccccccaaaax
)
proof (prove): step 2
goal:
No subgoals!
VVe must still issue “done”™ 9
to register the theorem .
-u-:%%- *goals* Top L1 . e Vi o Arasai it s SRR

Tuesday, 18 September 12

Another Proof Attempt

NN Y S,

> Demolist.thy

QRO Z 4P Y. .o = 6P

done 2
P, - list reversal function

lemma rev_rev:
oply (induct xs)
» poply auto
done A

-u-:--- DemoList.thy 22% L20 (Isar Utoks Abbrev; Scripting)----=====eeccecaa--

proof (prove): step 1

goal (2 subgoals):
1. rev (rev Nil) = Nil
2. Na xs. rev (rev xs) = xs = rev (rev (Cons a xs)) = Cons a xs

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----====ecccccaa-- -
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy

Tuesday, 18 September 12

Stuck!

> Demolist.thy
QDA 4P Yo = 6P
done P

N NN

fun revl wherg ()
I

lemma rev_rev: ,
apply (induct xs)
apply auto

» done

auto made progress
but didn’t finish

-u-:--- DemolList.thy 22% L22 (Isar Utoks Abbrev; Scrifft

proof (prove): step 2

goal (1 subgoal):
1. Aa xs. rev (rev xs) = xs = rev (app (rev xs) (Cons a Nil)) = Cons a xs

looks like we need a lemma

relating rev and app!

-u-:%%- *goals* Top L1 (Isa
tool-bar next

Tuesday, 18 September 12

Stuck Again!

> Demolist.thy

QDR 4P Yo = 6P

fun rev where -

[t (e s ne N N

™ /N M

lemma [simp]: .
apply (induct xs
apply auto

» done

lemma rev_rev:
apply (induct xs)
-u-:--- DemolList.thy 21% L24 (Isar Utoks Abbrev; Scripting)

proof (prove): step 2
goal (1 subgoal): But it needs another lemma!

1. Aa xs.

rev (app xs ys) = app (rev ys) Crey xs) — IECCISUIS NI Tal-R o SRV]of-{eE:1))

app (app i(rev ysyi(rev xs)) KCons_a Nil) =

app «(rev ys) Capp rev xs)i {Cons a Ni

-u-:%%- *goals*® Top L1 (Isar Proofstate Utoks Abbrev;)-------ceeecaaaaaax
Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/DemolList.thy |

Tuesday, 18 September 12

The Final Piece of the Jigsaw

Demolist.thy

QDA 4 P X2 G . O o P

Iun rev wnhere
I

lemma [simp]:
(induct xs)
[auto
done

lemma [simp]:
(induct xs)
-u-:**- DemolList.thy 22% L20 (Isar Utoks Abbrev; Scripting)----------ccceeeono

proof (prove): step 1

goal (2 subgoals):
1. app (app Nil ys) zs = app Nil (app ys zs)
2. N\a xs.
app (app xs ys) zs = app xs (app ys zs) =
app (app (Cons a xs) ys) zs = app (Cons a xs) (app ys zs)

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)------=-cccecaaaaax
tool-bar goto

Tuesday, 18 September 12

The Finished Proof

DO E 4> Y -

fun rev where
|

lemma [simp]:
apply (induct xs)
apply auto
done
lemma [simp]:
apply (induct xs)

nply auto
done

lemma rev_rev:
oply (induct xs)

> Demolist.thy

O S oF

cﬁO.g auto
done
-u-:--- DemoList.thy 18% L35 (Isar Utoks Abbrev;)-=======cecccccccccccccccccn--

Wrote /Users/1pl5/Dropbox/ACS/1 - Introduction/Demolist.thy

Tuesday, 18 September 12

Now, a deeper look...

eeeeeeeeeeeeeeeeeeeee

Goals and Subgoals

® We start with one subgoal: the statement to be
proved.

® Proof tactics and methods typically replace a single
subgoal by zero or more new subgoals.

* But certain methods, notably auto and
simp_all, operate on all outstanding subgoals.

® We finish when no subgoals remain. The theorem is
proved!

Tuesday, 18 September 12

Structure of a Subgoal

®0O0 » BT.thy
DCOE 4 P> Y .o 0w o 0P
datatype 'a bt = F
Lf 2
| Br 'a "'a bt" "'a bt"

fun reflect :: "'a bt = "a bt" where

"reflect Lf = Lf"
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect tl1)"

lemma reflect_reflect_ident: "reflect (reflect t) = t"

apply (induct t)
» apply auto ?
done v
-u-:**- BT.thy 10% L3 (Isar Utoks Abbrev; Scripting)---------------- =

assumptions (two

induction hypotheses)

2. N\a t1 t2.
[reflect (reflect tl1) = tl; reflect (reflect t2) = t2]

%> reflect (reflect (Br a t1 t2)) = Br a tl1 t2

Top L1 (Isar Proofstate Utoks Abbrevi)-----------------.

parameters (arbitrary

local variables)

conclusion

Tuesday, 18 September 12

Proof by Rewriting

app (Cons x xs) ys=)Cons x (app XS ys) <
rev (Cons x xs)=papp (rev xs) (Cons x Nil)
rev (app xs ys)=papp (rev ys) (rev xs)« induction hyp
app (app xs ys) zs=papp XS (app YS ZS) <« M

rev (app (Cons a xs) ys) = app (rev ys) (rev (Cons a xs))

rev (app (Cons a xs) ys) =

rev (Cons a (app Xs ys)) =

app (rev (app xs ys)) (Cons a Nil) =

app (app (rev ys) (rev xs)) (Cons a Nil) =
app (rev ys) (app (rev xs) (Cons a Nil))

app (rev ys) (rev (Cons a xs)) =
app (rev ys) (app (rev xs) (Cons a Nil))

Tuesday, 18 September 12

Conditional Rewrite Rules

Xxs # [] = hd (xs @ ys) = hd Xxs
n<m= (Suc m) - n=Suc (m - n)
[|la # @; b # 8|] = b / (a*b) =1 / a

® first match the left-hand side, then recursively
prove the conditions by simplification.

® |f successful, applying the resulting rewrite rule.

Tuesday, 18 September 12

The Methods simp and auto

® simp performs rewriting (along with simple
arithmetic simplification) on the first subgoal

e auto simplifies all subgoals, not just the first.
® auto also applies all obvious logical steps

e Splitting conjunctive goals and disjunctive
assumptions

* Performing obvious quantifier removal

Tuesday, 18 September 12

Unusual Recursions

elole. s Primrec.thy)

Two variables in gRMEE "
the indUCtion! ermann’'s Func

Two variables in
the recursion!

ue

s "nat => nat => nat

1) (Suc n) = ack m Cack (Suc m) n)" A SPeCiaI indUCtion

lemma less_ax iff): "j < ack i 3/
apply (induct i1 j rule: ack.induct)
Popply auto
-u-:--- Primrec.thy 3% L16

The subgoals follow

proof (prove): step 1 the recursion!

goal (3 subgoals):

1. An. n<ack @ n

2. A\m. 1 <ackml1l = 0 < ack (Suc m) @

3. Am n. [n < ack (Suc m) n; ack (Suc m) n < ack m Cack (Suc m) n)l
= Suc n < ack (Suc m) (Suc n)

-/

A

v

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)---------=---c----
Wrote /Users/1pl5/.emacs 4

Tuesday, 18 September 12

Recursion: Key Points

® Recursion in one variable, following the structure
of a datatype declaration, is called primitive.

® Recursion in multiple variables, terminating by size
considerations, can be handled using fun.

fun produces a special induction rule.
fun can handle nested recursion.

fun also handles pattern matching, which it
completes.

Tuesday, 18 September 12

Another Unusual Recursion

000 s MergeSort.thy recursive calls are
RS N NAR BN AR R cuarded by conditions
fun merge :: "'a list = 'a list = 'a list"
where
"merge (x#xs) (y#ys) =
(1f x < y then x # merge xs (y#ys) else y # merge (x#xs) ys)" [

| "merge xs [] = xs"
| "merge [] ys = ys"

lemma set_merge[simp]: "set (merge xs ys) = set xs U set ys"
apply(induct xs ys rule: merge.induct)

»apply auto A
done v
-u-:--- MergeSort.thy 19% L : : e sy DELTRELELEEEE
2 induction hypotheses, i
proof (prove): step 1 ot
guarded by conditions!
goal (3 subgoals):
1. Ax xs y ys.
[x <y = set (merge xs (y # ys)) = set xs U set (y # ys);
= x £y = set (merge (x # xs) ys) = set (x # xs) U set ysl
=> set (merge (x # xs) (y # ys)) = set (x # xs) U set (y # ys)
2. Axs. set (merge xs []) = set xs U set []
3. Av va. set (merge [] (v # va)) = set [] U set (v # va) '

-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)-----=-cccccceaa--
Wrote /Users/1pl5/Dropbox/ACS/4 - Advanced Recursion/MergeSort.thy

Tuesday, 18 September 12

A Helpful Tip

-gcs File Edit Options Tools WG E s Tokens Buffers Help
enNnon geSot Logics s

R C e e @ Commands 3

— : Show Me P

lemma ordered_merge [simp]: “ordered (merge)

apply (induct xs ys rule: merge.induct) Favourltes .

opply simp_all

+ Use Lnear Undo

opply (auto split: list.split

. simp “1% Start Isabelle (C~c C~s) Use Find Theorems Form
Exit Isabelle (C-c C-x) Display B
proof (prove): step 3 Set Isabelle Command Advanced Display 3
. . , IR Auto Nipick
No subgoals! elp | b Auto Solve Time Limit
| i v Auto Solve
Reset Settings v Auto Quickcheck
Save Settings Auto Counterexample Time Limit
Theorem Dependencies
Debugging
Clobal Timing
Trace Unification
Trace Rules
Trace Simplifier Depth
TracerSimplifier
-u-:%%- *goals* Top L1 (Isar Proofstate Utoks Abbrev;)----------ceeeeeea-

’
S

Tuesday, 18 September 12

