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Background:
Quantales

� Def.
A (unital) quantale is (Q,≦,∨,・,e) s.t.

� (Q,≦,∨) is a complete join semilattice

� (Q,・,e) is a monoid

� (∨S)・a=∨{b・a | b∈S} for a∈Q, S⊆Q

� a・(∨S)=∨{a・b | b∈S} for a∈Q, S⊆Q
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Background:
An Example of Quantale

� (Rel(A),≦,∨,・,e) is a quantale where

� Rel(A) is the set of all binary relations on A

� ≦ is the inclusion

� ∨ is the union

� ・ is the composition 
Q・R={ (a,c) | ∃b.  (a,b)∈Q,  (b,c)∈R }

� e is the identity relation
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Our Goal: Relational 
Representation Theorem

� Goal is

� to give a sufficient condition for 
a quantale Q to be isomorphic to 
a subquantale of Rel(A) for some set A.

� In other words, 

� to give a sufficient condition for 

a quantale Q to have
an injective homomorphism of quantales
from Q to Rel(A) for some set A.
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Background:
Related works

YesNoYesValentini,
1994

The multiplication
corresponds to 
composition of 
relations

The unit 
corresponds 
to 
the identity

The result is 
applicable to 
non-involutive
quantales

Brown and 
Gurr, 1993

Yes No Yes
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The Result of this paper

� For a quantale Q, 
the following are equivalent.

1. Q is a powerset quantale.

�

�

2. Q has a relational representation in our way 
and it is CCP-invertible.
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The Result of this paper

� For a quantale Q, 
the following are equivalent.

1. Q is a powerset quantale.

� i.e., its underlying complete join semilattice 
is isomorphic to the powerset of some set.

� Note:  this condition depends only on 
its underlying complete join semilattice !

2. Q has a relational representation in our way 
and it is CCP-invertible.

� 'CCP-invertible' is a notion defined in this paper.
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Outline

1. Another characterization of powerset
quantales

2. Relational representation theorem for 
powerset quantales

3. CCP-invertible quantales
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Another characterization of 
powerset quantales
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Another characterization of 
powerset quantales

� For a quantale, 
the following are equivalent.

1. Its underlying complete join semilattice 
is isomorphic to the powerset of some set.

2. Its underlying complete join semilattice
is CCP-algebraic and 
its order of CCP elements is discrete.
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Complete join semilattice

� Def.
A complete join semilattice is (L,≦,∨) s.t.

� (L,≦) is a partially ordered set

� ∨S is the join (the least upper bound)
for each S⊆L

� Note: ⊥ is given by ∨φ
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Complete join semilattice

� Def.
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CCP elements
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� Def. 
An element x of a complete join semilattice (L,≦,∨) 
is called CCP （Completely CoPrime）, if for any S⊆L,

x≦∨S  ⇔ ∃a∈S. x≦a.

� E.g.  CCP elements of P(A) or Rel(A) are singletons.
� If X=φ, then X⊆∪φ but not ∃Y∈φ. X⊆Y

� If X={a}, then {a}⊆∪S ⇔ a∈∪S  ⇔ ∃Y∈S. a∈Y

� If X={a,b,...}, then X⊆{a}∪{b,...} 
but neither X⊆{a} nor X⊆{b,...}



CCP-algebraic

� Def.
A complete join semilattice (L,≦,∨) is 
called CCP-algebraic, if for any a∈L,

a=∨{ x  |  x is CCP, x≦a}.
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E.g. Rel({1,2})
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{}

{(1,2)}{(1,1)} {(2,2)} {(2,1)}
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{(1,1),(2,1),(2,2)} {(1,2),(2,1),(2,2)} {(1,1),(1,2),(2,2)} {(1,1),(1,2),(2,1)}

{(1,1),(1,2),(2,1),(2,2)}
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{}

{(1,2)}{(1,1)} {(2,2)} {(2,1)}

CCP elements

Rel({1,2}) is 
CCP-algebraic

The order of the CCP elements is discrete.

(If CCP elements x,y satisfy x≦y, then x=y.)



E.g. N∪{ω}
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Both are 
CCP-algebraic

The order of 
CCP elements is 

not discrete.

Other characterizations of 
powerset lattices

� For a complete join semilattice Q, 
the following are equivalent.
1. Q is isomorphic to the powerset of some set.

2. Q is CCP-algebraic and 
the order of its CCP elements is discrete. 

Q is CCP-algebraic and 
its CCP-elements are atoms

Q is atom-algebraic and 
its atoms are CCP-elements 

Q is atom-algebraic and it is a frame
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complete join 
semilattices CCP-algebraic

P(A) Rel(A)

powersets
N∪{ω}

(N∪{ω})op
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Other characterizations of 
powerset lattices

� For a complete join semilattice Q, 
the following are equivalent.
1. Q is isomorphic to the powerset of some set.

2. Q is CCP-algebraic and 
the order of its CCP elements is discrete. 

3. Q is CCP-algebraic and 
its CCP elements are atoms

4. Q is atom-algebraic and 
its atoms are CCP 

5. Q is atom-algebraic and it is a frame

(The proof is shown in the paper.)
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Relational Representation Theorem 
for Powerset Quantales
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Powerset quantales

� Def.  Q is called a powerset quantale, if 
its underlying complete join semilattice 
is isomorphic to the powerset of some set.

� E.g.  The set of languages
� (P(A*),⊆,∪,・, {ε})

� E.g.  The set of relations 
� (Rel(A),⊆,∪,・, id)

� E.g.  Every powerset with  ・=∩
� (P(A),⊆,∪,∩, A)
� (P(A*),⊆,∪,∩, A*)
� (Rel(A),⊆,∪,∩, A×A)
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Main Theorem

� If (Q,≦,∨,・,e) is a powerset quantale,
then the following η is an injective 
homomorphism of quantales.

η: Q → Rel(CCP(Q))
η(a)={ (x,y) | x,y∈CCP(Q), x≦a・y }

where  CCP(Q)={x∈Q  |  x is CCP  }
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Outline of the proof

� Since Q is a powerset quantale, 

(Assumption 1)  Q is CCP-algebraic and 

(Assumption 2)  the order of CCP elements is discrete.

� η: Q → Rel(CCP(Q))
η(a)={ (x,y) | x,y∈CCP(Q), x≦a・y }

� maps ∨ to the union       (proved by Def. of CCP)

� maps ・ to composition     (proved by Assumption 1)

� maps e to the identity      (proved by Assumption 2)

� is injective                      (proved by Assumption 1)
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E.g. 
Representation of Rel({1,2})
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CPP-invertible Quantales
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Is the powerset condition 
necessary and sufficient ?

� If (Q,≦,∨,・,e) is a powerset quantale,
then η is an injective homomorphism of 
quantales.

� Is it the necessary and sufficient 
condition ?

� No.
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Extension of The 
Representation Theorem

� For a quantale Q, 
the following are equivalent.

1. Q is a powerset quantale.

2. Q has a relational representation in our way 
and it is CCP-invertible.
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CCP-invertible Quantale

� Def.
A quantale (Q,≦,∨,・,1) is called CCP-invertible, 
if for any a∈Q, x,y∈CCP(Q), it holds that

x≦a・y ⇔ ∃z∈CCP(Q). z≦a and x≦z・y.
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� e.g.  Rel(A)

� If x≦a・y, then the above z is given by x・y#
where y# is the converse relation of y. 
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� e.g.  Rel(A)

� If x≦a・y, then the above z is given by x・y#
where y# is the converse relation of y. 

� e.g.  ((N∪{ω})op, min, ω, +, 0)

� If x≦a・y=a+y, then the above z is given by x－y. 

Other examples
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Quantales

CCP-algebraic

P(A*)
P(A)

Powersets

(N∪{ω})op

CCP-invertible
1

1

Rel(A)

Extension of The 
Representation Theorem

� For a quantale Q, 
the following are equivalent.

1. Q is a powerset quantale.

2. Q has a relational representation in our way 
and it is CCP-invertible.

(The proof is shown in the paper.)
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Extension of The 
Representation Theorem

� For a quantale Q, 

the following are equivalent.

1. Q is a powerset quantale.

2. Q has a relational representation in our way 
and it is CCP-invertible.

(The proof is shown in the paper.)

In other words,

� For a CCP-invertible quantale Q, 
the following are equivalent.

1. Q is a powerset quantale.

2. Q has a relational representation in our way. 53

Conclusion

� For a quantale Q, the following are equivalent.
1. Q is a powerset quantale.

2. Q has a relational representation in our way 
and it is CCP-invertible.

� The 1st condition depends only on 
its underlying complete join semilattice.

� It is future work to 
� give a sufficient condition for a quantale 

to have a relational representation in some way.

� give another characterization of CCP-invertible 
quantales. 
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Thank you 
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