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Background:

:_‘ Quantales

= Def.
A (unital) quantale is (Q,=,V,-,e) s.t.
= (Q,=,V) is a complete join semilattice
= (Q,-,e) is a monoid
= (VS)-a=V{b-a | beS} foraeQ, S€Q
= a*(VS)=V{a'b | beS} foraeQ, SSQ

Background:
An Example of Quantale

= (Rel(A),=,V,-,e) is a quantale where
= Rel(A) is the set of all binary relations on A
= = is the inclusion
= V is the union
= - is the composition
Q-R={ (a,c) | 3b. (a,b)eqQ, (b,c)eER}
= € is the identity relation

Our Goal: Relational

:-‘ Representation Theorem

= Goal is

= to give a sufficient condition for
a quantale Q to be isomorphic to
a subquantale of Rel(A) for some set A.

= In other words,

= to give a sufficient condition for
a quantale Q to have
an injective homomorphism of quantales
from Q to Rel(A) for some set A.

Background:

:-‘ Related works

The multiplication | The unit The result is
corresponds to corresponds | applicable to
composition of to non-involutive

relations the identity | quantales
Brown and Yes No Yes
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The Result of this paper

= For a quantale Q,
the following are equivalent.

1. Qs a powerset quantale.
= i.e., its underlying complete join semilattice
is isomorphic to the powerset of some set.

= Note: this condition depends only on
its underlying complete join semilattice !
2. Q has a relational representation in our way
and it is CCP-invertible.

= 'CCP-invertible' is a notion defined in this paper.
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:-‘ Outline

1. Another characterization of powerset
quantales

2. Relational representation theorem for
powerset quantales

3. CCP-invertible quantales




Another characterization of
* powerset quantales

Another characterization of
powerset quantales

= For a quantale,
the following are equivalent.
1. Its underlying complete join semilattice
is isomorphic to the powerset of some set.
2. Its underlying complete join semilattice

is CCP-algebraic and
its order of CCP elements is discrete.

:-| Complete join semilattice

= Def.
A complete join semilattice is (L,=,V) s.t.
= (L, =) is a partially ordered set

= VS is the join (the least upper bound)
for each SSL
= Note: L is given by V ¢
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:-| CCP elements

= Def.
An element x of a complete join semilattice (L,=,V)
is called CCP (Completely CoPrime), if for any SEL,

Xx=VS & 3aes. x=Za.

= E.g. CCP elements of P(A) or Rel(A) are singletons.
= IfX=¢,then XS U ¢ butnot 3YE ¢. XSY
= If X={a}, then {a} S US ® a€ US & 3YES. aeY
« If X={a,b,...}, then Xc{a}U{b,...}
but neither X&{a} nor X&{b,...}




;‘ CCP-algebraic

= Def.
A complete join semilattice (L,=,V) is
called CCP-algebraic, if for any a€L,

a=V{x | xis CCP, x=a}.
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;‘ E.g. Rel({1,2})

{@,1,(1,2),2,1),(2.2)}

{0,122} {12,210(22)} {(11).(1,2),22))r {11(L2)21)}

{22} {11),1,2)r {1,222y {11,210} {2122} {(21),1,2)}
{0} {12} {22} {20}

& 2

:-| E.g. Rel({1,2})

(L D(L2),(2,1),(2,2)}

{@),10.22r {12,2022)) {110,222} {(11)(12),01)}

{122} {(11),12)}r {12,227} {11210} {2122} {21)1,2)}
<N\ /= =

WW
CCP elements

& 2

:-| E.g. Rel({1,2})

{1 D(L2),(2,1),(2,2)}

W‘\w
CCP elements

& 2

Rel({1,2}) is
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:-| E.g. Rel({1,2})

{1 D(L2),(2,1),(2,2)}

{1D(2,1),(2,2)}

{@0,@,2,(2,2)r  {(1,1),(1,2)(2,1)}

{@,0,2.2)} {(1,1),1,2)}
N

=

CCP elements
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Rel({1,2}) is
CCP-algebraic

:-| E.g. Rel({1,2})

The order of the CCP elements is discrete.
(If CCP elements x,y satisfy x=y, then x=y.)

CCP elements
{} 24




!-‘ E.g. NU{w}

O——k+H — N-=-=-===-=-=-§8
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!-‘ E.g. NU{w}and (NU{w})op

O——k+H — N-=-===-=-=-=-§8

0
1
2
1
1
1
1
1
1
i
w
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!_| E.g. NU{w}and (NU{w})ep

CCP elements

CCP elements
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!_| E.g. NU{w} and (NU{w})ep

CCP elements

CCP elements
Both are
CCP-algebraic
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!_| E.g. NU{w} and (NU{w})°p

CCP elements

CCP elements
Both are
CCP-algebraic

The order of
CCP elements is
not discrete.
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Other characterizations of

!-| powerset lattices

= For a complete join semilattice Q,
the following are equivalent.
1. Qis isomorphic to the powerset of some set.

2. Qis CCP-algebraic and
the order of its CCP elements is discrete.

complete join

semilattices CCP-algebraic

powersets

NU{w}
(NU{w})r ( P(A) Rel(A)
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Other characterizations of

;‘ powerset lattices

= For a complete join semilattice Q,
the following are equivalent.
1. Qis isomorphic to the powerset of some set.

2. Qis CCP-algebraic and
the order of its CCP elements is discrete.

3. Qis CCP-algebraic and
its CCP elements are atoms

4. Q is atom-algebraic and
its atoms are CCP

5. Q is atom-algebraic and it is a frame

(The proof is shown in the paper.)
32

Relational Representation Theorem
* for Powerset Quantales
|
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Powerset quantales

= Def. Qs called a powerset quantale, if
its underlying complete join semilattice
is isomorphic to the powerset of some set.

= E.g. The set of languages
" (P(A*)IQIUI.I{E})
= E.g. The set of relations
" (ReI(A)lgIUI-I Id)
= E.g. Every powerset with -=nN
= (P(A)IQIUIHIA)
= (P(A*)Iglulml A*)
" (ReI(A),E,U,ﬂ,AXA)
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:-| Main Theorem

= If (Q,=,V,",e)is a powerset quantale,
then the following 7 is an injective
homomorphism of quantales.

n: Q — Rel(CCP(Q))
n@)={ (x,y) | x,y€CCP(Q), x=a-y }

where CCP(Q)={x€eQ | xis CCP }
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:-| Outline of the proof

= Since Q is a powerset quantale,

(Assumption 1) Q is CCP-algebraic and

(Assumption 2) the order of CCP elements is discrete.
= 7n:Q— Rel(CCP(Q))

n@={ (xy) | x,yeCCP(Q), x=a-y }

=« maps V to the union (proved by Def. of CCP)

= maps - to composition  (proved by Assumption 1)

= maps e to the identity  (proved by Assumption 2)

= is injective (proved by Assumption 1)

36




E.g.

!-‘ Representation of Rel({1,2})

{02,222y

{(LA21)(2.2) {12,212 {(L,1(1,2)2,2)y {12,210

{02y {2y {2223y ey {@DEDr {2102}

{0y 11,2y @2y @y

E.g.
!-‘ Representation of Rel({1,2})
n: Rel({1,2}) — Rel(CCP(Rel({1,2})))

{D,a2,21,2.2y

{(LA21)(2.2) {12,212 {(L,1(1,2)2.2)y {L)(L2),20r

{02y {2y {222y ey {@DEDy {2102}y

{0y 11,2y @2y @y
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E.g. E.g.
:-| Representation of Rel({1,2}) :-| Representation of Rel({1,2})
n: Rel({1,2}) — Rel( n: Rel({1,2}) — Rel(
{(1,(1,221),(2.2) {(1,(1,221),(2.2) L. .
/\ 1 injection 7n
D12} 11,221,222} {(1,1),1,2)2.2) 01,2210} D12} {2,y {(1),(1,2)(2.2) 01,2210}
DA (L2} {1222} {LDERLF  {RDEDF {2102} DA {12} {1222} {(LDEL} {RDE2AF {2101
i~ i~
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E.g.

:-| Representation of Rel({1,2})
n: Rel({1,2}) — Rel(

{10,221,y P .
/\ 1 injection n

ey {22y {(1,1),(1,2),2.2) {220y

@ney {aHa2r {122 {4Heyy (@D {10
=

41

E.g.

:-| Representation of Rel({1,2})

n: Rel({1,2}) — Rel(

{1,221,y P .
/\ 1 injection 7

{2y {22y {(1,1),(1,2),2.2) {220y

@ney {aHa2r {1202y {(HEHy  {2HE2)r {1
=




E.g.

!-‘ Representation of Rel({1,2})

n: Rel({1,2}) — Rel 1 2 Q

1 injection n

{02,222y

{(LA21)(2.2) {12,212 {(L,1(1,2)2,2)y {12,210

D@2y {2y {222 DLy {RDEDF {210
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E.g.

!-‘ Representation of Rel({1,2})

n: Rel({1,2}) — Re ] m— 20

1 injection n

{D,a2,21,2.2y

{(LA21)(2.2) {12,212 {(L,1(1,2)2.2)y {L)(L2),20r

CPP-invertible Quantales

q
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Is the powerset condition
!-| necessary and sufficient ?
= If (Q,=,V,",€e) is a powerset quantale,
then n is an injective homomorphism of
quantales.

= Is it the necessary and sufficient
condition ?
= No.
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Extension of The
Representation Theorem

= For a quantale Q,

the following are equivalent.

1. Qs a powerset quantale.
Q has a relational representation in our way
and it is CCP-invertible.

2.
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CCP-invertible Quantale

s Def.
A quantale (Q,=,V,-,1) is called CCP-invertible,

if for any a€Q, x,yeCCP(Q), it holds that

x=Za-y © 3IzeCCP(Q). z=a and x=z-y.
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CCP-invertible Quantale

= Def.
A quantale (Q,=,V,-,1) is called CCP-invertible,
if for any a€Q, x,yeCCP(Q), it holds that

x=a-y ©® 3zeCCP(Q). z=a and x=z-y.

= e.g. Rel(A)
= If x=a-y, then the above z is given by x-y#
where y# is the converse relation of y.

= e.g. (NU{w})oP, min, w, +, 0)

= If x=a+y=a+y, then the above z is given by x—y. o

:-| Other examples
Quantales 3

CCP-invertible

CCP-algebraic

Powersets

NU op

(Ut P
Rel(A)
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Extension of The
:-| Representation Theorem
= For a quantale Q,
the following are equivalent.
1. Qs a powerset quantale.
2. Q has a relational representation in our way

and it is CCP-invertible.
(The proof is shown in the paper.)
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Extension of The
:-| Representation Theorem
= For a quantale Q,
the following are equivalent.

1. Qs a powerset quantale.

2. Q has a relational representation in our way
and it is CCP-invertible.

(The proof is shown in the paper.)
In other words,
= For a CCP-invertible quantale Q,
the following are equivalent.
1. Qs a powerset quantale.
2. Q has a relational representation in our way. 53

:-| Conclusion

= For a quantale Q, the following are equivalent.
1. Qs a powerset quantale.
2. Q has a relational representation in our way
and it is CCP-invertible.
= The 1st condition depends only on
its underlying complete join semilattice.
= Itis future work to

= give a sufficient condition for a quantale
to have a relational representation in some way.
= give another characterization of CCP-invertible
quantales.
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