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Result

A new proof of the completeness of left-handed KA



Axioms of KA

Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r
p + q = q + p 1p = p1 = p
p + 0 = p p0 = 0p = 0
p + p = p

p(q + r) = pq + pr a ≤ b def⇐⇒ a + b = b
(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x
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Left-Handed Completeness

This is a known result!

claimed without proof by Conway (1971)

The only extant proofs are by Krob/Boffa (95) and Ésik (99)

Krob gives an equational axiomatization with infinitely many
equations of a specified form

an entire journal issue of TCS (137 pages!)

later reworked in the context of iteration theories by Ésik, but
essentially the same proof (50 pages)

Boffa observed that all Krob’s equations were provable with the
left-handed rule



Krob’s Equations

Idempotent semiring axioms

Conway axioms

p∗ = p∗p∗ = p∗∗

(p + q)∗ = p∗(qp∗)∗

(pq)∗ = 1 + p(qp)∗q

M∗ =
∑

m∈M ε−1
M (m) for all finite monoids M, where εM : M∗ → M

is the unique monoid homomorphism such that εM(m) = m

No finite set of equations suffices (Redko 64)



Monoid Equations

M∗ =
∑
m∈M

ε−1
M (m)

for all finite monoids M, where εM : M∗ → M is the unique monoid
homomorphism such that εM(m) = m

Take M = a∗/(a4 = 1) = {1, a, a2, a3}
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a∗ = (1 + a + a2 + a3)(a4)∗



Purely Equational Axiomatizations

Purely equational axiomatizations are undesirable from a practical point
of view: they do not interact well with equations assumptions, which is
almost always the case in real-life applications

For example, consider the redundant assignment x := 1; x := 1.

let a = x := 1

have aa = a, since the assignment is redundant

would expect this to imply a∗ = 1 + a, but this is not a consequence
of the equational theory of KA plus aa = a

the free R-algebra on the monoid a∗/(aa = a) =
{0, 1, a, 1 + a, a∗, aa∗}. In particular, a∗ 6= 1 + a.

This algebra that satisfies all the equations of KA but is not a KA itself –
in a finite KA a star is always equal to a finite sum of powers



Practical Motivation

Characterizing a∗ as a least fixpoint is natural and powerful and is
satisfied in virtually all models that arise in real life

However, there are interesting and useful models that satisfy only one of
the two star rules, so it is useful to know that only one of the rules is
needed for equational completeness



Technical Motivation

We define differential Kleene algebra, which captures abstractly the
interplay between algebra and coalgebra in the theory of regular sets

the (syntactic) Brzozowski derivative on regular expressions maps
algebra to coalgebra

the canonical embedding of a coalgebra into a matrix algebra plays
the converse role

Kleene’s theoremalgebra coalgebra

Brzozowski derivative

matrix representation



Left-Handed Kleene Algebra

A weak KA is an idempotent semiring with star satisfying the Conway
equations

a∗ = 1 + aa∗ (ab)∗a = a(ba)∗

(a + b)∗ = a∗(ba∗)∗ a∗∗ = a∗

Incomplete, but sufficient for many arguments involving ∗.

A left-handed Kleene algebra (LKA) is a weak KA satisfying the
left-handed star rule

b + ax ≤ x ⇒ a∗b ≤ x or ax ≤ x ⇒ a∗x ≤ x

where a ≤ b ⇔ a + b = b. One consequence is the left-handed
bisimulation rule

ax ≤ xb ⇒ a∗x ≤ xb∗



Matrices

Let Mat(S ,K ) be the family of square matrices with rows and columns
indexed by S with entries in K .

The characteristic matrix Pf of a function f : S → S has (Pf )st = 1 if
f (s) = t, 0 otherwise. M is a function matrix if it is Pf for some f .

Let S1, . . . ,Sn ⊆ S be a partition of S . A matrix A ∈ Mat(S ,K ) is said
to be block diagonal with blocks S1, . . . ,Sn if Ast = 0 whenever s and t
are in different blocks.

Lemma

Let A,Pf ∈ Mat(S ,K ) with Pf the characteristic matrix of a function
f : S → S. The following are equivalent:

i A is block diagonal with blocks refining the kernel of f ; that is, if
Ast 6= 0, then f (s) = f (t);

ii APf = DPf for some diagonal matrix D;
iii APf = DPf , where D is the diagonal matrix Dss =

∑
f (s)=f (t) Ast .



Differential Kleene Algebra

A differential Kleene algebra (DKA) K is a weak KA containing a (finite)
set Σ ⊆ K , called the actions, and a subalgebra C , called the
observations, such that

i ac = ca for all a ∈ Σ and c ∈ C

ii C and Σ generate K

iii K supports a Brzozowski derivative consisting of functions
ε : K → C and δa : K → K , a ∈ Σ, satisfying

δa(e1 + e2) = δa(e1) + δa(e2) ε(e1 + e2) = ε(e1) + ε(e2)

δa(e1e2) = δa(e1)e2 + ε(e1)δa(e2) ε(e1e2) = ε(e1)ε(e2)

δa(e∗) = ε(e∗)δa(e)e∗ ε(e∗) = ε(e)∗

δa(b) =

{
1 if a = b,
0 if a 6= b,

b ∈ Σ ε(b) = 0, b ∈ Σ

δa(c) = 0, c ∈ C ε(c) = c , c ∈ C



Differential Kleene Algebra

δa(e1 + e2) = δa(e1) + δa(e2) ε(e1 + e2) = ε(e1) + ε(e2)

δa(e1e2) = δa(e1)e2 + ε(e1)δa(e2) ε(e1e2) = ε(e1)ε(e2)

δa(e∗) = ε(e∗)δa(e)e∗ ε(e∗) = ε(e)∗

δa(b) =

{
1 if a = b,
0 if a 6= b,

b ∈ Σ ε(b) = 0, b ∈ Σ

δa(c) = 0, c ∈ C ε(c) = c , c ∈ C

Thus ε : K → C is a retract (a KA homomorphism that is the identity on
C , which immediately implies 0, 1 ∈ C ).

This definition is a generalization of the usual situation in which
C = 2 = {0, 1} and the function ε and δa are the (syntactic) Brzozowski
derivatives.



Extension to Matrices

Lemma
If K is a DKA with actions Σ and observations C, then Mat(S ,K ) is a
DKA with actions ∆(a) and observations Mat(S ,C ) under the pointwise
operations.

We are primarily interested in matrix KAs in which C is the set of square
matrices over 2.



Examples

1 A DKA with observations 2 is Brz = (2Σ∗ , δ, ε), where ε(A) = 1 iff
A contains the null string and 0 otherwise, and δa : 2Σ∗ → 2Σ∗ is
the usual Brzozowski derivative

δa(A) = {x ∈ Σ∗ | ax ∈ A}.

This is the final coalgebra of the functor −Σ × 2. It is also an LKA
under the usual set-theoretic operations.

2 Another example is the free LKA KΣ on generators Σ. It is also a
DKA, where δa and ε are defined inductively on the syntax of regular
expressions. The maps δa and ε are well defined modulo the axioms
of LKA.

The following comes from an observation of Jacobs (2006) for KA.

Lemma
The axioms of LKA are complete iff the unique homomorphism
LKΣ

: KΣ → Brz is injective.



The Fundamental Theorem (Silva 2010)

The following result characterizes the relationship between algebraic and
coalgebraic structure of DKA’s.

Theorem

Let K be a DKA. For all elements e ∈ K,

e =
∑
a∈Σ

aδa(e) + ε(e).



Consequences of the Fundamental Theorem

Let K be a DKA. Define the C -free part of e ∈ K to be

e′ =
∑
a∈Σ

aδa(e).

By the fundamental theorem, e = e′ + ε(e) and ε(e′) = 0.

Theorem
The map e 7→ e′ is linear and satisfies the following derivation properties:

1′ = 0 (de)′ = d ′e + de′ e∗′ = ε(e∗)(e′ · ε(e∗))+

The decomposition e = e′ + ε(e) is unique such that ε(e′) = 0.



Systems of Linear Equations as Coalgebras

A system of (left-)linear equations over a weak KA K is a coalgebra
(S ,D,E ), where Σ ⊆ K , Da : S → S , and E : S → K .

A solution in K is a map ϕ : S → K such that

ϕ(s) =
∑
a∈Σ

aϕ(Da(s)) + E (s).



Canonical Solution and Standard Embedding

Given a finite system of linear equations, form the matrix

A =
∑
a∈Σ

∆(a)P(a) ∈ Mat(S ,K )

where

∆(a) is the diagonal matrix with diagonal entries a

P(a) is the characteristic matrix of the function Da.

The solution condition is ϕ = Aϕ+ E . Since Mat(S ,K ) is a weak KA,
the vector A∗E is a solution, called the canonical solution. If in addition
K is an LKA, then the canonical solution is also the least solution.

If K is freely generated by Σ, then the map a 7→ ∆(a)P(a) extends
uniquely to an injective KA homomorphism χ : K → Mat(S ,K ), called
the standard embedding.



Decompositions

Let (S ,D,E ) be a finite coalgebra with standard embedding

χ : KΣ → Mat(S ,KΣ) χ(a) = ∆(a)P(a).

Let e ∈ KΣ. Let M be a finite set with a map γ : Σ∗ → M such that
P(x) = P(γ(x)). A decomposition of e is a family of expressions ex ∈ KΣ

indexed by M such that

a e =
∑

x ex , and

b χ(ex) = ∆(ex)P(x) for all x ∈ M.

It follows that

χ(e) =
∑
x

∆(ex)P(x).

The decomposition respects P,Q if in addition

c P(x)Q = P for all x such that ex 6= 0.



Decompositions

Lemma

Let x 7→ ex be a decomposition of e. The decomposition respects P,Q
iff χ(e)Q = ∆(e)P.

Lemma

Let eα and Pα be finite indexed collections of elements of KΣ and
function matrices, respectively, such that

e =
∑
α

eα χ(eα) = ∆(eα)Pα

and such that each Pα is P(yα) for some yα ∈ Σ∗. Then
ex =

∑
x=γ(yα) eα is a decomposition of e.



Decompositions

Decompositions can be combined additively or multiplicatively. The sum
and product of two decompositions F : M → KΣ and G : M → KΣ are,
respectively, the decompositions

(F + G )(x) = F (x) + G (x) (F × G )(x) =
∑

x=γ(yz)

F (y)G (z).

Lemma

i If F is a decomposition of e and G is a decomposition of d, then
F + G is a decomposition of e + d. If F and G both respect P,Q,
then so does F + G.

ii If F is a decomposition of e and G is a decomposition of d, then
F × G is a decomposition of ed. If F respects P,Q and G respects
Q,R, then F × G respects P,R.



Star

Star is handled with a kind of monad structure M 7→ M̂ (details
omitted).

Lemma

Suppose that (
∑

x∈M x)∗ ∈ KM has a decomposition dα, α ∈ M̂ with
respect to η and that e ∈ KΣ has a decomposition σ : x 7→ ex with
respect to χ. Let µ(x) =

∑
x=γ(α) dα. Then σµ : x 7→ σ(

∑
x=γ(α) dα) is

a decomposition of e∗ with respect to χ. Moreover, if the decomposition
of e respects Q,Q, then so does the decomposition e∗.



Universal Decomposition

A universal decomposition is a decomposition for the universal expression
(
∑

a∈Σ a)∗.

Corollary

There exists a universal decomposition.

Corollary
Every expression has a decomposition.



Completeness

Let (S ,D,E ) be a coalgebra of signature −Σ × 2. Let LS : S → Brz be
the unique homomorphism to the final coalgebra

LS(s) = {x ∈ Σ∗ | E (Dx(s)) = 1}.

Recall that for a coalgebra (S ,D,E ) we form an associated matrix

A =
∑
a∈Σ

∆(a)P(a) ∈ Mat(S ,K ),

where ∆(a) is the diagonal matrix with diagonal entries a and P(a) is the
characteristic matrix of the function Da.

Lemma

If LS(s) = LS(t) then (A∗E )s = (A∗E )t .



Completeness

Recall that every e ∈ KΣ generates a finite subcoalgebra, since it has
finitely many Brzozowski derivatives modulo the weak KA axioms
(actually only associativity, commutativity, and idempotency of + are
needed for finiteness).

Let χ : KΣ → Mat(S ,KΣ) be the standard embedding.

Lemma

e = (χ(e)E )e .



Completeness

Lemma

e = (A∗E )e .

Proof.
By the previous lemma and the monotonicity of χ,

e = (χ(e)E )e ≤ (χ((
∑
a∈Σ

a)∗)E )e = ((
∑
a∈Σ

χ(a))∗E )e = (A∗E )e .

For the reverse inequality, the fundamental theorem says that the identity
map e 7→ e is a solution, and A∗E is the least solution.

Theorem (Completeness)

If LKΣ
(d) = LKΣ

(e) then d = e.



Conclusion

We have given a new, shorter proof of the completeness of the
left-handed star rule of Kleene algebra.

We have shown that the left-handed star rule is needed only to guarantee
the existence of least solutions.

Some pressing questions remain:

Can we replace the left-handed rule with a neutral rule such as
e2 ≤ 1 + e ⇒ e∗ = 1 + e?

Can we significantly simplify Krob’s proof using these techniques?



Thanks!


