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Today

automata on guarded strings (AGS)

schematic KAT (SKAT)

strictly deterministic automata and flowchart programs

Kleene coalgebra (KC) and Kleene coalgebra with tests (KCT)

automata theory and program schematology

the Brzozowski derivative

minimization as finality

automatic extraction of equivalence proofs and relation to
proof-carrying code



Automata on Guarded Strings (AGS)

A generalization of classical automata theory to include Booleans

An ε-transition is really a 1-transition (i.e., an ordinary automaton
with ε-transitions is an AGS over the two-element Boolean algebra)

Classical constructions of ordinary finite-state automata generalize
readily

determinization

state minimization

Kleene’s theorem



Automata on Guarded Strings (AGS)

Labeled transition system with states Q,
start states S ⊆ Q, accept states F ⊆ Q

atomic action symbols Σ, atomic test symbols T ,
B = the free Boolean algebra generated by T ,
At = {atoms of B}

action transitions s
p−→ t, p ∈ Σ

test transitions s b−→ t, b ∈ B

inputs are guarded strings α0p0α1p1 · · ·αn−1pn−1αn

traces s0q0s1q1 · · · sn−1qn−1sn where si
qi−→ si+1, qi ∈ Σ ∪ B

x accepted if ∃ trace s0q0s1q1 · · · sn−1qn−1sn such that s0 ∈ S ,
sn ∈ F , x ∈ G (q0, . . . , qn−1)



Automata on Guarded Strings (AGS)
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Automata on Guarded Strings (AGS)
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N Accept!

trace: bpqbaqpb



Deterministic Automata

1 exactly one start state

2 each state is an action state or a test state, not both

3 action states: exactly one transition for each element of Σ

4 test states: exiting tests are propositionally pairwise exclusive and
exhaustive

5 every cycle contains at least one action state

6 all final states are action states



Some Facts

Kleene’s theorem (nondeterministic automaton constructed is linear
in the size of the KAT expression)

PSPACE -completeness

can determinize with a subset construction

can minimize via a variant of Myhill–Nerode

minimal OBDDs are a special case of this construction



Schematic KAT (SKAT)

x := s ; y := t = y := t[x/s] ; x := s (y 6∈ FV(s))

x := s ; y := t = x := s ; y := t[x/s] (x 6∈ FV(s))

x := s ; x := t = x := t[x/s]

ϕ[x/t] ; x := t = x := t ; ϕ

In particular,

x := s ; y := t = y := t ; x := s (x 6∈ FV(t), y 6∈ FV(s))

ϕ ; x := t = x := t ; ϕ (x 6∈ FV(ϕ))



Scheme Equivalence
Example of Paterson from [Manna 74]

start

y1 := x

y4 := f (y1)

y1 := f (y1)

y2 := g(y1, y4)

y3 := g(y1, y1)

P(y1)

y1 := f (y3)

P(y4)

P(y2)y2 := f (y2) P(y3)

z := y2

halt

T

F

T
F T

T

F
F

start

y := f (x)

P(y)

y := g(y , y)

P(y)

loop

y2 := f (f (y))

z := y

halt

T

F

F
T



Scheme Equivalence
Example of Paterson from [Manna 74]

x1 p41 p11 q214 q311 a1 p13 a4 a2 a3 z2

a2p22
a1 a4

a3

s a q a

a

z

r

x1p41p11q214q311(a1p11q214q311)∗a1p13

ooo((a4 + a4(a2p22)∗a2a3p41p11)q214q311(a1p11q214q311)∗a1p13)∗

ooooooa4(a2p22)∗a2a3z2z

= saq(araq)∗az



Strictly Deterministic Automata

Flowchart programs correspond to a limited class of AGS called strictly
deterministic.

Intuitively:

An input is an infinite sequence of atoms provided by an external
agent

The automaton responds to each atom in sequence deterministically
according to its transition function—either

emits an action symbol and moves to a new state,

halts, or

fails



Strictly Deterministic Automata

Formally, a strictly deterministic automaton over Σ,T is a
structure

M = (Q, δ, start)

where Q is a set of states, start ∈ Q is a start state, and

δ : (Q × At) → (Σ× Q) + {halt, fail},

(Note: halt, fail are not states)



Strictly Deterministic Automata

Given a state s and an infinite sequence of atoms σ ∈ Atω, there is at
most one finite or infinite guarded string gs(s, σ) obtained by running the
automaton starting in state s.

Formally, define a partial map

gs : (Q × Atω) → (At · Σ)∗ · At + (At · Σ)ω

coinductively:

gs(s, α σ)
def
=


α · p · gs(t, σ), if δ(s, α) = (p, t)

α, if δ(s, α) = halt
undefined, if δ(s, α) = fail

The set of (finite) guarded strings represented by M is

gs(M)
def
= {gs(start, σ) | σ ∈ Atω} ∩ (At · Σ)∗ · At.



Bisimulation Between Strictly Deterministic Automata

A bisimulation between M and N is a binary relation ≡ between QM and
QN such that

startM ≡ startN , and

if s ≡ t then

δM(s, α) = halt ⇔ δN(t, α) = halt;

δM(s, α) = fail ⇔ δN(t, α) = fail;

δM(s, α) = (p, s ′) ∧ δN(t, α) = (q, t′) ⇒ p = q ∧ s ′ ≡ t′.



Bisimulation Between Strictly Deterministic Automata

Theorem
If M and N are bisimilar, then gs(M) = gs(N).

Moreover, the converse is true if
M never fails,
every reachable state in M can reach halt.

Proof.

(⇐) Define s ≡ t def⇐⇒ ∀σ ∈ Atω gsM(s, σ) = gsN(t, σ).
Property 2 is easy to check. For property 1, want
gsM(startM , σ) = gsN(startN , σ) for all σ. Since gs(M) = gs(N), if
gsM(startM , σ) is finite, then so is gsN(startN , σ) and they are equal. Thus

gsM(startM ,−) : Atω → (At · Σ)∗ · At + (At · Σ)ω

gsN(startN ,−) : Atω → (At · Σ)∗ · At + (At · Σ)ω

agree on the set {σ | gsM(startM , σ) is finite}. This set is dense in Atω.
Moreover, the two functions are continuous, and continuous functions that
agree on a dense set must agree everywhere.



Strictly Deterministic Automata

Every while program is equivalent to a strictly deterministic automaton:

while b do {
while c do q;
p;

}

0

2

halt

1

3

b

b

c

c

p

q

0

halt

1

bcq
bcp

bc
bc

bcp
bcp bcq

bcq

The converse is false (Ashcroft & Manna 1972)



The Böhm–Jacopini Theorem

Theorem (Böhm–Jacopini 1966)
Every deterministic flowchart program is equivalent to a while program.

Formulated and proved in a first-order setting

Their construction introduced extra auxiliary variables

Are the auxiliary variables necessary?



A Negative Result

Theorem (Ashcroft & Manna 1972)
There is a deterministic flowchart program that cannot be converted to a
while program without auxiliary variables.

Formulated and proved in a first-order setting

Counterexample has 13 states



—from (Ashcroft & Manna 1972)



Kosaraju’s Counterexample

—from (Kosaraju 1973) halt

p1

p1
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a

. . . is not a counterexample: while p1p2 do a



Kosaraju’s Counterexample

—from (Kosaraju 1973) halt

p1

p1

p2

p2

a

. . . is not a counterexample: while p1p2 do a



The Loop Hierarchy

Theorem (Kosaraju 1973)
Every deterministic flowchart is equivalent to a loop program with
multilevel breaks. Moreover, there is a strict hierarchy depending on the
level of breaks allowed.

loop {
...
loop {

...
break 1;
...

}← break 1 comes here
...

}

loop {
...
loop {

...
break 2;
...

}
...

}← break 2 comes here



—from (Kosaraju 1973)



A 3-State SDA not Equivalent to Any While Program
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halt
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A 3-State SDA not Equivalent to Any While Program
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A 3-State SDA not Equivalent to Any While Program

halt
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A 3-State SDA not Equivalent to Any While Program

halt
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A 3-State SDA not Equivalent to Any While Program

halt
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A 3-State SDA not Equivalent to Any While Program

halt
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A 3-State SDA not Equivalent to Any While Program

If there is no state bisimilar to 0
or 2 inside the loop, the loop is
equivalent to

while α1 {
p01;
if α1 then halt;

}

. . . which is equivalent to

if α1 then {
p01;
if α1 then halt;

}

1

0
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α1p01

α0p10

α0 + α2

α2p12



A 3-State SDA not Equivalent to Any While Program

If there is no state bisimilar to 0
or 2 inside the loop, the loop is
equivalent to

while α1 {
p01;
if α1 then halt;

}

. . . which is equivalent to

if α1 then {
p01;
if α1 then halt;

}

1

0
2

α1p01

α0p10

α0 + α2

α2p12



Loops Programs are Sufficient

Theorem (Kosaraju 73)
Every program is equivalent to a program with loops and multilevel
breaks but without gotos.



Example

halt

0

1 2

α1p01

α2p02

α0

α2p12

α0p10
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α0p20

α1p21

α2



Example

0

1 2

2 1

halt

α1p01 α2p02

α0

α2p12

α0p10

α1

α1p21

α0p20

α2

α1p21

α0p20

α2

α2p12

α0p10

α1



Example

0

1 2

2 1

halt

α1p01 α2p02

α0

α2p12

α0p10

α1

α1p21

α0p20

α2

α1p21

α0p20

α2

α2p12

α0p10

α1



Example

loop {
if α0 then break 1;
if α1 then {

p01;
loop {

if α1 then break 2;
if α0 then {

p10;
break 1;

} else {
p12;
if α2 then break 2;
if α0 then {

p20;
break 1;

}
else p21;

}
}

} else {
p02;
loop {

if α2 then break 2;
if α0 then {

p20;
break 1;

} else {
p21;
if α1 then break 2;
if α0 then {

p10;
break 1;

}
else p12;

}
}

}
}



Equational Treatment of Nonlocal Control Flow

A rigorous equational treatment of control constructs involving
nonlocal transfer of control using KAT and AGS

goto `

loop/break n

continue, exception handlers, try-catch-finally

Compositional semantics

Complete equational axiomatization



The Coalgebraic Theory

Kleene coalgebra (KC) and Kleene coalgebra with tests (KCT)

the Brzozowski derivative

minimization as finality

automatic extraction of equivalence proofs and relation to
proof-carrying code



Automata as Coalgebras

algebra coalgebra
constructors destructors
initial algebras final coalgebras
least fixpoints greatest fixpoints

Example: Σω = infinite streams over Σ with operations

head(a0a1a2a3 · · · ) = a0

tail(a0a1a2a3 · · · ) = a1a2a3 · · ·

A coalgebra of this signature is (S , obs, cont), where obs : S → Σ and
cont : S → S .

Every state s ∈ S generates a unique stream
h(s) = obs(s), obs(cont(s)), obs(cont2(s)), . . ..

The streams (Σω, head , tail) form the final coalgebra, and the map h is
the unique homomorphism (S , obs, cont)→ (Σω, head , tail).



Automata as Coalgebras
Rutten 1998, Bonsangue 2008, Silva 2010

Automata ≈ coalgebras

Myhill-Nerode state minimization ≈ quotient by maximal
bisimulation

minimal automaton ≈ final coalgebra

Brzozowski derivative ≈ a coalgebra of expressions



Kleene Coalgebra (KC)
A deterministic automaton without a start state

A Kleene coalgebra (KC) over Σ is a structure (S , δ, F ), where

S is a set of states

δp : S → S , p ∈ Σ is the transition function

F : S → 2 are the accept states.

Define L : S → Σ∗ → 2 (i.e., L : S → 2Σ∗) coinductively:

L(s)(ε) = F (s)

L(s)(px) = L(δp(s))(x)

Then

L(s)(x) = 1 iff x is accepted starting from state s

L is the unique KC-homomorphism to the final coalgebra

its kernel is the unique maximal autobisimulation



Brzozowski Derivative (Brzozowski 1964)

A certain Kleene coalgebra (2Σ∗ , D, E ):

Dp : 2Σ∗ → 2Σ∗ defined by Dp(A) = {x | px ∈ A}

E : 2Σ∗ → 2 defined by E (A) =

{
1 if ε ∈ A
0 if ε 6∈ A

This is the final KC over Σ



Brzozowski Derivative, Syntactic Form

Another Kleene coalgebra (RExpΣ, D, E ):

Dp : RExpΣ → RExpΣ E : RExpΣ → 2

Dp(e + e′) = Dp(e) + Dp(e′) E (e + e′) = E (e) + E (e′)
Dp(ee′) = Dp(e) · e′ + E (e) · Dp(e′) E (ee′) = E (e) · E (e′)

Dp(e∗) = Dp(e) · e∗ E (e∗) = 1
Dp(p) = 1 E (p) = 0, p ∈ Σ

Dp(q) = 0, q 6= p E (1) = 1
Dp(1) = Dp(0) = 0 E (0) = 0

L(e) = the regular subset of Σ∗ represented by e

Kernel of L is KA equivalence = maximal autobisimulation



Coinductive Equivalence Proofs

To prove e = e′, suffices to establish a bisimulation ≡ between
{Dx(e) | x ∈ Σ∗} and {Dx(e′) | x ∈ Σ∗} with e ≡ e′

Bisimulation:

e ≡ e′ ⇒ Dp(e) ≡ Dp(e′), p ∈ Σ

e ≡ e′ ⇒ E (e) = E (e′)

The set {Dx(e) | x ∈ Σ∗} is finite modulo the axioms of idempotent
semirings

Can generate the maximal ≡ automatically (if one exists)



Extension to KAT (Chen & Pucella 2003)

Automatic proof generation for proof-carrying code (Necula & Lee
1997)

There is a PSPACE decision procedure for KAT, but it only gives a
one-bit answer

Equational proofs require "cleverness", whereas coalgebraic proofs
can be produced purely mechanically (Chen & Pucella 2003)

Not true, actually (Worthington 2008)

can produce equational proofs in PSPACE

exponential length in the worst case (but probably unavoidable, since
PSPACE -complete)



Kleene Coalgebra with Tests (KCT)
Deterministic AGS without a start state

A KCT over Σ,T is a structure (S , δ, ε), where

δ : At · Σ→ S → S ε : At→ S → 2
δαp : S → S εα : S → 2

Define L : S → G → 2 coinductively:

L(s)(α) = εα(s) L(s)(αpx) = L(δαp(s))(x)

Then

L(s)(x) = 1 iff x is accepted starting from state s

L is the unique KCT-homomorphism to the final coalgebra



The Brzozowski Derivative

A KCT (2G , D, E ) where

D : At · Σ→ 2G → 2G E : At→ 2G → 2

Dαp : 2G → 2G Eα : 2G → 2
Dαp(A) = {x | αpx ∈ A} Eα(A) = 1 if α ∈ A, 0 if α 6∈ A

L : 2G → G → 2
L(A)(α) = Eα(A) L(A)(αpx) = L(Dαp(A))(x)

L(A)(x) = 1 iff x ∈ A



Syntactic Form

Another KCT (RExpΣ,T , D, E )

Dαp : RExpΣ,T → RExpΣ,T Eα : RExpΣ,T → 2

Dαp(e + e′) = Dαp(e) + Dαp(e′) Eα(e + e′) = Eα(e) + Eα(e′)
Dαp(ee′) = Dαp(e) · e′ + Eα(e) · Dαp(e′) Eα(ee′) = Eα(e) · Eα(e′)

Dαp(e∗) = Dαp(e) · e∗ Eα(e∗) = 1
Dαp(p) = 1 Eα(p) = 0, p ∈ Σ

Dαp(q) = 0, q 6= p Eα(b) =

{
1 if α ≤ b, b ∈ B
0 if not

Dαp(1) = Dαp(0) = 0

L(e) = the regular set of guarded strings represented by e



Complexity

Lemma
Any KAT expression e has at most 2|e| derivatives modulo the semiring
axioms.

Theorem
Can generate coinductive equivalence proofs (bisimulations) and
inequivalence proofs (witnesses to the nonexistence of a bisimulation)
automatically in PSPACE (matches (Worthington 2008) for equational
proofs in KAT)

Proof.
Construct two nondeterministic finite automata by Kleene’s theorem for
KAT expressions, determinize by the subset construction,
nondeterministically guess a counterexample to bisimiliarity in PSPACE .
Make deterministic by Savitch’s theorem.



What I Haven’t Talked About. . .

alternative and weaker axiomatizations (left-handed, non-strict,
non-idempotent. . . )

total correctness, concurrency

domain KA, Kleene modules

ω-KA

applications (compiler optimization, static analysis, pointer analysis,
. . . )

complexity issues

implementations



Thanks!
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