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Relations on a Set Relations on a Hypergraph

Boolean algebra Bi-Heyting algebra

Converse Adjoint pair of converses
``R = R

xy

R ⊆ R ⊆ yx

R

Complement Pseudocomplement and dual
−−R = R ¬¬ ⊆ R ⊆ ¬¬R

Composition & residuation Composition & residuation⋃
-preserving fns

⋃
-preserving fns

on lattice of subsets on lattice of subhypergraphs
(a Boolean algebra) (a bi-Heyting algebra)
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we are familiar with relations on sets, which we visualize (next

slide) as arrows between dots . . .
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a relation on a graph has arrows that can link

edges to edges

edges to nodes

nodes to edges

nodes to nodes

as in the next slide . . .
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but we need the relation to interact nicely with the structure of

the graph . . .
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To express the condition we need on the relation R,

let u be any edge or node, n be any node and e any edge.

If n R u then every edge incident with n is also related to u.

If u R e then u is also related to every node incident with e.

8



It’s better to work with graphs rather than hypergraphs because

of the edge-node duality they have.

A Hypergraph consists of a set N of nodes and E of edges and

an incidence relation associating edges to sets of nodes.

An edge may be incident with no edges and several edges may

be incident with the same set of nodes.

A sub-hypergraph is a subset of the edges and nodes such that

when any edge is included all its incident nodes are included.
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Two views of the same hypergraph:
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Hypergraphs with nodes N and edges E are equivalent to (binary)

relations ϕ on U = N ∪ E such that

1. if (x, y) ∈ ϕ then (y, y) ∈ R, and

2. if (x, y) ∈ ϕ and (y, z) ∈ R then y = z.

Given such a relation we can re-capture E and N as

E = {u ∈ U : (u, u) /∈ ϕ}

N = {u ∈ U : (u, u) ∈ ϕ}
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Define a relation R on a hypergraph (U, ϕ) to be R ⊆ U ×U such

that

ϕ ; R ⊆ R and R ; ϕ ⊆ R.

Thm These relations correspond to the join-preserving functions

on the lattice of sub-hypergraphs.

Propn R is a relation on (U, ϕ) iff R = (ϕ ∪ 1′) ; R ; (ϕ ∪ 1′).

Defn Let H be a pre-order on U . Then R ⊆ U×U is an H-relation

if R = H ; R ; H.
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Basic properties of H-relations

Write Rel for poset of all relations on U and H-Rel for the poset
of H-relations.

H-Rel is closed under composition, with identity H.

The inclusion H-Rel ⊆ Rel has adjoints as follows.

Rel

H ; ; H
>

⊥
< ⊃

H-Rel
⊂ >

⊥
<

H \ / H

Rel

where f a g means f is left adjoint to g.

Hence, H-Rel is closed under arbitrary unions and intersections
and includes 1 = U × U and 0 = ∅.

H-Rel is not closed under converse or complement, for example:
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Denote converse of R by `R, and complement of R by −R, and

use aR to denote `−R = −`R.

If H comes from a hypergraph, then the (`H)-relations are the

relations on the dual hypergraph.

For A ∈ Rel the following four statements are equivalent

(i) A ∈ H-Rel,

(ii) −A ∈ `H-Rel,

(iii) `A ∈ `H-Rel,

(iv) aA ∈ H-Rel.

R 7→ aR is an isomorphism of posets H-Rel→ (H-Rel)op.
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Recall that the lattice of subgraphs of a graph is a bi-Heyting

algebra.

In particular the Boolean complement of subsets becomes two

weaker operations when we move to subgraphs (or subhyper-

graphs)
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Generalizations of complement in H-Rel

In H-Rel we can define

¬R = H \ −R / H

¬R = H ;−R ; H

¬ is a pseudocomplement and ¬ a dual pseudocomplement.

More generally we get a relative pseudocomplement and a dual

relative pseudocomplement

R⇒ S = H \ (−R ∪ S) / H

S rR = H ; (S ∩ −R) ; H

Thm H-Rel is a complete bi-Heyting algebra which is isomorphic

to its opposite and which is also isomorphic to the lattice of `H-

relations.
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Generalizations of converse in H-Rel

In H-Rel we can define

y

R = H \`R / H right converse

x

R = H ; `R ; H left converse

What happens to these familiar properties?

``R = R, `(R ; S) = `S ; `R, `1′ = 1′

It is straightforward to construct relations R and S where

R  x2R  x4R  x6R  x8R  · · · ,

and

· · · y8S  y6S  y4S  y2S  y

S.
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The left and right converses are adjoints. H-Rel

x

>
⊥

< y

H-Rel

The following identities hold for all R, S ∈ H-Rel,

¬R = a x

R

x

R = a¬R ¬¬R =

xx

R

¬R =

yaR

y
R = ¬aR ¬¬R =

yy
R

¬R = a y
R

y
R = a¬R ¬¬R =

yx
R

¬R =

xaR

x

R = ¬aR ¬¬R =

xy

R

x

(R ∪ S) =

x

R ∪ x

S,

x

(R ∩ S) = ¬¬(

x

R ∩ x

S),

y

(R ∩ S) =

y

R ∩ y

S,

y

(R ∪ S) = ¬¬(

y

R ∪ y

S).
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recall how relations on a set act on subsets. This is the relation
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and here’s the subset
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which has a ‘dilation’:
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and an ‘erosion’:
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dilation by the converse has this property
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which is a special case of operations on relations
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so we don’t really need this
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but for relations acting on subsets, it’s not so simple. We have:
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and we might expect this one as well
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but no.

The theory of mathematical morphology for graphs is at an early

stage.
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