
Some Relational Style Laws of Linear Algebra

Anastasiya Grinenko and Jules Desharnais

Département d’informatique et de génie logiciel, Pavillon Adrien-Pouliot,
1065, avenue de la Médecine, Université Laval, Québec, QC, Canada G1V 0A6

anastasiya.grinenko.1@ulaval.ca,jules.desharnais@ift.ulaval.ca

Abstract. We present a few laws of linear algebra inspired by laws of
relation algebra. The linear algebra laws are obtained from the relational
ones by replacing union, intersection, composition and converse by the
linear algebra operators of addition, Hadamard product, composition
and transposition. Many of the modified expressions hold directly or
with minor alterations.

1 Introduction

The purpose of this short note is to present a few laws of linear algebra that are
similar to corresponding laws of relation algebra. The starting point is the remark
that matrices with 0, 1 entries are relations. Let Q and R be such matrices. Then
their Hadamard product Q · R, i.e., their entrywise arithmetic multiplication, is
their intersection. The standard addition Q+R and composition (multiplication)
QR are not quite the union and relational composition, but they are not so far
from that. Transpose RT and conjugate transpose R† are exactly the converse
of R. Our goal is to study what happens when the relational operators of a
relational law are replaced by the linear algebra operators, and what happens
when arbitrary matrices are used instead of relations.

Our purpose is to augment the repertoire of point-free laws of linear algebra,
an endeavour in the spirit of the work of Macedo and Oliveira [4, 5]. Some, if not
most, of these laws are already known, but we nevertheless feel the “relational
twist” is worth exploring.

Section 2 presents the notation and some basic laws. Section 3 introduces
domain-like operators. Sections 4 and 5 are about direct sums and direct prod-
ucts. We conclude in Section 6. We assume knowledge of the relational material
that is used below, which can be found in [7, 8]. There are numerous textbooks
on linear algebra; see, e.g., [6].

2 Basic Laws

We consider finite matrices over the complex numbers. In the sequel, the term
relations refers to matrices with 0, 1 entries. Variables A,B,C denote arbitrary
matrices and P,Q,R denote relations. Matrix composition is denoted by juxta-
position, as is standard in linear algebra. The other operators are matrix addi-
tion +, Hadamard product · (entrywise multiplication: (A · B)i,j = Ai,j ×Bi,j),

conjugate transpose †, transpose T, identity matrix I and zero matrix 0 (0i,j = 0
for all i, j). For relations, they are union ∪, intersection ∩, composition ;, con-
verse ` and universal relation >> (>>i,j = 1 for all i, j). The size of a matrix with
m rows and n columns is indicated by m ↔ n, occasionally as a subscript. The
unary operators have precedence over the binary ones. The order of increasing
precedence for the binary operators is (+, ∪), (·, ∩), (composition, ;).

A matrix A is a relation iff A · A = A. For a relation R, R` = RT = R†. The
universal relation >> is the neutral element of the Hadamard product: A ·>> = A.

Using matrix composition on relations rather than relational composition
gives a more “quantitative” result. Indeed, (QR)i,j is the number of paths from
i to j by following Q and then R, rather than simply indicating whether there
is a path or not. In particular, all entries of the matrix >>l↔m>>m↔n are m, the
size of the intermediate set (rows for the first matrix, columns for the second).

A matrix A is diagonal iff A · I = A. A relation R is univalent iff R†R is
diagonal; the entry (R†R)j,j is the number of rows i such that iRj, which gives a
measure of the degree of non-injectivity. Relations together with the Hadamard
product can be used to impose “shapes” to arbitrary matrices. For instance, if
R is univalent, then A · R is a matrix with at most one non-zero entry in each
row; thus, A has at most one non-zero entry in each row iff A = A · R for some
univalent relation R. Instead of univalent relations, one may use equivalence
relations, difunctional relations, symmetric relations, etc. to impose shapes.

Let us say that matrix A is unitarget iff A = A ·R for some univalent relation
R. If A is unitarget , then

(A · A)(B · C) = AB · AC . (1)

Thus, if R is a univalent relation, one has from (1) and R ·R = R that R(B ·C) =
RB · RC, a well-known law of linear algebra that generalises the relational law
that univalent relations left distribute over intersection: R ;(P∩Q) = R ;P∩R ;Q.

We prove (1). Assume A is unitarget.

((A · A)(B · C))i,j

= (
P

k | (A · A)i,k × (B · C)k,j)
= (

P
k | Ai,k ×Ai,k ×Bk,j × Ck,j)

= h If Ai,k = 0 for all k, choose an arbitrary ki; otherwise, let ki

be the unique k such that Ai,k 6= 0 i
Ai,ki ×Ai,ki ×Bki,j × Cki,j

= (Ai,ki ×Bki,j)× (Ai,ki × Cki,j)
= (

P
k | Ai,k ×Bk,j)× (

P
k | Ai,k × Ck,j)

= (AB)i,j × (AC)i,j

= (AB · AC)i,j ut

A diagonal matrix whose diagonal entries are all equal codes for a scalar. We
thus say that a matrix D is a scalar iff D = D · I and D>> = >>D. Since D>>

2

and >>D are then matrices whose entries are all equal, they could also be used
to code for a scalar.

Various simple laws follow. If the linear operators are replaced by the corre-
sponding relational ones (as described in the introduction), the relational laws
that inspired these laws are easily recognised.

Proposition 1. 1. (A · I)(A · I) = (A · I) · (A · I) = A · A · I, i.e., for diagonal
matrices, composition and Hadamard product coincide.

2. A · I = AT · I, with special case A>> · I = >>AT · I.
3. (A>> · B)C = A>> · BC, with special case (A>> · I)C = A>> · C.
4. A(B>> · C) = (A · >>BT)C.
5. If D is diagonal, then D = D>> · I = >>D · I.
6. If D is a scalar, then DA = AD for all A.
7. >>A>> · I is a scalar. Note that >>A>> is a matrix whose entries are all equal

to the sum of the entries of A. Thus, >>A>> · I is a scalar matrix denoting
the sum of the elements of A.

8. (A · B)>> = (ABT · I)>>. A consequence of this law is >>(A · B)>> = >>(ABT ·
I)>>, which says that the sum of the entries of A · B is the trace of ABT.

9. If R is a univalent relation, then R†(RA · B) = A · R†B.
10. Let R be a relation. If either 0 ≤ A, 0 ≤ B or A ≤ 0, B ≤ 0, then

RA · B ≤ R(A · R†B). If either 0 ≤ A, B ≤ 0 or A ≤ 0, 0 ≤ B, then
R(A · R†B) ≤ RA · B. This is similar to the Dedekind rule for relations:
R ;P ∩Q ⊆ R ;(P ∩R`;Q).

Proof. 1. This is direct from the definitions.
2. This is direct from the definitions.
3. ((A>> · B)C)i,j

= (
P

k | (A>>)i,k ×Bi,k × Ck,j)
= h (A>>)i,k = (A>>)i,j for all i, j & Distributivity i

(A>>)i,j × (
P

k | Bi,k × Ck,j)
= (A>>)i,j × (BC)i,j

= (A>> · BC)i,j

4. A(B>> · C)
= h Item 3 of this proposition i

A(B>> · I)C
= h Item 2 of this proposition i

A(>>BT · I)C
= h Dual of item 3 of this proposition i

(A · >>BT)C
5. Since D is diagonal, D = D · I. Thus, Di,j = 0 = (D>>· I)i,j if i 6= j. If i = j,

then (D>> · I)i,i = (D>>)i,i = (
P

k | Di,k) = (
P

k | (D · I)i,k) = Di,i. The
proof of D = >>D · I is similar.

3

6. Using item 5 of this proposition, the fact that D>> = >>D because D is a
scalar, and item 3 of this proposition and its dual, we have

DA = (D>> · I)A = D>> · A = >>D · A = A(>>D · I) = AD .

7. Firstly, (>>A>> · I) · I = >>A>> · I. Secondly, (>>A>> · I)>> = >>A>> · >> =
>>(>>A>> · I) by item 3 of this proposition and its dual.

8. ((A · B)>>)i,j

= (
P

k | (A · B)i,k)
= (

P
k | Ai,k ×Bi,k)

= (
P

k | Ai,k × (BT)k,i)
= (ABT)i,i

= (
P

k | (ABT · I)i,k)
= (ABT · I)>>

9. (R†(RA · B))i,j

= (
P

k | (R†)i,k × (RA · B)k,j)
= (

P
k, l | (R†)i,k ×Rk,l ×Al,j ×Bk,j)

= h Because R is univalent, (R†)i,k ×Rk,l = Rk,i ×Rk,l = 0 if
i 6= l. Otherwise, (R†)i,k ×Rk,l = (R†)i,k ×Rk,i = (R†)i,k,
because R is a relation i

(
P

k | (R†)i,k ×Ai,j ×Bk,j)
= (A · R†B)i,j

10. Assume either 0 ≤ A, 0 ≤ B or A ≤ 0, B ≤ 0.
(R(A · R†B))i,j

= (
P

k | Ri,k × (A · R†B)k,j)
= (

P
k, l | Ri,k ×Ak,j × (R†)k,l ×Bl,j)

≥ h By the assumption, Ak,j × Bl,j ≥ 0 & Because R is a
relation, Ri,k × (R†)k,i = Ri,k ≥ 0 i

(
P

k | Ri,k ×Ak,j ×Bi,j)
= (RA · B)i,j

When either 0 ≤ A, B ≤ 0 or A ≤ 0, 0 ≤ B, the proof is similar, except
that this assumption reverses the inequality. ut

3 Domain-like Operators

Like in relation algebra, the information content of a vector can be obtained
as a diagonal matrix. If vector V has type n ↔ 1, then the diagonal matrix
V>>1↔n · I corresponds to V (its diagonal contains the same elements as V , in
the same order). Given a diagonal matrix Dn↔n, the corresponding vector is
D>>n↔1. A vector V of type n ↔ 1 is a unit vector iff V †V = 1 (= >>1↔1).

4

Using the above correspondence between vectors and diagonal matrices, we say
that a diagonal matrix D is a unit diagonal matrix iff >>D†D>> = >> (which is
equivalent to >>(D† · D)>> = >>).

A common operation in linear algebra is the multiplication of a matrix A by
a vector V , giving the vector AV as a result. The dual operation V †A is also
frequent. In order to carry the same operations at the level of diagonal matrices,
we introduce two operators, the column-sum operator ΣA and row-sum operator
AΣ, defined by

ΣA = A>> · I , AΣ = >>A · I . (2)

A simple example explains how the operators work and where their names come
from:

Σ∑
a b
c d

∏
=

∑
a + b 0

0 c + d

∏
,

∑
a b
c d

∏Σ

=
∑

a + c 0
0 b + d

∏
.

Notice the similarity of these definitions with the relation algebraic defini-
tions of the domain operator pR = R ;>>∩I and codomain operator Rq = >> ;R∩I,
which encode the usual domain and codomain of a relation R as subidentity re-
lations. Such domain and codomain operators have been investigated thoroughly
in the more abstract setting of semirings and Kleene algebra [1, 2]. It turns out
that they share some properties with the column-sum and row-sum operators.
There are some differences, though, as the following table shows.

Linear algebra Relation algebra
(a) pR ;R = R

(b) pR ;pR = pR

(c) Σ(AB) =
Σ
(A(ΣB)) p(Q ;R) = p(Q ;pR)

(d) ΣA(ΣA) = ΣA · ΣA pQ ;pR = pQ ∩ pR

(e)
Σ
(ΣAB) = ΣA(ΣB) p(pQ ;R) = pQ ;pR

(f) Σ(A + B) = ΣA + ΣB p(Q ∪R) = pQ ∪ pR

(g)
ΣΣA = ΣA ppR = pR

(h) Σ(A†) = (AΣ)† p(R`) = Rq

(i) Σ(AT) = AΣ p(R`) = Rq

(j) A>> · B = ΣAB Q ;>> ∩R = pQ ;R

(3)

We prove the less obvious laws.

1. Proof of (3c). By (2), Proposition 1(3) and neutrality of >> for the Hadamard
product,

Σ
(A(ΣB)) = A(B>> · I)>> · I = A(B>> · >>) · I = AB>> · I = Σ(AB) .

2. Proof of (3e). By (2), Proposition 1(3) and definition of the Hadamard prod-
uct,

5

Σ
(ΣAB) = (A>> · I)B>> · I = A>> · B>> · I = (A>> · I) · (B>> · I) = ΣA(ΣB) .

ut
Unlike for relation algebra laws (3a) and (3b), ΣAA = A and ΣA(ΣA) = ΣA
do not hold, since, e.g.,

Σ∑
1 1
1 1

∏ ∑
1 1
1 1

∏
=

∑
2 2
2 2

∏
and

Σ∑
1 1
1 1

∏√
Σ∑

1 1
1 1

∏!

=
∑

4 0
0 4

∏
.

If t is a relational test (a subidentity), then forward and backward diamond
modal operators can be defined by |Rit = p(R ; t) and hR|t = (t ;R)q [3]. The cor-
responding linear algebra expressions are Σ(AD) and (DA)Σ, where D is a diag-
onal matrix. Both Σ(AD) and (DA)Σ are diagonal matrices. If one views D as a
description of the “content” or “amplitude” of a state, then (DA)Σ, for instance,
is the content or amplitude of the state obtained from state D by transformation
A. Using (2), Proposition 1(3) or its transposition dual, and neutrality of >> for
the Hadamard product, we get Σ(AD)>> = AD>> and >>(DA)Σ = >>DA. This
show that the operation Σ(AD) involving diagonal matrices corresponds to the
expression AV , involving vectors, and similarly for (DA)Σ and V TA; in fact, this
is just the same as for the domain and codomain operators of relation algebra.

A matrix A is unitary iff A†A = AA† = I. If A is unitary and V is a
unit vector, then AV is a unit vector. The corresponding property for diagonal
matrices is that Σ(AD) is a unit diagonal matrix if A is unitary and D is a unit
diagonal matrix. This is proved as follows.

>>(Σ(AD))†(Σ(AD))>>
= h (2) i
>>(AD>> · I)†(AD>> · I)>>

= h Linear algebra i
>>(>>D†A† · I)(AD>> · I)>>

= h Proposition 1(3) and its transposition dual i
(>>D†A† · >>)(AD>> · >>)

= h Neutrality of >> for the Hadamard product i
>>D†A†AD>>

= h A is unitary i
>>D†D>>

= h D is a unit diagonal matrix i
>> ut

6

4 Direct Sums

Relational direct sums are axiomatised as a pair (σ1, σ2) of injections satisfying
the following axioms:

(a) σ1 ;σ
`

1 = I , (b) σ2 ;σ
`

2 = I , (c) σ1 ;σ
`

2 = 0 , (d) σ
`

1
;σ1 ∪ σ

`

2
;σ2 = I . (4)

Because σ1, σ2 are injective functions and because σ`

1
;σ1 and σ`

2
;σ2 are dis-

joint, the relational operators can be replaced by the linear ones, allowing other
solutions in addition to the relational ones:

(a) σ1σ
†
1 = I , (b) σ2σ

†
2 = I , (c) σ1σ

†
2 = 0 , (d) σ†

1σ1 + σ†
2σ2 = I . (5)

As for relations, these direct sums allow one to build matrices by blocks (i.e.,
by combining smaller matrices). We refer to [4, 5] for an extensive study of this
construct.

Equations (4) define σ1 and σ2 up to isomorphism only. Other solutions can
be obtained by suitable permutations of the rows and columns of the relations
σ1 and σ2. With Equations (5), even more solutions are possible. If A, A1 and
A2 are unitary, then (A†

1σ1A,A†
2σ2A) is also a direct sum satisfying (5). This

amounts to having a direct sum in a different orthonormal basis.

5 Direct Products

Relational direct products are axiomatised as a pair (π1, π2) of projections sat-
isfying the following equations:

(a) π
`

1
;π1 = I , (b) π

`

2
;π2 = I , (c) π

`

1
;π2 = >> , (d) π1 ;π

`

1 ∩ π2 ;π
`

2 = I . (6)

These equations define π1 and π2 up to isomorphism. For example, the following
relations π1 of type 3× 2 ↔ 3 and π2 of type 3× 2 ↔ 2 provide a solution:

π1 =





1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1




, π2 =





1 0
0 1
1 0
0 1
1 0
0 1




.

If we use this solution in the linear algebra variant of (6), we see that π†
1π2 = >>

and π1π
†
1 · π2π

†
2 = I hold, but not π†

1π1 = I and π†
2π2 = I, since

π†
1π1 =




2 0 0
0 2 0
0 0 2



 and π†
2π2 =

∑
3 0
0 3

∏
.

7

But




2 0 0
0 2 0
0 0 2



 =




1 1
1 1
1 1




∑

1 1 1
1 1 1

∏
·




1 0 0
0 1 0
0 0 1



 = >>3↔2>>2↔3 · I and

∑
3 0
0 3

∏
=

∑
1 1 1
1 1 1

∏


1 1
1 1
1 1



 ·
∑

1 0
0 1

∏
= >>2↔3>>3↔2 · I, which leads to the

appropriate laws for defining direct products with the linear algebra operators,
where π1 has type m× n ↔ m and π2 type m× n ↔ n:

(a) π†
1π1 = >>m↔n>>n↔m · I , (c) π†

1π2 = >> ,
(b) π†

2π2 = >>n↔m>>m↔n · I , (d) π1π
†
1 · π2π

†
2 = I .

(7)

Then π†
1π1 and π†

2π2 are diagonal matrices whose entries in the diagonal are n
and m, respectively.

In relation algebra, vectorisation of a relation R is obtained by vec(R) =
(π1 ;R ∩ π2) ;>>. If π1 and π2 are relations, this works for arbitrary matrices A

and the linear algebra operators. For instance, with A =




a b
c d
e f



,

vec(A) = (π1A · π2)>>2↔1 =









1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1








a b
c d
e f



 ·





1 0
0 1
1 0
0 1
1 0
0 1









∑
1
1

∏
=





a
b
c
d
e
f




.

Unvectorisation works as well:

A = π†
1(vec(A)>>1↔n · π2) . (8)

Thus,




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1













a
b
c
d
e
f




[1 1] ·





1 0
0 1
1 0
0 1
1 0
0 1








=




a b
c d
e f



 .

Compared to what happens with relations, there is the additional constraint
that the >> used for vectorisation must have one column and that used for
unvectorisation must have one row.

The proof of (8) follows.

π†
1(vec(A)>>1↔n · π2)

= π†
1((π1A · π2)>>n↔1>>1↔n · π2)

8

= π†
1((π1A · π2)>>n↔n · π2)

= h Proposition 1(3,8) & Because π2 is a relation, πT
2 = π†

2 i

π†
1((π1Aπ†

2 · I)>>n↔n · I)π2

= h π1Aπ†
2 · I is diagonal & Proposition 1(5) i

π†
1(π1Aπ†

2 · I)π2

= h π1 and π2 are univalent & Proposition 1(9) and its dual i

A · π†
1π2

= h (7c) & >> is neutral for the Hadamard product i
A ut

Given size-compatible projections π1 and π2, the Kronecker product A ⊗ B
can now be defined:

A⊗B = π1Aπ†
1 · π2Bπ†

2 . (9)
This is the standard Kronecker product of linear algebra. For instance, with

the π1 and π2 given at the beginning of this section,




a b c
d e f
g h i



⊗
∑

j k
l m

∏
=





a× j a× k b× j b× k c× j c× k
a× l a×m b× l b×m c× l c×m
d× j d× k e× j e× k f × j f × k
d× l d×m e× l e×m f × l f ×m
g × j g × k h× j h× k i× j i× k
g × l g ×m h× l h×m i× l i×m




.

The following laws and their dual under † are satisfied when π1 and π2 are
relations:

(a) (Aπ†
1 · Bπ†

2)π1 = A · B>> ,
(b) (Aπ†

1 · Bπ†
2)π2 = A>> · B ,

(c) (Aπ†
1 · Bπ†

2)(π1C · π2D) = AC · BD ,
(d) (A⊗B)(C ⊗D) = (AC)⊗ (BD) ,
(e) If A and B are invertible, so is A⊗B ,
(f) If A and B are unitary, so is A⊗B .

(10)

6 Conclusion

We plan to continue the exploration of similar laws inspired by those or relation
and Kleene algebra. In addition, we need to identify a small set of basic formulae
and derive the others from them in a pointfree way; for our taste, too many of
the proofs of the above properties were done using indexes. Finally, we intend to
look at applications in the areas of quantum automata and program derivation.

Acknowledgements

This research was partially supported by NSERC (Natural Sciences and Engi-
neering Research Council of Canada).

9

References

1. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Science of Com-
puter Programming 76(3) (2011) 181–203

2. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Transac-
tions on Computational Logic (TOCL) 7(4) (2006) 798–833

3. Desharnais, J., Möller, B., Struth, G.: Modal Kleene algebra and applications —
A survey—. JoRMiCS — Journal on Relational Methods in Computer Science 1
(2004) 93–131

4. Macedo, H.D., Oliveira, J.N.: Matrices as arrows! A biproduct approach to typed
linear algebra. In Bolduc, C., Desharnais, J., Ktari, B., eds.: Mathematics of Pro-
gram Construction. Volume 6120 of Lecture Notes in Computer Science. Springer
(2010) 271–287

5. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: A biproduct-oriented approach.
Science of Computer Programming, 2012, http://dx.doi.org/10.1016/j.scico.
2012.07.012

6. Roman, S.: Advanced Linear Algebra. Second edn. Graduate Texts in Mathematics.
Springer (2005)

7. Schmidt, G.: Relational Mathematics. Volume 132 of Encyclopedia of Mathematics
and Its Applications. Cambridge University Press (2010)

8. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer (1988)

10

