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Background

I Working on interval-based models for reasoning about
real-time systems

I Have hybrid properties, i.e., mixture of continuous and
discrete properties

I Aiming for realistic assumptions to ensure implementability

I Trying not to assume too much is “instantaneous”

I Weakening assumptions leads to increase in complexity



Goals

I Main question: What algebra does our model give rise to?

I Begin with interval predicates (this paper)
I Moving towards programming frameworks (e.g., real-time

action systems)

I Secondary questions: Can we use an algebra to simplify proofs
in the model, improve insights, etc.?

I There are related algebraic approaches to reasoning about
hybrid systems — in particular we build on work by Peter
Höfner and Bernhard Möller



A model for real-time programs

I Several authors have proposed the use of intervals as a way to
reason about real-time/hybrid systems

I Brief overview of our model

Time =̂ R
State =̂ Var → Val

Stream =̂ Time → State

Interval =̂

{
∆ ⊆ Time

∀t1, t2 ∈ ∆, t ∈ Time •

t1 ≤ t ≤ t2⇒ t ∈ ∆

}
StatePred =̂ State → B
IntvPred =̂ Interval → Stream→ B



Chop operator

I For interval-based logics the chop operator (denoted ‘;’) is
useful

I We use ‘.’ for function application

I For interval predicates p1 and p2, interval ∆ and stream s, we
say (p1 ; p2).∆.s holds iff either

I ∆ can be split into adjoining intervals ∆1 and ∆2 such that
both p1.∆1.s and p2.∆2.s hold, or

I the least upper bound of ∆ is ∞ and p1.∆.s holds
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Chop operator

I Chop allows one to model sequential composition and
iteration

I However, reasoning across the boundary of two adjoining
intervals can be problematic, e.g., if we want to specify
�c ; �¬c



Always definition

Definition
For state predicate c , time t and stream s, define

(c@t).s =̂ c .(s.t)

Definition
For state predicate c and interval ∆, define

(�c).∆ =̂ ∀t : ∆ • c@t

Definition
For variable x , time t and stream s, define

(x@t).s =̂ (s.t).x
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Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5
I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold

because
I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold
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Lesson learnt

I Can be difficult to formalise ‘;’ if we restrict ourselves to
closed intervals only

I Allow intervals to be open/closed at either end



Consequences of ‘;’ with closed intervals

I Duration calculus:
I All finite length intervals are closed
I �c weakened to AlmostAlways(c)
I AlmostAlways(c) holds in ∆ iff the times in ∆ for which c is

false form a set of measure 0

I Höfner and Möller’s hybrid algebra:
I All finite length intervals are closed
I A new (relaxed) compatibility relation defined at point of

composition between two adjoining intervals
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Example 2

Can we deduce �(x ≥ 5).[0, 3] using

I �(x ≥ 5).[0, 2) and

I �(x ≥ 5).(2, 3] ?

No! May have x@2 < 5.
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Lesson learnt

Adjoining intervals should be contiguous across their boundary



Formalising adjoins and chop

∆1 Adjoins ∆2 iff

I ∆1 = {}, or

I ∆2 = {}, or

I ∆1 ∩∆2 = {} and ∆1 ∪∆2 ∈ Interval and lub.∆1 = glb.∆2

(p1 ; p2).∆.s =̂

∃∆1,∆2
• (∆1 Adjoins ∆2)∧

(∆1 ∪∆2 = ∆) ∧
p1.∆1.s ∧ p2.∆1.s


∨
(lub.∆ =∞∧ p1.∆.s)
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The algebra of interval predicates

Proposition

(IntvPred ,∨, ; ,False,Empty) forms a Boolean weak quantale

where

I ‘∨’ is lifted disjunction, i.e., (p1 ∨ p2).∆.s = p1.∆.s ∨ p2.∆.s

I ‘;’ is the chop operator

I False.∆.s =̂ false

I Empty.∆.s =̂ (∆ = {})
I Ordering ‘≤’ is universal implication ‘V’, where

p1 V p2 =̂ ∀∆, s • p1.∆.s ⇒ p2.∆.s

I Note that (p ; False) 6≡ False
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Tests

I Allowing open intervals affects test elements, i.e., a such that
a ≤ 1

I If all intervals are closed, test elements correspond to point
intervals (Höfner and Möller)

I In our model:
I 1 corresponds to Empty
I The only elements corresponding to tests are False and Empty
I This is not problematic — we assume guard evaluation takes

time
I beh.(if b then S1 else S2 fi) =̂ ( �b ;beh.S1)∨( �¬b ;beh.S2)
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Iteration: basic properties
I For a Boolean weak quantale (A,+, ·, 0, 1), one can define

a∗ =̂ (µz • az + 1)

aω =̂ (νz • az + 1)

a∞ =̂ (νz • az)

I ∗ is a finite iteration
I ω is an iteration that is either finite or infinite
I ∞ is an infinite iteration

I Unfolding rules:

a∗ = aa∗ + 1 aω = aaω + 1 a∞ = aa∞

I Induction rules:

az + 1 ≤ z ⇒ a∗ ≤ z

z ≤ az + 1 ⇒ z ≤ aω

z ≤ az ⇒ z ≤ a∞



Iteration: some derived properties

Yes:

I b + ac ≤ c ⇒ a∗b ≤ c

I c ≤ ac + b ⇒ c ≤ a∞ + a∗b

No:

I c ≤ ac + b ⇒ c ≤ aωb

Counter-example: Taking a = 1 and b = 0, equation reduces to
c ≤ >0.

Define positive iteration a+ =̂ aa∗. Then induction and unfolding
rules are:

I az + a ≤ z ⇒ a+ ≤ z

I a∞ = a+a∞
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Compositional reasoning

I An interval predicate p splits iff given that p holds over an
interval ∆, p holds over all subintervals of ∆

p

V

(p splits)

p

I An interval predicate p joins iff p holds in an interval ∆
whenever p+ holds in ∆

p p pp p p
V

(p joins)

p
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Compositional reasoning

Definition
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.

I a splits iff ∀b, c : A • a f bc ≤ (a f b)(a f c)

I a joins iff ∀b, c : A • (a f b)(a f c) ≤ a f bc

Höfner and Möller define “submodular” to mean splits and
“modular” to mean both splits and joins
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Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a



Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a



Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a



Finite and infinite elements

For a Boolean weak quantale (A,+, ·, 0, 1) and a ∈ A following
Höfner and Möller, we have:

I a is purely infinite iff a0 = a

I a is purely finite iff a0 = 0.

I the largest purely infinite element INF:
a ≤ INF ⇐⇒ a0 = a

I the largest purely finite element FIN:
a ≤ FIN ⇐⇒ a0 = 0



INF and FIN in the model

I INF corresponds to interval predicate

λ∆ : Interval , s : Stream • lub.∆ =∞

I FIN corresponds to interval predicate

λ∆ : Interval , s : Stream • lub.∆ 6=∞



Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and
non-terminating elements.

Term a =̂ FIN f a∗

Diverge a =̂ INF f a+
Zeno a =̂ FIN f a∞

NonTerm a =̂ INF f a∞

Lemma
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.
Then each of the following holds.

Term a = (FIN f a)∗ (1)

Zeno a = FIN f (FIN f a)∞ (2)

Diverge a ≤ NonTerm a (3)
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Properties in the model: Next

I Useful to be able to reason about properties like next.p

I (next.p).∆ holds iff p holds in some interval that immediately
follows ∆

I Formally,

(next.p).∆.s =̂ ∃∆′ • (∆ Adjoins ∆′) ∧ p.∆′.s

I Höfner and Möller use domain and co-domain elements to get
algebraic characterisation of next

I This is not possible for us — intervals may be open

I But one can derive properties in the model with the help of
algebra
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Properties in the model: Previous and Next

Lemma
For any interval predicate p, both of the following hold.

1. If p splits then (p⇒ next.p)+ ∧ Fin V (p⇒ next.p).

2. If p joins then (p ∧ next.p)+ ∧ Fin V (p ∧ next.p).

Note the similarity with unfolding rule when proving loop
invariants.
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Conclusions

I Properties at and across the boundary between adjoining
intervals can be subtle

I The algebraic approach makes reasoning elegant and
perspicuous

I Höfner and Möller lay some groundwork (for a closed interval
model) that we are (luckily) able to re-use



Future work

I Use these results to prove properties of real-time action
systems

I Mechanisation in Isabelle/HOL
I With Alasdair Armstrong — have encoded a discrete (integer)

interval theory into Isabelle/HOL and shown that discrete
intervals form a Boolean weak quantale

I Have Lattice.thy → Quantale.thy → DiscreteIntvPred.thy
I Aiming for DiscreteIntvPred.thy → Commands.thy →

Rely-Guarantee.thy



Questions?


