Towards an algebra for real-time programs

Brijesh Dongol¹ Ian J. Hayes² Larissa Meinicke³ Kim Solin⁴

^{1,2,3,4}School of Information Technology and Electrical Engineering, The University of Queensland

> ¹Department of Computer Science, The University of Sheffield

⁴Department of Software Engineering, Gotland University

September 22, 2012

Background

- Working on interval-based models for reasoning about real-time systems
- Have hybrid properties, i.e., mixture of continuous and discrete properties
- Aiming for realistic assumptions to ensure implementability
- Trying not to assume too much is "instantaneous"
- Weakening assumptions leads to increase in complexity

Goals

- Main question: What algebra does our model give rise to?
 - Begin with interval predicates (this paper)
 - Moving towards programming frameworks (e.g., real-time action systems)
- Secondary questions: Can we use an algebra to simplify proofs in the model, improve insights, etc.?
- There are related algebraic approaches to reasoning about hybrid systems — in particular we build on work by Peter Höfner and Bernhard Möller

A model for real-time programs

- Several authors have proposed the use of intervals as a way to reason about real-time/hybrid systems
- Brief overview of our model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

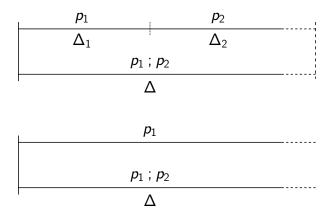
$$egin{array}{rll} {\it State}
ightarrow {\Bbb B} \ {\it IntvPred} & \widehat{=} & {\it Interval}
ightarrow {\it Stream}
ightarrow {\Bbb B} \end{array}$$

Chop operator

- For interval-based logics the chop operator (denoted ';') is useful
- We use '.' for function application
- For interval predicates p₁ and p₂, interval Δ and stream s, we say (p₁; p₂).Δ.s holds iff either
 - A can be split into adjoining intervals Δ₁ and Δ₂ such that both p₁.Δ₁.s and p₂.Δ₂.s hold, or

• the least upper bound of Δ is ∞ and $p_1.\Delta.s$ holds

Chop operator



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Chop allows one to model sequential composition and iteration
- However, reasoning across the boundary of two adjoining intervals can be problematic, e.g., if we want to specify
 c ; *⊡*¬*c*

Always definition

Definition

For state predicate c, time t and stream s, define

$$(c@t).s \stackrel{\frown}{=} c.(s.t)$$

Definition

For state predicate c and interval Δ , define

$$(\boxdot c).\Delta \cong \forall t : \Delta \bullet c@t$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Always definition

Definition

For state predicate c, time t and stream s, define

$$(c@t).s \stackrel{\frown}{=} c.(s.t)$$

Definition

For state predicate c and interval Δ , define

$$(\boxdot c).\Delta \cong \forall t : \Delta \bullet c@t$$

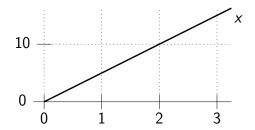
Definition

For variable x, time t and stream s, define

$$(x@t).s \stackrel{\frown}{=} (s.t).x$$

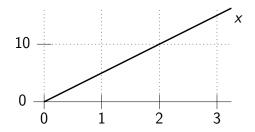
▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Consider continuous variable x where x[@]0 = 0 and ⊡(x^{*} = 5).[0,3]



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

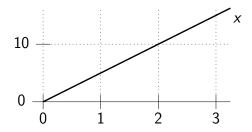
Consider continuous variable x where x[@]0 = 0 and ⊡(x^{*} = 5).[0,3]



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

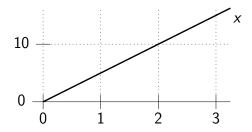
• We have x@1 = 5

Consider continuous variable x where x[@]0 = 0 and ⊡(x^{*} = 5).[0,3]



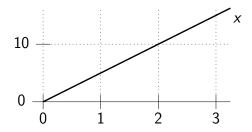
- We have x@1 = 5
- Hence, $(\boxdot(x < 5); \boxdot(x \ge 5)).[0,2]$ should hold

Consider continuous variable x where x[@]0 = 0 and ⊡(x^{*} = 5).[0,3]



- We have x@1 = 5
- ▶ Hence, $(\Box(x < 5); \Box(x \ge 5)).[0, 2]$ should hold because
 - $\Box(x < 5).[0, 1)$ and
 - $\Box(x \ge 5).[1,2]$

Consider continuous variable x where x[@]0 = 0 and ⊡(x^{*} = 5).[0,3]



- We have x@1 = 5
- ▶ Hence, $(\boxdot(x < 5); \boxdot(x \ge 5)).[0, 2]$ should hold because
 - $\Box(x < 5).[0, 1)$ and
 - $\Box(x \ge 5).[1,2]$
- However, $\Box(x < 5).[0,1]$ does not hold

Lesson learnt

 Can be difficult to formalise ';' if we restrict ourselves to closed intervals only

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Allow intervals to be open/closed at either end

Consequences of ';' with closed intervals

Duration calculus:

- All finite length intervals are closed
- $\Box c$ weakened to AlmostAlways(c)
- ► AlmostAlways(c) holds in ∆ iff the times in ∆ for which c is false form a set of measure 0

Consequences of ';' with closed intervals

Duration calculus:

- All finite length intervals are closed
- $\Box c$ weakened to AlmostAlways(c)
- ► AlmostAlways(c) holds in ∆ iff the times in ∆ for which c is false form a set of measure 0
- Höfner and Möller's hybrid algebra:
 - All finite length intervals are closed
 - A new (relaxed) compatibility relation defined at point of composition between two adjoining intervals

Can we deduce $\Box(x \ge 5).[0,3]$ using

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\Box(x \ge 5).[0,2)$ and
- $\Box(x \ge 5).(2,3]$?

Can we deduce $\Box(x \ge 5).[0,3]$ using

- $\Box(x \ge 5).[0,2)$ and
- $\Box(x \ge 5).(2,3]$?

No! May have x@2 < 5.

Lesson learnt

Adjoining intervals should be contiguous across their boundary

Formalising adjoins and chop

 $\Delta_1 \text{ Adjoins } \Delta_2 \text{ iff}$

•
$$\Delta_1 = \{\}$$
, or

•
$$\Delta_2 = \{\}$$
, or

 $\blacktriangleright \ \Delta_1 \cap \Delta_2 = \{\} \text{ and } \Delta_1 \cup \Delta_2 \in \textit{Interval } \text{ and } \textit{Iub}.\Delta_1 = \textit{glb}.\Delta_2$

Formalising adjoins and chop

 Δ_1 Adjoins Δ_2 iff

•
$$\Delta_1 = \{\}$$
, or

• $\Delta_1 \cap \Delta_2 = \{\}$ and $\Delta_1 \cup \Delta_2 \in Interval$ and $Iub.\Delta_1 = glb.\Delta_2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$(p_{1}; p_{2}).\Delta.s \stackrel{\widehat{}}{=} \begin{pmatrix} \exists \Delta_{1}, \Delta_{2} \bullet (\Delta_{1} \ Adjoins \ \Delta_{2}) \land \\ (\Delta_{1} \cup \Delta_{2} = \Delta) \land \\ p_{1}.\Delta_{1}.s \land p_{2}.\Delta_{1}.s \end{pmatrix} \\ \lor \\ (lub.\Delta = \infty \land p_{1}.\Delta.s)$$

The algebra of interval predicates

Proposition (*IntvPred*, ∨,;, False, Empty) forms a Boolean weak quantale

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The algebra of interval predicates

Proposition

(*IntvPred*, \lor , ; , False, Empty) forms a Boolean weak quantale where

- 'V' is lifted disjunction, i.e., $(p_1 \lor p_2).\Delta.s = p_1.\Delta.s \lor p_2.\Delta.s$
- ';' is the chop operator
- ► False. Δ . $s \stackrel{\frown}{=} false$
- Empty. $\Delta . s \stackrel{\frown}{=} (\Delta = \{\})$
- Ordering ' \leq ' is universal implication ' \Rightarrow ', where

$$p_1 \Rightarrow p_2 \quad \widehat{=} \quad \forall \Delta, s \bullet p_1.\Delta.s \Rightarrow p_2.\Delta.s$$

• Note that
$$(p; False) \neq False$$

Tests

► Allowing open intervals affects test elements, i.e., a such that a ≤ 1

Tests

- ► Allowing open intervals affects test elements, i.e., a such that a ≤ 1
- If all intervals are closed, test elements correspond to point intervals (Höfner and Möller)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Tests

- ► Allowing open intervals affects test elements, i.e., a such that a ≤ 1
- If all intervals are closed, test elements correspond to point intervals (Höfner and Möller)
- In our model:
 - 1 corresponds to Empty
 - The only elements corresponding to tests are False and Empty
 - This is not problematic we assume guard evaluation takes time
 - ▶ beh.(if b then S_1 else S_2 fi) $\hat{=}$ (\circledast b; beh. S_1) \lor (\circledast ¬b; beh. S_2)

Iteration: basic properties

For a Boolean weak quantale $(A, +, \cdot, 0, 1)$, one can define

$$a^* \stackrel{\widehat{}}{=} (\mu z \bullet az + 1)$$

$$a^{\omega} \stackrel{\widehat{}}{=} (\nu z \bullet az + 1)$$

$$a^{\infty} \stackrel{\widehat{}}{=} (\nu z \bullet az)$$

- * is a finite iteration
- $\blacktriangleright \ ^{\omega}$ is an iteration that is either finite or infinite
- $^{\infty}$ is an infinite iteration
- Unfolding rules:
 - $a^* = aa^* + 1$ $a^\omega = aa^\omega + 1$ $a^\infty = aa^\infty$
- Induction rules:

$$\begin{aligned} az + 1 \le z &\Rightarrow a^* \le z \\ z \le az + 1 &\Rightarrow z \le a^{\omega} \\ z \le az &\Rightarrow z \le a^{\infty} \end{aligned}$$

Iteration: some derived properties

Yes:

► $b + ac \le c \implies a^*b \le c$ ► $c \le ac + b \implies c \le a^{\infty} + a^*b$ No:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $\triangleright \ c \leq ac + b \ \Rightarrow \ c \leq a^{\omega}b$

Iteration: some derived properties

Yes:

- $\blacktriangleright b + ac \le c \quad \Rightarrow \quad a^*b \le c$
- $c \leq ac + b \Rightarrow c \leq a^{\infty} + a^*b$

No:

 $c \leq ac + b \Rightarrow c \leq a^{\omega}b$

Counter-example: Taking a = 1 and b = 0, equation reduces to $c \leq \top 0$.

Iteration: some derived properties

Yes:

- $\blacktriangleright b + ac \le c \quad \Rightarrow \quad a^*b \le c$
- $c \leq ac + b \Rightarrow c \leq a^{\infty} + a^*b$

No:

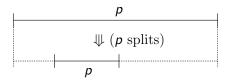
 $c \leq ac + b \Rightarrow c \leq a^{\omega}b$

Counter-example: Taking a = 1 and b = 0, equation reduces to $c \leq \top 0$.

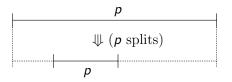
Define positive iteration $a^+ \cong aa^*$. Then induction and unfolding rules are:

az + *a* ≤ *z* ⇒ *a*⁺ ≤ *z a*[∞] = *a*⁺*a*[∞]

An interval predicate *p* splits iff given that *p* holds over an interval Δ, *p* holds over all subintervals of Δ



An interval predicate *p* splits iff given that *p* holds over an interval Δ, *p* holds over all subintervals of Δ



 An interval predicate *p* joins iff *p* holds in an interval Δ whenever *p*⁺ holds in Δ

Definition

Suppose $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale and $a \in A$.

- ► a splits iff $\forall b, c : A \bullet a \land bc \leq (a \land b)(a \land c)$
- ▶ a joins iff $\forall b, c : A \bullet (a \land b)(a \land c) \leq a \land bc$

Definition

Suppose $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale and $a \in A$.

- ► a splits iff $\forall b, c : A \bullet a \land bc \leq (a \land b)(a \land c)$
- ▶ a joins iff $\forall b, c : A \bullet (a \land b)(a \land c) \leq a \land bc$

Höfner and Möller define "submodular" to mean splits and "modular" to mean both splits and joins

Lemma

Suppose $a \in A$ where $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale.

(1) If a splits, then for any $b \in A$, $a \downarrow b^* \leq (a \downarrow b)^*$ holds.

(2) If a splits, then for any $b \in A$, $a \land b^{\omega} \leq (a \land b)^{\omega}$ holds.

(3) If a joins, then for any $b \in A$, $(a \land b)^+ \leq a \land b^+$ holds.

Compositional reasoning

Lemma

Suppose $a \in A$ where $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale. (1) If a splits, then for any $b \in A$, $a \downarrow b^* \leq (a \downarrow b)^*$ holds. (2) If a splits, then for any $b \in A$, $a \downarrow b^{\omega} \leq (a \downarrow b)^{\omega}$ holds. (3) If a joins, then for any $b \in A$, $(a \downarrow b)^+ \leq a \downarrow b^+$ holds.

Note

- If a joins it is not necessarily true that
 - for any $b \in A$, $(a \land b)^* \leq a \land b^*$ holds
 - for any $b \in A$, $(a \downarrow b)^{\omega} \leq a \downarrow b^{\omega}$ holds

Compositional reasoning

Lemma

Suppose $a \in A$ where $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale. (1) If a splits, then for any $b \in A$, $a \downarrow b^* \leq (a \downarrow b)^*$ holds. (2) If a splits, then for any $b \in A$, $a \downarrow b^{\omega} \leq (a \downarrow b)^{\omega}$ holds. (3) If a joins, then for any $b \in A$, $(a \downarrow b)^+ \leq a \downarrow b^+$ holds.

Note

- If a joins it is not necessarily true that
 - for any $b \in A$, $(a \land b)^* \leq a \land b^*$ holds
 - for any $b \in A$, $(a \land b)^{\omega} \leq a \land b^{\omega}$ holds
- Left hand side may iterate zero times and get 1, but on right hand side we already have a

Finite and infinite elements

For a Boolean weak quantale $(A, +, \cdot, 0, 1)$ and $a \in A$ following Höfner and Möller, we have:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ a is purely infinite iff a0 = a
- a is purely finite iff a0 = 0.
- ► the largest purely infinite element INF: a ≤ INF ⇐⇒ a0 = a
- ► the largest purely finite element FIN:
 - $a \leq \mathsf{FIN} \iff a0 = 0$

INF corresponds to interval predicate

 $\lambda \Delta$: Interval, s : Stream • Iub. $\Delta = \infty$

FIN corresponds to interval predicate

 $\lambda \Delta$: Interval, s : Stream • Iub. $\Delta \neq \infty$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and non-terminating elements.

Term a	$\widehat{=}$	FIN 人 <i>a</i> *	Zeno <i>a</i>	$\widehat{=}$	$FIN \curlywedge \textit{a}^\infty$
Diverge a	$\widehat{=}$	$INF \curlywedge a^+$	NonTerm a	$\widehat{=}$	$INF \curlywedge \textit{a}^\infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and non-terminating elements.

Term $a \cong FIN \land a^*$ Zeno $a \cong FIN \land a^\infty$ Diverge $a \cong INF \land a^+$ NonTerm $a \cong INF \land a^\infty$

Lemma

Suppose $(A, +, \cdot, 0, 1)$ is a Boolean weak quantale and $a \in A$. Then each of the following holds.

Term
$$a = (FIN \land a)^*$$
(1)Zeno $a = FIN \land (FIN \land a)^\infty$ (2)Diverge $a \leq NonTerm a$ (3)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Useful to be able to reason about properties like next.p
- ► (next.p).∆ holds iff p holds in some interval that immediately follows ∆
- Formally,

$$(next.p).\Delta.s \ \ \widehat{=} \ \ \exists \Delta' \bullet (\Delta \ Adjoins \ \Delta') \land p.\Delta'.s$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Useful to be able to reason about properties like next.p
- ► (next.p).∆ holds iff p holds in some interval that immediately follows ∆
- Formally,

$$(next.p).\Delta.s \cong \exists \Delta' \bullet (\Delta Adjoins \Delta') \land p.\Delta'.s$$

 Höfner and Möller use domain and co-domain elements to get algebraic characterisation of *next*

- Useful to be able to reason about properties like next.p
- ► (next.p).∆ holds iff p holds in some interval that immediately follows ∆
- Formally,

$$(next.p).\Delta.s \cong \exists \Delta' \bullet (\Delta Adjoins \Delta') \land p.\Delta'.s$$

 Höfner and Möller use domain and co-domain elements to get algebraic characterisation of *next*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► This is not possible for us — intervals may be open

- Useful to be able to reason about properties like next.p
- ► (next.p).∆ holds iff p holds in some interval that immediately follows ∆
- Formally,

$$(next.p).\Delta.s \cong \exists \Delta' \bullet (\Delta Adjoins \Delta') \land p.\Delta'.s$$

- Höfner and Möller use domain and co-domain elements to get algebraic characterisation of *next*
- This is not possible for us intervals may be open
- But one can derive properties in the model with the help of algebra

Properties in the model: Previous and Next

Lemma

For any interval predicate p, both of the following hold.

1. If *p* splits then $(p \Rightarrow next.p)^+ \land Fin \Rightarrow (p \Rightarrow next.p)$.

2. If p joins then $(p \land next.p)^+ \land Fin \Rightarrow (p \land next.p)$.

Properties in the model: Previous and Next

Lemma

For any interval predicate p, both of the following hold.

- 1. If p splits then $(p \Rightarrow next.p)^+ \land Fin \Rightarrow (p \Rightarrow next.p)$.
- 2. If p joins then $(p \land next.p)^+ \land Fin \Rightarrow (p \land next.p)$.

Note the similarity with unfolding rule when proving loop invariants.

Conclusions

- Properties at and across the boundary between adjoining intervals can be subtle
- The algebraic approach makes reasoning elegant and perspicuous
- Höfner and Möller lay some groundwork (for a closed interval model) that we are (luckily) able to re-use

Future work

- Use these results to prove properties of real-time action systems
- Mechanisation in Isabelle/HOL
 - With Alasdair Armstrong have encoded a discrete (integer) interval theory into Isabelle/HOL and shown that discrete intervals form a Boolean weak quantale

- $\blacktriangleright \text{ Have Lattice.thy} \rightarrow \text{Quantale.thy} \rightarrow \text{DiscreteIntvPred.thy}$
- \blacktriangleright Aiming for DiscreteIntvPred.thy \rightarrow Commands.thy \rightarrow Rely-Guarantee.thy

Questions?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>