Towards an algebra for real-time programs

Brijesh Dongol' lan J. Hayes? Larissa Meinicke*> Kim Solin*

1,2,3:45chool of Information Technology and Electrical Engineering,

The University of Queensland

IDepartment of Computer Science,
The University of Sheffield

4Department of Software Engineering,
Gotland University

September 22, 2012

Background

» Working on interval-based models for reasoning about
real-time systems

» Have hybrid properties, i.e., mixture of continuous and
discrete properties

» Aiming for realistic assumptions to ensure implementability

» Trying not to assume too much is “instantaneous”

> Weakening assumptions leads to increase in complexity

Goals

» Main question: What algebra does our model give rise to?

» Begin with interval predicates (this paper)
» Moving towards programming frameworks (e.g., real-time
action systems)

» Secondary questions: Can we use an algebra to simplify proofs
in the model, improve insights, etc.?

> There are related algebraic approaches to reasoning about
hybrid systems — in particular we build on work by Peter
Hofner and Bernhard Moller

A model for real-time programs

» Several authors have proposed the use of intervals as a way to
reason about real-time/hybrid systems

» Brief overview of our model

Time = R
State = Var — Val
Stream = Time — State

Interval = {AQ Time

Vti,to € At € Time *
h<t<h=teA

1

StatePred
IntvPred

State — B

I

Interval — Stream — B

Chop operator

» For interval-based logics the chop operator (denoted ;') is
useful

» We use ‘.’ for function application

» For interval predicates p; and p», interval A and stream s, we
say (p1; p2).A.s holds iff either
» A can be split into adjoining intervals A; and Aj; such that
both p;.A1.s and p,.A5.s hold, or
> the least upper bound of A is oo and p;.A.s holds

Chop operator

p1

AV
p1;p2

P1

p1; p2

Chop operator

» Chop allows one to model sequential composition and
iteration

» However, reasoning across the boundary of two adjoining
intervals can be problematic, e.g., if we want to specify
Clc; —c

Always definition

Definition

For state predicate ¢, time t and stream s, define
(c@Qt).s = c.(s.t)

Definition

For state predicate ¢ and interval A, define

(Ec).A = Vt: A cQt

Always definition

Definition
For state predicate ¢, time t and stream s, define

(c@Qt).s = c.(s.t)
Definition
For state predicate ¢ and interval A, define
(Ec).A = Vt: A cQt
Definition
For variable x, time t and stream s, define

(x@t).s = (s.t).x

Example 1

» Consider continuous variable x where x@Q0 = 0 and
H(x =5).[0, 3]

Example 1

» Consider continuous variable x where x@Q0 = 0 and
H(x =5).[0, 3]

» We have xQl1 = 5

Example 1

» Consider continuous variable x where x@Q0 = 0 and
H(x =5).[0, 3]

» We have xQ1 = 5
» Hence, (I(x < 5); @(x > 5)).[0,2] should hold

Example 1

» Consider continuous variable x where x@Q0 = 0 and
H(x =5).[0, 3]

» We have xQ1 = 5

» Hence, ((x <5); @(x > 5)).[0,2] should hold because
» [(x < 5).[0,1) and
» [(x >5).[1,2]

Example 1

» Consider continuous variable x where x@Q0 = 0 and
H(x =5).[0, 3]

» We have xQ1 = 5

» Hence, (B(x < 5); @(x > 5)).[0,2] should hold because
» [(x < 5).[0,1) and
> @(x > 5).[1,2]

» However, E(x < 5).[0, 1] does not hold

Lesson learnt

» Can be difficult to formalise ;" if we restrict ourselves to
closed intervals only

» Allow intervals to be open/closed at either end

Consequences of ;" with closed intervals

» Duration calculus:

» All finite length intervals are closed
» [Ic weakened to AlmostAlways(c)

» AlmostAlways(c) holds in A iff the times in A for which c¢ is
false form a set of measure 0

Consequences of ;" with closed intervals

» Duration calculus:
» All finite length intervals are closed
» [Ic weakened to AlmostAlways(c)

» AlmostAlways(c) holds in A iff the times in A for which c¢ is
false form a set of measure 0

» Hofner and Moller's hybrid algebra:
> All finite length intervals are closed

» A new (relaxed) compatibility relation defined at point of
composition between two adjoining intervals

Example 2

Can we deduce [H(x > 5).[0, 3] using
» (x >5).[0,2) and
» [(x >5).(2,3] ?

Example 2

Can we deduce [H(x > 5).[0, 3] using
» (x >5).[0,2) and
» [(x >5).(2,3] ?

No! May have x@2 < 5.

Lesson learnt

Adjoining intervals should be contiguous across their boundary

Formalising adjoins and chop

A1 Adjoins A iff
» A ={}, or
> Az = {}, or
» A;N Ay ={}and Ay UA; € Interval and lub.A; = glb.A;

Formalising adjoins and chop

A1 Adjoins A iff
» A ={}, or
» Ay ={}, or
» A;N Ay ={}and Ay UA; € Interval and lub.A; = glb.A;

A1, Ay ¢ (A1 Adjoins Ag)A
(p1 ; pg).A.S = (Al Uy = A) VAN
p1-D1.5 N pa.Ay.s
V
(lub.A = 0o A p1.A.s)

The algebra of interval predicates

Proposition
(IntvPred,V,; , False, Empty) forms a Boolean weak quantale

The algebra of interval predicates

Proposition
(IntvPred,V,; , False, Empty) forms a Boolean weak quantale
where

» V' is lifted disjunction, i.e., (p1 V p2).A.s = p1.A.sV pa.A.s

;" is the chop operator

v

False.A.s = false
Empty.As = (A={})

Ordering ‘<’ is universal implication ‘="', where

v

v

v

pr=>p = VAsepi.As=p.As

v

Note that (p ; False) # False

Tests

» Allowing open intervals affects test elements, i.e., a such that
a<l1

Tests

» Allowing open intervals affects test elements, i.e., a such that
a<l1

» If all intervals are closed, test elements correspond to point
intervals (Hofner and Mdller)

Tests

» Allowing open intervals affects test elements, i.e., a such that
a<l1

» If all intervals are closed, test elements correspond to point
intervals (Hofner and Mdller)

> In our model:
» 1 corresponds to Empty
» The only elements corresponding to tests are False and Empty
» This is not problematic — we assume guard evaluation takes
time
beh.(if b then S; else S, fi) = (& b;beh.51)V (&—b;beh.S,)

v

lteration: basic properties

» For a Boolean weak quantale (A, +,-,0,1), one can define

a* (nz » az+1)
a¥ = (vzeaz+1)
a* = (vz- az)

*

» * s a finite iteration
» “ is an iteration that is either finite or infinite
» °° s an infinite iteration

» Unfolding rules:
a* =aa" +1 a¥ =aa¥ +1 a*®

» Induction rules:

az+1<z = a"<z
z<az+1 = z<a¥
z<az = z<a®

= aa

Iteration: some derived properties

Yes:
» bt+ac<c = a'b<c
» c<ac+b = c<a*®+a*b

No:
» c<ac+b = c<a“b

Iteration: some derived properties

Yes:

» bt+ac<c = a'b<c
»c<ac+b = c<a®+a%
No:

» c<ac+b = c<a“b

Counter-example: Taking a =1 and b = 0, equation reduces to
c<TO.

Iteration: some derived properties

Yes:

» bt+ac<c = a'b<c
»c<ac+b = c<a®+a%
No:

» c<ac+b = c<a“b

Counter-example: Taking a =1 and b = 0, equation reduces to
c<TO.

Define positive iteration a© = aa*. Then induction and unfolding
rules are:

> az+a<z = at <z
> a® = aTa™

Compositional reasoning

» An interval predicate p splits iff given that p holds over an
interval A, p holds over all subintervals of A

p

U (p splits)

{ x
p

Compositional reasoning

» An interval predicate p splits iff given that p holds over an
interval A, p holds over all subintervals of A

p

U (p splits)

| |
[I

p

> An interval predicate p joins iff p holds in an interval A
whenever pT holds in A

p.pP., P, P P P

U (p joins)

p

Compositional reasoning

Definition

Suppose (A, +,-,0,1) is a Boolean weak quantale and a € A.
» asplits iff Vb,c: A* a A bc<(aAib)(aAic)
» ajoins iff Vb,c: A (a A b)(ahc)<albc

Compositional reasoning

Definition

Suppose (A, +,-,0,1) is a Boolean weak quantale and a € A.
» asplits iff Vb,c: A* a A bc<(aAib)(aAic)
» ajoins iff Vb,c: A (a A b)(ahc)<albc

Hofner and Moller define “submodular’ to mean splits and
“modular” to mean both splits and joins

Compositional reasoning

Lemma
Suppose a € A where (A, +,-,0,1) is a Boolean weak quantale.

(1) If a splits, then for any b € A, a A b* < (a A b)* holds.
(2) If a splits, then for any b € A, a A b < (a A b)* holds.
(3) If a joins, then for any b € A, (a A b)™ < a A bt holds.

Compositional reasoning

Lemma
Suppose a € A where (A, +,-,0,1) is a Boolean weak quantale.

(1) If a splits, then for any b € A, a A b* < (a A b)* holds.
(2) If a splits, then for any b € A, a A b < (a A b)* holds.
(3) If a joins, then for any b € A, (a A b)™ < a A bt holds.

Note

» If a joins it is not necessarily true that

» forany b€ A, (a A b)* < a A b* holds
» forany b€ A, (a A b)¥ <aA b¥ holds

Compositional reasoning

Lemma
Suppose a € A where (A, +,-,0,1) is a Boolean weak quantale.

(1) If a splits, then for any b € A, a A b* < (a A b)* holds.
(2) If a splits, then for any b € A, a A b < (a A b)* holds.
(3) If a joins, then for any b € A, (a A b)™ < a A bt holds.

Note

» If a joins it is not necessarily true that
» forany b€ A, (a A b)* < a A b* holds
» forany b€ A, (a A b)¥ <aA b¥ holds
» Left hand side may iterate zero times and get 1, but on right
hand side we already have a

Finite and infinite elements

For a Boolean weak quantale (A, +,+,0,1) and a € A following
Hofner and Moller, we have:
> ais purely infinite iff a0 = a
> ais purely finite iff a0 = 0.
> the largest purely infinite element INF:
a<INF < a0 =a

> the largest purely finite element FIN:
a<FIN < a0=0

INF and FIN in the model

> INF corresponds to interval predicate
AA : Interval,s : Stream ¢ lub.A = oo
» FIN corresponds to interval predicate

AA : Interval,s : Stream ¢ lub.A # oo

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and
non-terminating elements.

Terma =
Divergea =

FIN A a*
INF A a*

Zenoa
NonTerm a

~
~

FIN A a*>
INF A a*>°

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and
non-terminating elements.

Terma =
Divergea =

Lemma

FIN A a*
INF A a*

Zenoa
NonTerm a

~
~

FIN A a*>
INF A a*>°

Suppose (A, +,,0,1) is a Boolean weak quantale and a € A.
Then each of the following holds.

Terma
Zenoa

Diverge a

<

(FIN A a)*
FIN A (FIN A)

NonTerm a

Properties in the model: Next

» Useful to be able to reason about properties like next.p

» (next.p).A holds iff p holds in some interval that immediately
follows A

» Formally,

(next.p).A.s = 3FA" * (A Adjoins A') A p.A's

Properties in the model: Next

v

Useful to be able to reason about properties like next.p

v

(next.p).A holds iff p holds in some interval that immediately
follows A

Formally,

v

(next.p).A.s = 3FA" * (A Adjoins A') A p.A's

v

Hofner and Moller use domain and co-domain elements to get
algebraic characterisation of next

Properties in the model: Next

v

Useful to be able to reason about properties like next.p

v

(next.p).A holds iff p holds in some interval that immediately
follows A

Formally,

v

(next.p).A.s = 3FA" * (A Adjoins A') A p.A's

v

Hofner and Moller use domain and co-domain elements to get
algebraic characterisation of next

v

This is not possible for us — intervals may be open

Properties in the model: Next

» Useful to be able to reason about properties like next.p

» (next.p).A holds iff p holds in some interval that immediately
follows A

» Formally,
(next.p).A.s = 3FA" * (A Adjoins A') A p.A's

» Hofner and Moller use domain and co-domain elements to get
algebraic characterisation of next

» This is not possible for us — intervals may be open

» But one can derive properties in the model with the help of
algebra

Properties in the model: Previous and Next

Lemma
For any interval predicate p, both of the following hold.

1. If p splits then (p = next.p)™ A Fin = (p = next.p).
2. If p joins then (p A next.p)™ A Fin = (p A next.p).

Properties in the model: Previous and Next

Lemma
For any interval predicate p, both of the following hold.

1. If p splits then (p = next.p)™ A Fin = (p = next.p).
2. If p joins then (p A next.p)™ A Fin = (p A next.p).

Note the similarity with unfolding rule when proving loop
invariants.

Conclusions

» Properties at and across the boundary between adjoining
intervals can be subtle

» The algebraic approach makes reasoning elegant and
perspicuous

» Hofner and Maller lay some groundwork (for a closed interval
model) that we are (luckily) able to re-use

Future work

> Use these results to prove properties of real-time action
systems

» Mechanisation in Isabelle/HOL

» With Alasdair Armstrong — have encoded a discrete (integer)
interval theory into Isabelle/HOL and shown that discrete
intervals form a Boolean weak quantale

» Have Lattice.thy — Quantale.thy — DiscretelntvPred.thy

» Aiming for DiscretelntvPred.thy — Commands.thy —
Rely-Guarantee.thy

Questions?

