
Towards an algebra for real-time programs

Brijesh Dongol1 Ian J. Hayes2 Larissa Meinicke3 Kim Solin4

1,2,3,4School of Information Technology and Electrical Engineering,
The University of Queensland

1Department of Computer Science,
The University of Sheffield

4Department of Software Engineering,
Gotland University

September 22, 2012

Background

I Working on interval-based models for reasoning about
real-time systems

I Have hybrid properties, i.e., mixture of continuous and
discrete properties

I Aiming for realistic assumptions to ensure implementability

I Trying not to assume too much is “instantaneous”

I Weakening assumptions leads to increase in complexity

Goals

I Main question: What algebra does our model give rise to?

I Begin with interval predicates (this paper)
I Moving towards programming frameworks (e.g., real-time

action systems)

I Secondary questions: Can we use an algebra to simplify proofs
in the model, improve insights, etc.?

I There are related algebraic approaches to reasoning about
hybrid systems — in particular we build on work by Peter
Höfner and Bernhard Möller

A model for real-time programs

I Several authors have proposed the use of intervals as a way to
reason about real-time/hybrid systems

I Brief overview of our model

Time =̂ R
State =̂ Var → Val

Stream =̂ Time → State

Interval =̂

{
∆ ⊆ Time

∀t1, t2 ∈ ∆, t ∈ Time •

t1 ≤ t ≤ t2⇒ t ∈ ∆

}
StatePred =̂ State → B
IntvPred =̂ Interval → Stream→ B

Chop operator

I For interval-based logics the chop operator (denoted ‘;’) is
useful

I We use ‘.’ for function application

I For interval predicates p1 and p2, interval ∆ and stream s, we
say (p1 ; p2).∆.s holds iff either

I ∆ can be split into adjoining intervals ∆1 and ∆2 such that
both p1.∆1.s and p2.∆2.s hold, or

I the least upper bound of ∆ is ∞ and p1.∆.s holds

Chop operator

p1

∆1

p1

∆2

p2

p1 ; p2

∆

p1 ; p2

∆

Chop operator

I Chop allows one to model sequential composition and
iteration

I However, reasoning across the boundary of two adjoining
intervals can be problematic, e.g., if we want to specify
�c ; �¬c

Always definition

Definition
For state predicate c , time t and stream s, define

(c@t).s =̂ c .(s.t)

Definition
For state predicate c and interval ∆, define

(�c).∆ =̂ ∀t : ∆ • c@t

Definition
For variable x , time t and stream s, define

(x@t).s =̂ (s.t).x

Always definition

Definition
For state predicate c , time t and stream s, define

(c@t).s =̂ c .(s.t)

Definition
For state predicate c and interval ∆, define

(�c).∆ =̂ ∀t : ∆ • c@t

Definition
For variable x , time t and stream s, define

(x@t).s =̂ (s.t).x

Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5
I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold

because
I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold

Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5

I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold

because
I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold

Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5
I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold

because
I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold

Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5
I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold because

I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold

Example 1

I Consider continuous variable x where x@0 = 0 and
�(x̊ = 5).[0, 3]

0

10

0 1 2 3

x

I We have x@1 = 5
I Hence, (�(x < 5) ; �(x ≥ 5)).[0, 2] should hold because

I �(x < 5).[0, 1) and
I �(x ≥ 5).[1, 2]

I However, �(x < 5).[0, 1] does not hold

Lesson learnt

I Can be difficult to formalise ‘;’ if we restrict ourselves to
closed intervals only

I Allow intervals to be open/closed at either end

Consequences of ‘;’ with closed intervals

I Duration calculus:
I All finite length intervals are closed
I �c weakened to AlmostAlways(c)
I AlmostAlways(c) holds in ∆ iff the times in ∆ for which c is

false form a set of measure 0

I Höfner and Möller’s hybrid algebra:
I All finite length intervals are closed
I A new (relaxed) compatibility relation defined at point of

composition between two adjoining intervals

Consequences of ‘;’ with closed intervals

I Duration calculus:
I All finite length intervals are closed
I �c weakened to AlmostAlways(c)
I AlmostAlways(c) holds in ∆ iff the times in ∆ for which c is

false form a set of measure 0

I Höfner and Möller’s hybrid algebra:
I All finite length intervals are closed
I A new (relaxed) compatibility relation defined at point of

composition between two adjoining intervals

Example 2

Can we deduce �(x ≥ 5).[0, 3] using

I �(x ≥ 5).[0, 2) and

I �(x ≥ 5).(2, 3] ?

No! May have x@2 < 5.

Example 2

Can we deduce �(x ≥ 5).[0, 3] using

I �(x ≥ 5).[0, 2) and

I �(x ≥ 5).(2, 3] ?

No! May have x@2 < 5.

Lesson learnt

Adjoining intervals should be contiguous across their boundary

Formalising adjoins and chop

∆1 Adjoins ∆2 iff

I ∆1 = {}, or

I ∆2 = {}, or

I ∆1 ∩∆2 = {} and ∆1 ∪∆2 ∈ Interval and lub.∆1 = glb.∆2

(p1 ; p2).∆.s =̂

∃∆1,∆2
• (∆1 Adjoins ∆2)∧

(∆1 ∪∆2 = ∆) ∧
p1.∆1.s ∧ p2.∆1.s


∨
(lub.∆ =∞∧ p1.∆.s)

Formalising adjoins and chop

∆1 Adjoins ∆2 iff

I ∆1 = {}, or

I ∆2 = {}, or

I ∆1 ∩∆2 = {} and ∆1 ∪∆2 ∈ Interval and lub.∆1 = glb.∆2

(p1 ; p2).∆.s =̂

∃∆1,∆2
• (∆1 Adjoins ∆2)∧

(∆1 ∪∆2 = ∆) ∧
p1.∆1.s ∧ p2.∆1.s


∨
(lub.∆ =∞∧ p1.∆.s)

The algebra of interval predicates

Proposition

(IntvPred ,∨, ; ,False,Empty) forms a Boolean weak quantale

where

I ‘∨’ is lifted disjunction, i.e., (p1 ∨ p2).∆.s = p1.∆.s ∨ p2.∆.s

I ‘;’ is the chop operator

I False.∆.s =̂ false

I Empty.∆.s =̂ (∆ = {})
I Ordering ‘≤’ is universal implication ‘V’, where

p1 V p2 =̂ ∀∆, s • p1.∆.s ⇒ p2.∆.s

I Note that (p ; False) 6≡ False

The algebra of interval predicates

Proposition

(IntvPred ,∨, ; ,False,Empty) forms a Boolean weak quantale

where

I ‘∨’ is lifted disjunction, i.e., (p1 ∨ p2).∆.s = p1.∆.s ∨ p2.∆.s

I ‘;’ is the chop operator

I False.∆.s =̂ false

I Empty.∆.s =̂ (∆ = {})
I Ordering ‘≤’ is universal implication ‘V’, where

p1 V p2 =̂ ∀∆, s • p1.∆.s ⇒ p2.∆.s

I Note that (p ; False) 6≡ False

Tests

I Allowing open intervals affects test elements, i.e., a such that
a ≤ 1

I If all intervals are closed, test elements correspond to point
intervals (Höfner and Möller)

I In our model:
I 1 corresponds to Empty
I The only elements corresponding to tests are False and Empty
I This is not problematic — we assume guard evaluation takes

time
I beh.(if b then S1 else S2 fi) =̂ (�b ;beh.S1)∨(�¬b ;beh.S2)

Tests

I Allowing open intervals affects test elements, i.e., a such that
a ≤ 1

I If all intervals are closed, test elements correspond to point
intervals (Höfner and Möller)

I In our model:
I 1 corresponds to Empty
I The only elements corresponding to tests are False and Empty
I This is not problematic — we assume guard evaluation takes

time
I beh.(if b then S1 else S2 fi) =̂ (�b ;beh.S1)∨(�¬b ;beh.S2)

Tests

I Allowing open intervals affects test elements, i.e., a such that
a ≤ 1

I If all intervals are closed, test elements correspond to point
intervals (Höfner and Möller)

I In our model:
I 1 corresponds to Empty
I The only elements corresponding to tests are False and Empty
I This is not problematic — we assume guard evaluation takes

time
I beh.(if b then S1 else S2 fi) =̂ (�b ;beh.S1)∨(�¬b ;beh.S2)

Iteration: basic properties
I For a Boolean weak quantale (A,+, ·, 0, 1), one can define

a∗ =̂ (µz • az + 1)

aω =̂ (νz • az + 1)

a∞ =̂ (νz • az)

I ∗ is a finite iteration
I ω is an iteration that is either finite or infinite
I ∞ is an infinite iteration

I Unfolding rules:

a∗ = aa∗ + 1 aω = aaω + 1 a∞ = aa∞

I Induction rules:

az + 1 ≤ z ⇒ a∗ ≤ z

z ≤ az + 1 ⇒ z ≤ aω

z ≤ az ⇒ z ≤ a∞

Iteration: some derived properties

Yes:

I b + ac ≤ c ⇒ a∗b ≤ c

I c ≤ ac + b ⇒ c ≤ a∞ + a∗b

No:

I c ≤ ac + b ⇒ c ≤ aωb

Counter-example: Taking a = 1 and b = 0, equation reduces to
c ≤ >0.

Define positive iteration a+ =̂ aa∗. Then induction and unfolding
rules are:

I az + a ≤ z ⇒ a+ ≤ z

I a∞ = a+a∞

Iteration: some derived properties

Yes:

I b + ac ≤ c ⇒ a∗b ≤ c

I c ≤ ac + b ⇒ c ≤ a∞ + a∗b

No:

I c ≤ ac + b ⇒ c ≤ aωb

Counter-example: Taking a = 1 and b = 0, equation reduces to
c ≤ >0.

Define positive iteration a+ =̂ aa∗. Then induction and unfolding
rules are:

I az + a ≤ z ⇒ a+ ≤ z

I a∞ = a+a∞

Iteration: some derived properties

Yes:

I b + ac ≤ c ⇒ a∗b ≤ c

I c ≤ ac + b ⇒ c ≤ a∞ + a∗b

No:

I c ≤ ac + b ⇒ c ≤ aωb

Counter-example: Taking a = 1 and b = 0, equation reduces to
c ≤ >0.

Define positive iteration a+ =̂ aa∗. Then induction and unfolding
rules are:

I az + a ≤ z ⇒ a+ ≤ z

I a∞ = a+a∞

Compositional reasoning

I An interval predicate p splits iff given that p holds over an
interval ∆, p holds over all subintervals of ∆

p

V

(p splits)

p

I An interval predicate p joins iff p holds in an interval ∆
whenever p+ holds in ∆

p p pp p p
V

(p joins)

p

Compositional reasoning

I An interval predicate p splits iff given that p holds over an
interval ∆, p holds over all subintervals of ∆

p

V

(p splits)

p

I An interval predicate p joins iff p holds in an interval ∆
whenever p+ holds in ∆

p p pp p p
V

(p joins)

p

Compositional reasoning

Definition
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.

I a splits iff ∀b, c : A • a f bc ≤ (a f b)(a f c)

I a joins iff ∀b, c : A • (a f b)(a f c) ≤ a f bc

Höfner and Möller define “submodular” to mean splits and
“modular” to mean both splits and joins

Compositional reasoning

Definition
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.

I a splits iff ∀b, c : A • a f bc ≤ (a f b)(a f c)

I a joins iff ∀b, c : A • (a f b)(a f c) ≤ a f bc

Höfner and Möller define “submodular” to mean splits and
“modular” to mean both splits and joins

Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a

Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a

Compositional reasoning

Lemma
Suppose a ∈ A where (A,+, ·, 0, 1) is a Boolean weak quantale.

(1) If a splits, then for any b ∈ A, a f b∗ ≤ (a f b)∗ holds.

(2) If a splits, then for any b ∈ A, a f bω ≤ (a f b)ω holds.

(3) If a joins, then for any b ∈ A, (a f b)+ ≤ a f b+ holds.

Note

I If a joins it is not necessarily true that
I for any b ∈ A, (a f b)∗ ≤ a f b∗ holds
I for any b ∈ A, (a f b)ω ≤ a f bω holds

I Left hand side may iterate zero times and get 1, but on right
hand side we already have a

Finite and infinite elements

For a Boolean weak quantale (A,+, ·, 0, 1) and a ∈ A following
Höfner and Möller, we have:

I a is purely infinite iff a0 = a

I a is purely finite iff a0 = 0.

I the largest purely infinite element INF:
a ≤ INF ⇐⇒ a0 = a

I the largest purely finite element FIN:
a ≤ FIN ⇐⇒ a0 = 0

INF and FIN in the model

I INF corresponds to interval predicate

λ∆ : Interval , s : Stream • lub.∆ =∞

I FIN corresponds to interval predicate

λ∆ : Interval , s : Stream • lub.∆ 6=∞

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and
non-terminating elements.

Term a =̂ FIN f a∗

Diverge a =̂ INF f a+
Zeno a =̂ FIN f a∞

NonTerm a =̂ INF f a∞

Lemma
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.
Then each of the following holds.

Term a = (FIN f a)∗ (1)

Zeno a = FIN f (FIN f a)∞ (2)

Diverge a ≤ NonTerm a (3)

Different forms of iteration

Can distinguish between terminating, divergent, Zeno-like and
non-terminating elements.

Term a =̂ FIN f a∗

Diverge a =̂ INF f a+
Zeno a =̂ FIN f a∞

NonTerm a =̂ INF f a∞

Lemma
Suppose (A,+, ·, 0, 1) is a Boolean weak quantale and a ∈ A.
Then each of the following holds.

Term a = (FIN f a)∗ (1)

Zeno a = FIN f (FIN f a)∞ (2)

Diverge a ≤ NonTerm a (3)

Properties in the model: Next

I Useful to be able to reason about properties like next.p

I (next.p).∆ holds iff p holds in some interval that immediately
follows ∆

I Formally,

(next.p).∆.s =̂ ∃∆′ • (∆ Adjoins ∆′) ∧ p.∆′.s

I Höfner and Möller use domain and co-domain elements to get
algebraic characterisation of next

I This is not possible for us — intervals may be open

I But one can derive properties in the model with the help of
algebra

Properties in the model: Next

I Useful to be able to reason about properties like next.p

I (next.p).∆ holds iff p holds in some interval that immediately
follows ∆

I Formally,

(next.p).∆.s =̂ ∃∆′ • (∆ Adjoins ∆′) ∧ p.∆′.s

I Höfner and Möller use domain and co-domain elements to get
algebraic characterisation of next

I This is not possible for us — intervals may be open

I But one can derive properties in the model with the help of
algebra

Properties in the model: Next

I Useful to be able to reason about properties like next.p

I (next.p).∆ holds iff p holds in some interval that immediately
follows ∆

I Formally,

(next.p).∆.s =̂ ∃∆′ • (∆ Adjoins ∆′) ∧ p.∆′.s

I Höfner and Möller use domain and co-domain elements to get
algebraic characterisation of next

I This is not possible for us — intervals may be open

I But one can derive properties in the model with the help of
algebra

Properties in the model: Next

I Useful to be able to reason about properties like next.p

I (next.p).∆ holds iff p holds in some interval that immediately
follows ∆

I Formally,

(next.p).∆.s =̂ ∃∆′ • (∆ Adjoins ∆′) ∧ p.∆′.s

I Höfner and Möller use domain and co-domain elements to get
algebraic characterisation of next

I This is not possible for us — intervals may be open

I But one can derive properties in the model with the help of
algebra

Properties in the model: Previous and Next

Lemma
For any interval predicate p, both of the following hold.

1. If p splits then (p⇒ next.p)+ ∧ Fin V (p⇒ next.p).

2. If p joins then (p ∧ next.p)+ ∧ Fin V (p ∧ next.p).

Note the similarity with unfolding rule when proving loop
invariants.

Properties in the model: Previous and Next

Lemma
For any interval predicate p, both of the following hold.

1. If p splits then (p⇒ next.p)+ ∧ Fin V (p⇒ next.p).

2. If p joins then (p ∧ next.p)+ ∧ Fin V (p ∧ next.p).

Note the similarity with unfolding rule when proving loop
invariants.

Conclusions

I Properties at and across the boundary between adjoining
intervals can be subtle

I The algebraic approach makes reasoning elegant and
perspicuous

I Höfner and Möller lay some groundwork (for a closed interval
model) that we are (luckily) able to re-use

Future work

I Use these results to prove properties of real-time action
systems

I Mechanisation in Isabelle/HOL
I With Alasdair Armstrong — have encoded a discrete (integer)

interval theory into Isabelle/HOL and shown that discrete
intervals form a Boolean weak quantale

I Have Lattice.thy → Quantale.thy → DiscreteIntvPred.thy
I Aiming for DiscreteIntvPred.thy → Commands.thy →

Rely-Guarantee.thy

Questions?

