
On the Algebraic Derivation of Garbage
Collectors

Han-Hing Dang

Institut für Informatik, Universität Augsburg, D-86159 Augsburg, Germany
{h.dang}@informatik.uni-augsburg.de

Abstract. We give an algebraic characterisation of reachability and
non-reachability in modal Kleene algebras. By this we derive a general
algorithm for garbage collectors and present some further algebraic opti-
misations. The given approach is fully expressible in first-order logic and
hence provides an abstract and general framework for automated and
machine-verified derivations of garbage collecting algorithms.

1 Introduction

Many popular programming frameworks as Java or .NET nowadays come with
an automated garbage collecting system to support memory management and
facilitate programming. It is enormously relieving not to take care of each allo-
cated address, since every resource has to be freed if it has no further usage.

The intention of the present work is to apply formal reasoning, in particular
algebraic techniques, to derive garbage collecting systems. We propose an alge-
braic foundation that allows general and abstract derivations of correct garbage
collecting algorithms. The used algebra provides due to its simple (in)equations
an elegant way for proving recursive equations that specify such algorithms.
The derivation process can also be supported and machine-guided by the use of
first-order theorem proving systems.

2 Basics and Definitions

Generally, we start from an idempotent semiring , i.e., a structure (S,+, ·, 0, 1),
where (S,+, 0) forms an idempotent commutative monoid and (S, ·, 1) a plain
monoid. The natural order ≤ on an idempotent semiring is defined by x ≤ y ⇔df

x+ y = y. Additionally, multiplication is defined to distribute over + while 0 is
an annihilator for ·, i.e., for arbitrary x we have x · 0 = 0 and 0 · x = 0.

Obviously, relations form such a structure and can be used to represent graph
structures used in garbage collecting algorithms. There, the natural order coin-
cides with the inclusion order ⊆ while + abstracts ∪ and · abstracts relational
composition ; . The 0 element represents the empty set while 1 denotes the
identity relation.

Reasoning about graphs often requires referring to sets of nodes. For this, we
assume for semirings special subidentities p ≤ 1, called tests. These elements are

defined to have a complement relative to 1 which is denoted by ¬p. It satisfies
p+¬p = 1 and p ·¬p = 0 = ¬p ·p. Thus tests have to form a Boolean subalgebra.
By this, + coincides with the binary supremum t and · with the binary infimum
u on tests. The latter one translates to ∩ in relations. The greatest test is 1
while 0 is the smallest one.

Next, we define an image operator and denote it by q. It that returns a
subidentity that represents e.g. relationally the set of all direct successor nodes.
Dually, one can define domain elements; but these are not of interest in this
paper. For arbitrary element x and test p the codomain q is axiomatised as
follows

x ≤ x · xq , (x · p)q ≤ p .

By this we define modal operators called diamond and box [1]

〈x|p =df (p · x)q, [x|p =df ¬〈x|¬p = ¬(¬p · x)q . (1)

The diamond 〈x|p calculates all existing direct successor nodes under an
element x starting from p. Dually, [x|p represents the set of all nodes that can
be only directly reached by all nodes in p under x.

The diamond operation is isotone in both arguments while the box operation
is only isotone in its second and antitone in its first argument. Since we are
interested in reachability observation in graph structures we extend the algebraic
structure to a Kleene algebra [4] by an iteration operator ∗ axiomatised by

1 + x · x∗ ≤ x∗ , x · y + z ≤ y ⇒ x∗ · z ≤ y ,
1 + x∗ · x ≤ x∗ , y · x+ z ≤ y ⇒ z · x∗ ≤ y .

This implies that a∗ is the least fixed-point µf of the equation f(x) = 1 + a · x.

3 Characterising Reachability and Non-Reachability

It has been shown in [2, 3] that the algebra defined in the previous section can
be used to state and to derive general properties of reachability calculations.

The fundament of that is an algebraic mapping reach that calculates all
nodes/objects somehow reachable from a given set of starting nodes/objects.
For its definition assume a test p and a semiring element a. Then

reach(p, a) =df 〈a∗|p . (2)

By this reach is the smallest fixpoint µf of the equation f(q) = p+ 〈a|q. Some
more useful consequences are e.g.,

p ≤ reach(p, a) , reach(p+ q, a) = reach(p, a) + reach(q, a) .

Distributivity of reach in its first argument states that its calculation can be
split, i.e., reach can be independently calculated on disjoint subsets of starting
nodes. The overall result equals the union of all intermediate results. Moreover,
reach is isotone in both arguments which will facilitate inequational reasoning.

2

It is not difficult to derive from the definition of reach the trivial results
reach(0, a) = 0 and reach(p, 0) = p. These equations can be used as termina-
tion conditions for a recursive calculation of reach. For the recursion steps, the
following equation can be shown

reach(p, a) = p+ reach(〈a|p, a) .

From this, a recursive algorithm for reach is directly derivable:

reach(p, a) = if p = 0 then 0
else p+ reach(〈a|p, a) .

Unfortunately this recursion has a major problem. It will not terminate
in general. For example with relations, assume a test p = {(1, 1)} and a =
{(1, 2), (2, 1)}. It can be seen that a contains a reachable cycle. Hence, p will
never become 0, i.e., never gets empty.

To overcome this deficiency, reach has to be modified so that there exists a de-
creasing value with each recursion step. We give a variant that decreases a in each
step. Concretely, one can derive the recursion reach(p, a) = p+reach(〈a|p,¬p·a)
using a so-called induction rule for reach

p ≤ q ∧ 〈a|q ≤ q ⇒ reach(p, a) ≤ q . (3)

The corrected solution overcomes the above problem since it deletes all currently
visited nodes in ¬p · a with each recursion. Hence, if p 6= 0 then the calculation
is continued on a reduced graph with less nodes and edges.

The presented results can now be further used to dually derive an algorithm
that calculates all unreachable nodes w.r.t. a given set of starting nodes. We
define

noreach(p, a) =df ¬reach(p, a) . (4)

One can immediately conclude by the definition of box in (1) that

noreach(p, a) = ¬reach(p, a) = ¬〈a∗|p = [a∗|¬p .

By the fixpoint theory of De Morgan duals, we immediately get another charac-
terisation of noreach as noreach(p, a) = νq. ¬p · [a∗|q. Obviously, we can derive
dual properties for noreach like

noreach(p+ q, a) = noreach(p, a) · noreach(q, a) (5)

or antitonicity of noreach in both arguments.
Note that · on tests coincides with binary infima. Hence, the distributivity

property for noreach resolves, dually to reach, to the intersection of all inter-
mediate calculations of noreach instead of their union. A similar induction rule
for noreach reads

p ≤ q · [a|p ⇒ p ≤ noreach(a, q) . (6)

Moreover, one gets a similar recursive definition for noreach with

noreach(p, a) = if p = 0 then 1
else ¬p · noreach(〈a|p,¬p · a) .

3

4 Further Optimisations

We continue to refine and optimise the derived algorithm for noreach of the
previous section. The presented modifications will end up in a simple imperative
form of an algorithm for noreach.

First, by simple algebraic transformations one can show

noreach(〈a|p,¬p · a) = noreach(¬p · 〈a|p,¬p · a) .

Hence, one can immediately derive a slightly modified version from the previous
one that additionally deletes all redundant starting nodes for the next recursion
step; they are also ruled out in its second argument ¬p · a. Such nodes have
already been visited and need not to be considered anew. They lie e.g. on cycles
with at most two edges.

Next, using a so-called accumulator r as an additional argument, we can
easily transform the algorithm into a tail recursion by

noreach(p, a) = tnoreach(1, p, a) ,
tnoreach(r, p, a) = if p = 0 then r

else tnoreach(¬p · r,¬p · 〈a|p,¬p · a) .
(7)

Initially r contains all nodes and p is initialised with all root nodes. For the
subsequent recursion all root nodes will be deleted from r while the second
argument will be replaced with all direct successors of the roots apart from the
roots themselves. The algorithm terminates if r contains all nodes unreachable
from the root nodes.

Using the accumulator r, we have also introduced an argument that decreases
with each recursion step. Hence, the idea arises to use r in a test for termination.
For this, we need to assume an invariant for r that holds within each recursion

¬p · r ≤ [a|r . (8)

This assumption is required since no interplay between p, a and r was charac-
terised by the derivation in (7). To better understand this property we rewrite
it into 〈a|¬r ≤ p + ¬r. Since r denotes in each recursion step all currently un-
reachable nodes, ¬r contains the already visited ones. Now, the inequation says
that all a-successors of the visited nodes are either contained in p, the current
set of starting nodes, or have been reached before.

This allows an algebraic derivation of the following recursion

tnoreach(r, p, a) = if p = 0 then r
else tnoreach(¬p · r,¬p · r · 〈a|p, a) .

(9)

A proof can be found in the appendix. One advantage of this recursion schema
is that it can be immediately rewritten into imperative form (cf. Fig. 1). For
better readability, we used r− p =df ¬p · r and replaced ¬p · r in line 4 with the
updated r of line 3 in Fig. 1.

4

noreach
1 p := roots; r := 1;

2 while (p != 0) {
3 r := r − p;

4 p := r · 〈a|p;
5 }
6 return r;

Fig. 1. An algebraic and impera-
tive version of noreach

Another argument for preferring ver-
sion (9) is that e.g., relationally, the calcu-
lation of ¬p · a means deletion of all nodes of
p in a and their incident edges. First, deleting
reachable nodes in a is not desired and thus
would require e.g., for algorithm (7) a copy of
the whole graph a, which is very space ineffi-
cient. Moreover, the calculation of all ingoing
edges to nodes in p can be very inefficient as
one has to keep track of all such links or might
have to traverse the whole graph. Therefore it is more intuitive to give a solution
that does not modify a and still guarantees termination as in (9).

Another interpretation of ¬p · a can be a marking of p-nodes as visited like
in common Mark and Sweep collectors. But this would require an adequate
adaptation of the multiplication operation · so that in 〈a|p only all unmarked
successors of unmarked nodes are considered.

5 Conclusion and Future Work

We have presented algebraic definitions of reachable and unreachable elements
within the setting of a modal Kleene algebra. From this we derived recursive spec-
ifications to define an abstract algorithm for garbage collection. Furthermore, we
algebraically proved some optimisations of the algorithm and presented a corre-
sponding imperative version of it. The algebra-based approach is fully first-order
and comes with simple (in-)equational laws. The main intention of this work is to
provide a simple general framework that additionally allows the inclusion of au-
tomated first-order theorem proving systems to help in the guidance of deriving
garbage collecting systems.

As future work we are planning to abstractly specify concurrent behaviour
within our setting. Algorithm (9) can e.g., be seen as an algebraic variant of
the optimized fixpoint iteration algorithm given in [5]. Now, an idea would be
to consider executions of a system by sequences of elements, i.e., a1a2 . . . an. By
this, it is possible to characterise e.g., with the presented approach that garbage
only grows or dually that the set of reachable nodes is monotonically decreasing
over time. This reflects the behaviour that whenever references to reachable
nodes have been lost, only a run of the garbage collector can regain such nodes
back. Thus, no program running in parallel is able to recover garbage by itself.
Assuming r denotes the set of roots, that behaviour is simply given by

r ≤ p ⇒ 〈ai+1|reach(p, ai) ≤ reach(p, ai) .

Acknowledgements: I thank Bernhard Möller for his valuable comments and
for drawing my attention to this particular research topic. This work was par-
tially funded by the DFG project MO 690/9-1 AlgSep — Algebraic Calculi for
Separation Logic.

5

References

1. Desharnais, J., Möller, B., Struth, G.: Modal Kleene algebra and applications — A
survey. Journal of Relational Methods in Computer Science 1, 93–131 (2004)

2. Ehm, T.: The Kleene algebra of nested pointer structures: Theory and applications,
PhD Thesis (2003).
http://www.opus-bayern.de/uni-augsburg/frontdoor.php?source opus=89

3. Ehm, T.: Pointer Kleene algebra. In: Berghammer, R., Möller, B., Struth, G. (eds.)
RelMiCS. LNCS, vol. 3051, pp. 99–111. Springer (2004)

4. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366–390 (1994)

5. Pavlovic, D., Pepper, P., Smith, D.R.: Formal derivation of concurrent garbage col-
lectors. In: 10th International Conference on Mathematics of Program Construction,
MPC 2010, Québec City, Canada. pp. 353–376. No. 6120 in LNCS, Springer (2010)

6 Appendix

Correctness proof of algorithm (9) :
First, we state a result used in the following: noreach(p, a) ≤ ¬p. We show that
algorithm (7) and (9) are equal. The trivial case p = 0 is obvious. Moreover,
using results for reach and antitonicity of noreach, it remains to show

¬p · r · noreach(r · 〈a|p, a) ≤ ¬p · r · noreach(〈a|p, a) .

Using 1 = r + ¬r and property (5), the right hand-side resolves to ¬p · r ·
noreach(r · 〈a|p, a) · noreach(¬r · 〈a|p, a). Hence, the above inequation can be
reduced to

¬p · r · noreach(r · 〈a|p, a) ≤ noreach(¬r · 〈a|p, a) .

Using the backwards box induction rule (6) the above inequation is implied by

¬p · r · noreach(r · 〈a|p, a) ≤ ¬(¬r · 〈a|p) · [a|(¬p · r · noreach(r · 〈a|p, a)) .

Next, using noreach(p, a) ≤ ¬p, we conclude ¬p · r · noreach(r · 〈a|p, a) ≤ ¬p ·
r · ¬(r · 〈a|p) ≤ r · ¬(r · 〈a|p) ≤ r · ¬〈a|p ≤ ¬(¬r · 〈a|p). Thus, the inequation
reduces further to ¬p · r · noreach(r · 〈a|p, a) ≤ [a|(¬p · r · noreach(r · 〈a|p, a)).
Now, by multiplicativity of box in its second argument, i.e., [a|(p · q) = [a|p · [a|q
and noreach(r · 〈a|p, a) ≤ [a|(noreach(r · 〈a|p, a)), it remains to show

¬p · r · noreach(r · 〈a|p, a) ≤ [a|¬p · [a|r .

This is implied by ¬p · r · ¬(r · 〈a|p) ≤ [a|¬p · [a|r. Next, we calculate for the left-
hand side ¬p·r ·¬(r ·〈a|p) = ¬p·r ·¬〈a|p = ¬p·r ·[a|¬p . The resulting inequation
¬p · r · [a|¬p ≤ [a|¬p · [a|r is implied by the invariant (8), i.e., ¬p · r ≤ [a|r. ut

6

