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Reachability Closures of Relation

Given a relation R on a set X,

• its reflexive-transitive closure is R∗ =
⋃

n≥0R
n,

• its transitive closure is R+ =
⋃

n≥1R
n.

R∗ specifies reachability in the graph g = (X,R) and R+ specifies reach-
ability via non-empty paths.

Fundamental properties:

• O∗ = I

• R∗ = I ∪R+

• (R ∪ S)∗ = R∗(SR∗)∗ (star-decomposition rule)

• R is transitive iff R = R+
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Warshall’s Algorithm

• Traditional imperative computation of R∗ using a representation of
relations by 2-dimensional Boolean arrays.

Q := R;
for i∈X do

for j∈X do
for k∈X do
Q[j, k] := Q[j, k] ∨ (Q[j, i] ∧Q[i, k])



















Warshall

for i∈X do
Q[i, i] := True

• Arrays are unfit for representing relations if they are of “medium den-
sity” or even sparse.

Computational linguistics, XML-query processing, order theory, . . .

Here successor lists are much more economic; but such a representation
sacrifices the simplicity and efficiency of the algorithm.

• Arrays with side-effects are also problematic if the functional paradigm
is used.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 3 of 21



Aim of the Talk
To show how systematically to derive simple functional programs for com-
puting reflexive-transitive closures that

• base on a common schematic algorithm,

• use a representation of relations via successor lists,

• have for specific instantiations the same cubic running time as the
imperative algorithm.

The used tools and techniques are as in the case of the RAMiCS 12 talk:

• Relation algebra for problem specification, the derivation of the generic
algorithm and its specializations.

• Data refinement to obtain list representations and for the translation
into Haskell.

For visualization purposes we depict relations as Boolean matrices, drawn
by the computer system RelView.
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Relation Algebra
Relations:

• If R is a relation with source X and target Y , we write R : X↔Y .

• [X↔Y ] is the type/set of all relations with source X and target Y .

Signature of relation algebra:

• Constants: O, L, I.

• Operations: R ∪ S,R ∩ S,RS, R ,RT.

• Tests: R ⊆ S,R = S.

Properties;

• Reflexivity: I ⊆ R.

• Transitivity: RR ⊆ R.

• Vector: vL = v.

• Point: pL = p, Lp = L (surjectivity) and ppT ⊆ I (injectivity).
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Rectangles and Reachability Closures

• A relation S : X↔X is a rectangle if there exist A,B ⊆ X such that

S = A×B.

• Examples, where X = {1, . . . , 8}:

R S1 S2

R is not a rectangle. S1 is a rectangle since S1 = {1}×{2}, and S2 is
a rectangle since S2 = {3, 4, 6}×{1, 3, 5, 7}.
• Relation-algebraic specification: S : X↔X is a rectangle iff

SLS ⊆ S.
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Theorem. Assume R : X↔X and let S : X↔X be a rectangle. Then

(R ∪ S)∗ = R∗ ∪R∗SR∗.

Proof. Transitivity SR∗SR∗ ⊆ SLSR∗ ⊆ SR∗. yields (SR∗)+ = SR∗. By
means of this equation, the statement follows from

(R ∪ S)∗=R∗(SR∗)∗ star-decomposition
=R∗(I ∪ (SR∗)+)
=R∗(I ∪ SR∗) SR∗ transitive
=R∗ ∪R∗SR∗ distributivity.

Generic Algorithm. The following functional algorithm computes R∗:

rtc : [X↔X]→ [X↔X]
rtc(R) = if R = O then I

else let S = rectangle(R)
C = rtc(R ∩ S )

in C ∪ CSC

Here rectangle(R) yields a non-empty rectangle S with S ⊆ R.
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Possibilities for rectangle(R):

• Selection of an atomic relation contained in R.

• Selection of a relation that singles out a row of R.

• Selection of a relation that singles out a column of R.

• Selection of a maximal (a non-enlargable) rectangle contained in R

– started vertically

– started horizontally.

Examples, where X = {1, . . . , 8}:

R S1 S2 S3 S4
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Singling Out Rows
For R : X↔X and a point p : X↔11 with p ⊆ RL (“it has successors”),
we define:

S := ppTR

The rectangle S = ppTR corresponds to the row of R designated by the
point p and R ∩ S “zeroes out” out this row.

Example, where X = {1, . . . , 8} and p describes the element 4 of X:

R p S = ppTR R ∩ S
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Proof of the rectangle property of S (using the vector property of p):

SLS = ppTRLppTR ⊆ pLpTR = ppTR = S

Proof of the inclusion S ⊆ R (using the injectivity of p):

S = ppTR ⊆ IR = R

Proof of non-emptiness of S by contradiction (using the surjectivity of p):

S = O ⇐⇒ ppTR ⊆ O ⇐⇒ . . . ⇐⇒ p ⊆ RL

Refined Algorithm. Singling out a row leads to:

rtc : [X↔X]→ [X↔X]
rtc(R) = if R = O then I

else let p = point(RL)
S = ppTR
C = rtc(R ∩ S )

in C ∪ CSC
Here point(RL) yields a point p with p ⊆ RL.
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From Relation Algebra to Functions

Represent F : X↔X by f : X → 2X such that (x, y)∈F iff y∈f(x).

• The empty relation O is represented by

λx.∅.

• The identity relation I is represented by

λx.{x}.

• If R 6= O is represented by r, then the choice of a point p with p ⊆ RL
corresponds to the choice of an element n∈X with r(n) 6= ∅.

• With r and n from above, R ∩ ppTR is represented by

r[n← ∅].

• If C is represented by c, then C ∪ CppTRC is represented by

λx.if n∈c(x) then c(x) ∪
⋃

{c(k) | k∈r(n)} else c(x).
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Let ks :=
⋃

{c(k) | k∈r(n)}. Then the last representation follows from

(x, y) ∈ C ∪ CppTRC

⇔ (x, y)∈C ∨ (x, y)∈CppTRC

⇔ (x, y)∈C ∨ ∃ i : (x, i)∈C ∧ ∃ j : (i, j) ∈ ppT ∧ (j, y) ∈ RC
⇔ (x, y)∈C ∨ ∃ i : (x, i)∈C ∧ ∃ j : i = n ∧ j = n ∧ (j, y) ∈ RC
⇔ (x, y)∈C ∨ ((x, n)∈C ∧ (n, y) ∈ RC)

⇔ (x, y)∈C ∨ ((x, n)∈C ∧ ∃ k : (n.k)∈R ∧ (k, y)∈C)

⇔ y∈c(x) ∨ if n∈c(x) then ∃ k : k∈r(n) ∧ y∈c(k) else false

⇔ y∈c(x) ∨ if n∈c(x) then y∈
⋃

{c(k) | k∈r(n)} else y∈∅
⇔ y∈c(x) ∨ y ∈ if n∈c(x) then y∈ks else ∅
⇔ y ∈ if n∈c(x) then c(x) ∪ ks else c(x)

⇔ y ∈ (λx.if n∈c(x) then c(x) ∪ ks else c(x))(x)

using that (i, j) ∈ ppT iff i = n and j = n.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 12 of 21



Refined Algorithm on Functions.

We replace

• all relations by their representing functions,

• the choice of p by that of n.

Doing so, we arrive at the following refined algorithm on functions:

rtc : (X → 2X)→ (X → 2X)
rtc(r) = if r = λx.∅ then λx.{x}

else let n = elem({x∈X | r(x) 6= ∅})
c = rtc(r[n← ∅])
ks =

⋃

{c(k) | k∈r(n)}
in λx.if n∈c(x) then c(x) ∪ ks else c(x)

Here elem({x∈X | r(x) 6= ∅}) yields a n ∈ X with r(n) 6= ∅.
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List Representation of Output Functions
Assuming X = {0, . . . ,m} we represent f : X → 2X by [f(0), . . . , f(m)].

• For λx.{x} we get the representation

[{x} | x∈[0..m]].

• For λx.if n∈c(x) then c(x) ∪ ks else c(x) we get the representation

[if n∈ms then ms ∪ ks else ms | ms∈cs],

where cs ∈ (2X)∗ represents c. Note that then c(k) becomes cs !!k.

Moving from the output functions to the list representations, we get:

rtc : (X → 2X)→ (2X)∗

rtc(r) = if r=λx.∅ then [{x} | x∈[0..m]]
else let n = elem({x∈X | r(x) 6= ∅})

cs = rtc(r[n← ∅])
ks =

⋃

{cs !!k | k∈r(n)}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]
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List Representation of Input Functions
We represent f : X → 2X as list of the pairs (x, f(x)) for which f(x) 6= ∅.
• If rs ∈ (X × 2X)∗ represents r, testing r = λx.∅ reduces to

rs = [].

• An n with r(n) 6= ∅ is then given by the first component of head(rs).

• The list representation of r[n← ∅] is then

tail(rs).

If we use pattern matching in the let-clause, we get:

rtc : (X × 2X)∗ → (2X)∗

rtc(rs) = if rs=[] then [{x} | x∈[0..m]]
else let (n, ns) = head(rs)

cs = rtc(tail(rs))
ks =

⋃

{cs!!k | k∈ns}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]
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Refined Algorithm on Lists of Sets

The last version of rtc also can be written in the following form.

• The auxiliary function step performs the essential computations of the
recursion.

step : (X×2X)× (2X)∗ → (2X)∗

step((n, ns), cs) = let ks =
⋃

{cs!!k | k∈ns}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]

• The main program:

rtc : (X × 2X)∗ → (2X)∗

rtc(rs) = if rs = [] then [{x} | x∈[0..m]]
else step(head(rs), rtc(tail(rs)))
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Translation into Haskell

Let a Haskell constant m of type Int for m be at hand.

An obvious implementation of subsets of X in Haskell is given by sorted
lists over X without multiple occurrences of elements.

• ∅ is implemented by [].

• Set-membership is implemented by elem.

• An implementation of set union using linear running time is

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
case compare x y of EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

(merging and removal of multiple occurrences of elements).
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The Haskell list for
⋃

{cs!!k | k∈ns} is obtained by merging all sorted lists
cs!!k, where k ranges over the elements of ns. Haskell code for step:

step :: (Int,[Int]) -> [[Int]] -> [[Int]]
step (n,ns) cs =
let ks = foldr merge [] [cs!!k | k <- ns]
in [if elem n ms then merge ms ks else ms | ms <- cs]

The running time is is O(m2) since during the whole merging process each
argument and result of merge has at most length m+ 1.

Also the main function rtc can be seen as a right-fold over the Haskell
counterpart rs of rs.

rtc :: [(Int,[Int])] -> [[Int]]
rtc rs =
foldr step [[x] | x <- [0..m]] rs
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Slightly dissatisfying is that the Haskell function rtc

• depends on the constant m

• works with two different list representations of relations.

Because of

step (n,[]) cs = cs

we can change it in such a way that it is independent of m and also the
input rs is a list of type [[Int]] that contains as x-th component the
(possible empty) successor list of x.

rtc :: [[Int]] -> [[Int]]
rtc rs =
let xs = [0..length rs - 1]
in foldr step [[n] | n <- xs] (zip xs rs)

The complexity of the entire program is O(m3).
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The Complete Haskell Program

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
case compare x y of EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

step :: (Int,[Int]) -> [[Int]] -> [[Int]]
step (n,ns) cs =
let ks = foldr merge [] [cs!!k | k <- ns]
in [if elem n ms then merge ms ks else ms | ms <- cs]

rtc :: [[Int]] -> [[Int]]
rtc rs =
let xs = [0..length rs - 1]
in foldr step [[n] | n <- xs] (zip xs rs)
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Concluding Remarks

Some improvements with regard to practical running times are possible.

• A user-defined elem-test that takes advantage of the fact that the
successor lists are sorted.

• A linear time computation of [cs!!k | k <- ns] that also uses that
all successor lists are sorted.

• Transformation into tail-recursive version.

Further improvement:

• Replace zip xs rs by

zip xs (map (nub.sort) rs).

This is an implementation that does not rely on the successor lists to
be strictly increasing without sacrificing time complexity.
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Present and future work within the Kiel group:

Combination of

relation algebra and techniques of functional programming

for the formal develompent of efficient functional programs

on relation-based discrete structures.
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