
Simple Rectangle-based Functional Programs for

Computing Reflexive-transitive Closures

Rudolf Berghammer

Institut für Informatik
Christian-Albrechts-Universität zu Kiel

Joint work with Sebastian Fischer



Reachability Closures of Relation

Given a relation R on a set X,

• its reflexive-transitive closure is R∗ =
⋃

n≥0R
n,

• its transitive closure is R+ =
⋃

n≥1R
n.

R∗ specifies reachability in the graph g = (X,R) and R+ specifies reach-
ability via non-empty paths.

Fundamental properties:

• O∗ = I

• R∗ = I ∪R+

• (R ∪ S)∗ = R∗(SR∗)∗ (star-decomposition rule)

• R is transitive iff R = R+

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 2 of 21



Warshall’s Algorithm

• Traditional imperative computation of R∗ using a representation of
relations by 2-dimensional Boolean arrays.

Q := R;
for i∈X do

for j∈X do
for k∈X do
Q[j, k] := Q[j, k] ∨ (Q[j, i] ∧Q[i, k])



















Warshall

for i∈X do
Q[i, i] := True

• Arrays are unfit for representing relations if they are of “medium den-
sity” or even sparse.

Computational linguistics, XML-query processing, order theory, . . .

Here successor lists are much more economic; but such a representation
sacrifices the simplicity and efficiency of the algorithm.

• Arrays with side-effects are also problematic if the functional paradigm
is used.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 3 of 21



Aim of the Talk
To show how systematically to derive simple functional programs for com-
puting reflexive-transitive closures that

• base on a common schematic algorithm,

• use a representation of relations via successor lists,

• have for specific instantiations the same cubic running time as the
imperative algorithm.

The used tools and techniques are as in the case of the RAMiCS 12 talk:

• Relation algebra for problem specification, the derivation of the generic
algorithm and its specializations.

• Data refinement to obtain list representations and for the translation
into Haskell.

For visualization purposes we depict relations as Boolean matrices, drawn
by the computer system RelView.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 4 of 21



Relation Algebra
Relations:

• If R is a relation with source X and target Y , we write R : X↔Y .

• [X↔Y ] is the type/set of all relations with source X and target Y .

Signature of relation algebra:

• Constants: O, L, I.

• Operations: R ∪ S,R ∩ S,RS, R ,RT.

• Tests: R ⊆ S,R = S.

Properties;

• Reflexivity: I ⊆ R.

• Transitivity: RR ⊆ R.

• Vector: vL = v.

• Point: pL = p, Lp = L (surjectivity) and ppT ⊆ I (injectivity).

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 5 of 21



Rectangles and Reachability Closures

• A relation S : X↔X is a rectangle if there exist A,B ⊆ X such that

S = A×B.

• Examples, where X = {1, . . . , 8}:

R S1 S2

R is not a rectangle. S1 is a rectangle since S1 = {1}×{2}, and S2 is
a rectangle since S2 = {3, 4, 6}×{1, 3, 5, 7}.
• Relation-algebraic specification: S : X↔X is a rectangle iff

SLS ⊆ S.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 6 of 21



Theorem. Assume R : X↔X and let S : X↔X be a rectangle. Then

(R ∪ S)∗ = R∗ ∪R∗SR∗.

Proof. Transitivity SR∗SR∗ ⊆ SLSR∗ ⊆ SR∗. yields (SR∗)+ = SR∗. By
means of this equation, the statement follows from

(R ∪ S)∗=R∗(SR∗)∗ star-decomposition
=R∗(I ∪ (SR∗)+)
=R∗(I ∪ SR∗) SR∗ transitive
=R∗ ∪R∗SR∗ distributivity.

Generic Algorithm. The following functional algorithm computes R∗:

rtc : [X↔X]→ [X↔X]
rtc(R) = if R = O then I

else let S = rectangle(R)
C = rtc(R ∩ S )

in C ∪ CSC

Here rectangle(R) yields a non-empty rectangle S with S ⊆ R.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 7 of 21



Possibilities for rectangle(R):

• Selection of an atomic relation contained in R.

• Selection of a relation that singles out a row of R.

• Selection of a relation that singles out a column of R.

• Selection of a maximal (a non-enlargable) rectangle contained in R

– started vertically

– started horizontally.

Examples, where X = {1, . . . , 8}:

R S1 S2 S3 S4

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 8 of 21



Singling Out Rows
For R : X↔X and a point p : X↔11 with p ⊆ RL (“it has successors”),
we define:

S := ppTR

The rectangle S = ppTR corresponds to the row of R designated by the
point p and R ∩ S “zeroes out” out this row.

Example, where X = {1, . . . , 8} and p describes the element 4 of X:

R p S = ppTR R ∩ S

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 9 of 21



Proof of the rectangle property of S (using the vector property of p):

SLS = ppTRLppTR ⊆ pLpTR = ppTR = S

Proof of the inclusion S ⊆ R (using the injectivity of p):

S = ppTR ⊆ IR = R

Proof of non-emptiness of S by contradiction (using the surjectivity of p):

S = O ⇐⇒ ppTR ⊆ O ⇐⇒ . . . ⇐⇒ p ⊆ RL

Refined Algorithm. Singling out a row leads to:

rtc : [X↔X]→ [X↔X]
rtc(R) = if R = O then I

else let p = point(RL)
S = ppTR
C = rtc(R ∩ S )

in C ∪ CSC
Here point(RL) yields a point p with p ⊆ RL.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 10 of 21



From Relation Algebra to Functions

Represent F : X↔X by f : X → 2X such that (x, y)∈F iff y∈f(x).

• The empty relation O is represented by

λx.∅.

• The identity relation I is represented by

λx.{x}.

• If R 6= O is represented by r, then the choice of a point p with p ⊆ RL
corresponds to the choice of an element n∈X with r(n) 6= ∅.

• With r and n from above, R ∩ ppTR is represented by

r[n← ∅].

• If C is represented by c, then C ∪ CppTRC is represented by

λx.if n∈c(x) then c(x) ∪
⋃

{c(k) | k∈r(n)} else c(x).

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 11 of 21



Let ks :=
⋃

{c(k) | k∈r(n)}. Then the last representation follows from

(x, y) ∈ C ∪ CppTRC

⇔ (x, y)∈C ∨ (x, y)∈CppTRC

⇔ (x, y)∈C ∨ ∃ i : (x, i)∈C ∧ ∃ j : (i, j) ∈ ppT ∧ (j, y) ∈ RC
⇔ (x, y)∈C ∨ ∃ i : (x, i)∈C ∧ ∃ j : i = n ∧ j = n ∧ (j, y) ∈ RC
⇔ (x, y)∈C ∨ ((x, n)∈C ∧ (n, y) ∈ RC)

⇔ (x, y)∈C ∨ ((x, n)∈C ∧ ∃ k : (n.k)∈R ∧ (k, y)∈C)

⇔ y∈c(x) ∨ if n∈c(x) then ∃ k : k∈r(n) ∧ y∈c(k) else false

⇔ y∈c(x) ∨ if n∈c(x) then y∈
⋃

{c(k) | k∈r(n)} else y∈∅
⇔ y∈c(x) ∨ y ∈ if n∈c(x) then y∈ks else ∅
⇔ y ∈ if n∈c(x) then c(x) ∪ ks else c(x)

⇔ y ∈ (λx.if n∈c(x) then c(x) ∪ ks else c(x))(x)

using that (i, j) ∈ ppT iff i = n and j = n.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 12 of 21



Refined Algorithm on Functions.

We replace

• all relations by their representing functions,

• the choice of p by that of n.

Doing so, we arrive at the following refined algorithm on functions:

rtc : (X → 2X)→ (X → 2X)
rtc(r) = if r = λx.∅ then λx.{x}

else let n = elem({x∈X | r(x) 6= ∅})
c = rtc(r[n← ∅])
ks =

⋃

{c(k) | k∈r(n)}
in λx.if n∈c(x) then c(x) ∪ ks else c(x)

Here elem({x∈X | r(x) 6= ∅}) yields a n ∈ X with r(n) 6= ∅.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 13 of 21



List Representation of Output Functions
Assuming X = {0, . . . ,m} we represent f : X → 2X by [f(0), . . . , f(m)].

• For λx.{x} we get the representation

[{x} | x∈[0..m]].

• For λx.if n∈c(x) then c(x) ∪ ks else c(x) we get the representation

[if n∈ms then ms ∪ ks else ms | ms∈cs],

where cs ∈ (2X)∗ represents c. Note that then c(k) becomes cs !!k.

Moving from the output functions to the list representations, we get:

rtc : (X → 2X)→ (2X)∗

rtc(r) = if r=λx.∅ then [{x} | x∈[0..m]]
else let n = elem({x∈X | r(x) 6= ∅})

cs = rtc(r[n← ∅])
ks =

⋃

{cs !!k | k∈r(n)}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 14 of 21



List Representation of Input Functions
We represent f : X → 2X as list of the pairs (x, f(x)) for which f(x) 6= ∅.
• If rs ∈ (X × 2X)∗ represents r, testing r = λx.∅ reduces to

rs = [].

• An n with r(n) 6= ∅ is then given by the first component of head(rs).

• The list representation of r[n← ∅] is then

tail(rs).

If we use pattern matching in the let-clause, we get:

rtc : (X × 2X)∗ → (2X)∗

rtc(rs) = if rs=[] then [{x} | x∈[0..m]]
else let (n, ns) = head(rs)

cs = rtc(tail(rs))
ks =

⋃

{cs!!k | k∈ns}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 15 of 21



Refined Algorithm on Lists of Sets

The last version of rtc also can be written in the following form.

• The auxiliary function step performs the essential computations of the
recursion.

step : (X×2X)× (2X)∗ → (2X)∗

step((n, ns), cs) = let ks =
⋃

{cs!!k | k∈ns}
in [if n∈ms then ms ∪ ks else ms | ms∈cs]

• The main program:

rtc : (X × 2X)∗ → (2X)∗

rtc(rs) = if rs = [] then [{x} | x∈[0..m]]
else step(head(rs), rtc(tail(rs)))

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 16 of 21



Translation into Haskell

Let a Haskell constant m of type Int for m be at hand.

An obvious implementation of subsets of X in Haskell is given by sorted
lists over X without multiple occurrences of elements.

• ∅ is implemented by [].

• Set-membership is implemented by elem.

• An implementation of set union using linear running time is

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
case compare x y of EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

(merging and removal of multiple occurrences of elements).

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 17 of 21



The Haskell list for
⋃

{cs!!k | k∈ns} is obtained by merging all sorted lists
cs!!k, where k ranges over the elements of ns. Haskell code for step:

step :: (Int,[Int]) -> [[Int]] -> [[Int]]
step (n,ns) cs =
let ks = foldr merge [] [cs!!k | k <- ns]
in [if elem n ms then merge ms ks else ms | ms <- cs]

The running time is is O(m2) since during the whole merging process each
argument and result of merge has at most length m+ 1.

Also the main function rtc can be seen as a right-fold over the Haskell
counterpart rs of rs.

rtc :: [(Int,[Int])] -> [[Int]]
rtc rs =
foldr step [[x] | x <- [0..m]] rs

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 18 of 21



Slightly dissatisfying is that the Haskell function rtc

• depends on the constant m

• works with two different list representations of relations.

Because of

step (n,[]) cs = cs

we can change it in such a way that it is independent of m and also the
input rs is a list of type [[Int]] that contains as x-th component the
(possible empty) successor list of x.

rtc :: [[Int]] -> [[Int]]
rtc rs =
let xs = [0..length rs - 1]
in foldr step [[n] | n <- xs] (zip xs rs)

The complexity of the entire program is O(m3).

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 19 of 21



The Complete Haskell Program

merge :: [Int] -> [Int] -> [Int]
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) =
case compare x y of EQ -> x : merge xs ys

LT -> x : merge xs (y:ys)
GT -> y : merge (x:xs) ys

step :: (Int,[Int]) -> [[Int]] -> [[Int]]
step (n,ns) cs =
let ks = foldr merge [] [cs!!k | k <- ns]
in [if elem n ms then merge ms ks else ms | ms <- cs]

rtc :: [[Int]] -> [[Int]]
rtc rs =
let xs = [0..length rs - 1]
in foldr step [[n] | n <- xs] (zip xs rs)

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 20 of 21



Concluding Remarks

Some improvements with regard to practical running times are possible.

• A user-defined elem-test that takes advantage of the fact that the
successor lists are sorted.

• A linear time computation of [cs!!k | k <- ns] that also uses that
all successor lists are sorted.

• Transformation into tail-recursive version.

Further improvement:

• Replace zip xs rs by

zip xs (map (nub.sort) rs).

This is an implementation that does not rely on the successor lists to
be strictly increasing without sacrificing time complexity.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 21 of 21



Present and future work within the Kiel group:

Combination of

relation algebra and techniques of functional programming

for the formal develompent of efficient functional programs

on relation-based discrete structures.

RAMiCS 2012, Cambridge, UK Rudolf Berghammer Folie 22 of 21


