Extension properties of Boolean contact algebras

Ivo Düntsch¹ Sanjiang Li²

¹Department of Computer Science, Brock University, St. Catharines, Ontario duentsch@brocku.ca

²Centre for Quantum Computation and Intelligent Systems University of Technology Sydney Broadway NSW 2007, Australia Sanjiang.Li@uts.edu.au

September 20, 2012

Boolean contact algebras

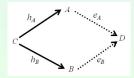
- A Boolean contact algebra $\langle B, \mathscr{C} \rangle$ is a Boolean algebra B together with a binary relation \mathscr{C} on B which satisfies for all $x, y, z \in B$
- $C_0. \ 0(-\mathscr{C})x$ $C_1. \ x \neq 0$ implies $x \mathscr{C} x$ $C_2. \ x \mathscr{C} y$ implies $y \mathscr{C} x$ $C_3. \ x \mathscr{C} y$ and $y \leq z$ implies $x \mathscr{C} z$. $C_4. \ x \mathscr{C}(y+z)$ implies $(x \mathscr{C} y \text{ or } x \mathscr{C} z)$ (distributivity)A BCA is connected if• $x \neq 0$ and $x \neq 1$ implies $x \mathscr{C} x$

Hereditary and extension properties

A class ${\bf K}$ of ${\mathscr L}$ – structures has the

- 1. Hereditary property (HP) if K is closed under substructures.
- 2. Joint embedding property (JEP) if for any $A, B \in K$, there are some $C \in K$ and embeddings $e_A : A \to C$, $e_B : B \to C$.
- 3. Amalgamation property (AP) if for all $A, B, C \in K$ such that C is (isomorphic to) a common substructure of A and B, say, with embeddings $h_B : C \hookrightarrow B$ and $h_A : C \hookrightarrow A$, there are some $D \in K$ and embeddings $e_A : A \hookrightarrow D$ and $e_B : B \hookrightarrow D$ such that $e_A \circ h_A = e_B \circ h_B$.

Figure: Amalgamation property



Fraïssé limits

In this work, we prove that the class of BCAs has HP, JEP, and AP. Thus, by Fraïssé's result,

Theorem

There is a countable homogeneous and ω – categorical BCA $\mathfrak{B} = \langle B, \mathscr{C} \rangle$, which is universal in the sense that each countable BCA is isomorphic to a substructure of \mathfrak{B} .

Fraïssé limits

In this work, we prove that the class of BCAs has HP, JEP, and AP. Thus, by Fraïssé's result,

Theorem

There is a countable homogeneous and ω – categorical BCA $\mathfrak{B} = \langle B, \mathscr{C} \rangle$, which is universal in the sense that each countable BCA is isomorphic to a substructure of \mathfrak{B} .

In a companion paper, we show

Theorem

The relation algebra $\mathfrak A$ generated by $\mathscr C$ on $\mathfrak B$ is finite.

Qualitative spatial reasoning

Investigates properties of relations – "part–of", "contact"

S. Leśniewski 1886–1939

- Mereology (Leśniewski, 1915)
- Spatio temporal relations (Nicod, 1920)
- Pointless geometry (De Laguna, 1922, Whitehead, 1929)
- Geometry of solids (Tarski, 1927)
- Region Connection Calculus (Randell, Cui, and Cohn, 1992)
- No knowledge about "points" is necessary.
- The relational calculus is "pointless".

Standard contact structures

• The regular closed sets of a topological space X form a complete Boolean algebra under the operations

$$a+b=a\cup b, \ a\cdot b=\mathsf{cl}(\mathsf{int}(a\cap b)), \ a^*=\mathsf{cl}(X\setminus a), \ 0=\emptyset, \ 1=X.$$

Write $\operatorname{RegCl}(X)$ for this Boolean algebra. Observe that it is possible that $a \cdot b = 0$, but $a \cap b \neq \emptyset$.

Standard contact structures

• The regular closed sets of a topological space X form a complete Boolean algebra under the operations

$$a+b=a\cup b, \ a\cdot b={\sf cl}({\sf int}(a\cap b)), \ a^*={\sf cl}(X\setminus a), \ 0=\emptyset, \ 1=X.$$

Write $\operatorname{RegCl}(X)$ for this Boolean algebra. Observe that it is possible that $a \cdot b = 0$, but $a \cap b \neq \emptyset$.

• The standard contact relation C_{τ} on RegCl(X) is defined as, for all regular closed sets a, b

$$aC_{\tau}b \Longleftrightarrow a \cap b \neq \emptyset.$$

Basic facts on BCAs

- There is only one contact relation on $\mathbf{2} = \{0, 1\}$.
- Let *B* be a Boolean algebra.
 - The smallest contact relation on *B* is given by $x \mathscr{C}_{\min} y \iff x \cdot y \neq 0$. \mathscr{C}_{\min} is called the *overlap relation*.
 - The largest contact relation on B is $\mathscr{C}_{max} = B^+ \times B^+$.

Finite BCAs and graphs

Let B be a finite Boolean algebra, and At(B) its atom set.

a reflexive and symmetric relation on X = a graph on X^

Theorem

There is a bijective order preserving correspondence between the contact relations on B and the graphs on At(B).

Finite BCAs and graphs

Let B be a finite Boolean algebra, and At(B) its atom set.

a reflexive and symmetric relation on X = a graph on X^

Theorem

There is a bijective order preserving correspondence between the contact relations on B and the graphs on At(B).

• If \mathscr{C} is a contact relation on B, let

$$R_{\mathscr{C}} = \{ \langle a, b \rangle \in \mathsf{At}(B)^2 : \uparrow a \times \uparrow b \subseteq \mathscr{C} \}$$

Note: for atoms $a, b, \langle a, b \rangle \in \mathscr{C}$ iff $\uparrow a \times \uparrow b \subseteq \mathscr{C}$.

• If R is a graph on At(B), set

$$\mathscr{C}_R = \bigcup \{\uparrow a \times \uparrow b : \langle a, b \rangle \in R\}$$

•
$$\mathscr{C}_{R_{\mathscr{C}}} = \mathscr{C}, \ R_{\mathscr{C}_{R}} = R.$$

What kind of graph morphisms correspond to BCA embeddings?

Strong graph homomorphism (sgh)

Let A, C be two graphs. A mapping $f : (A, R_A) \to (C, R_C)$ is a sgh if R_C is the image of R_A under f, i.e.

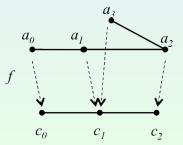
- f is an onto graph homomorphism
- any edge in C is the image of some edge in A under f.

Strong graph homomorphism (sgh)

Let A, C be two graphs. A mapping $f : (A, R_A) \to (C, R_C)$ is a sgh if R_C is the image of R_A under f, i.e.

- f is an onto graph homomorphism
- any edge in C is the image of some edge in A under f.

Example: Suppose $A = \{a_0, a_1, a_2, a_3\}$ and $C = \{c_0, c_1, c_2\}$ are as below. Then $f : A \to C$ is a strong graph homomorphism.



BCA embeddings and strong graph homomorphisms

Theorem

Let $\langle A, \mathscr{C}_A \rangle$ and $\langle B, \mathscr{C}_B \rangle$ be two finite BCAs.

 If e : A → B is a BCA embedding, then u : At(B) → At(C) is a strong graph homomorphism, where

$$u(x) = \bigwedge \{a \in A : e(a) \ge x\}.$$

 If u : At(B) → At(A) is a strong graph homomorphism, then e : A → B is a BCA embedding, where

$$e(a) = \bigvee \{x \in \operatorname{At}(B) : u(x) \le a\}.$$

Duality for BCAs

Let B be a Boolean algebra and Ult(B) its Stone space.

Theorem (Düntsch & Winter, RelMiCS 10)

There is a bijective order preserving correspondence between the contact relations on B and the graphs on Ult(B) which are closed in the product topology of Ult(B).

- If R is a graph on Ult(B), set $\mathscr{C}_R = \bigcup \{F \times G : \langle F, G \rangle \in R\}$.
- If \mathscr{C} is a contact relation on B, let $R_{\mathscr{C}} = \{\langle F, G \rangle \in \text{Ult}(B)^2 : F \times G \subseteq \mathscr{C}\}.$

•
$$\mathscr{C}_{R_{\mathscr{C}}} = \mathscr{C}, \ R_{\mathscr{C}_R} = R.$$

Duality for maps

Let A, B be two Boolean algebras and $e : A \to B$ a Boolean embedding. The dual of e is the map $u : Ult(B) \to Ult(A)$ defined by $u(F) = e^{-1}(F)$. If e is an inclusion, then $u(F) = F \cap A$.

Theorem

• Let $\langle A, \mathcal{C}_A \rangle$ and $\langle B, \mathcal{C}_B \rangle$ be BCAs with dual relations R_A and R_B , and suppose that A is a (Boolean) subalgebra of B. Then, $\mathcal{C}_A = \mathcal{C}_B \upharpoonright A$ if and only if

 $R_{A} = \{ \langle F \cap A, G \cap A \rangle : F, G \in \mathsf{Ult}(B), \langle F, G \rangle \in R_{B} \}.$

• e is a BCA embedding iff R_B is the image of R_A under u.

BCAs and HP, JEP, AP

Let K^0 be the class of all BCAs. Then

- \mathbf{K}^0 has HP, since the axioms of BCAs are universal.
- JEP is a special case of AP, since $\mathbf{2} = \{0, 1\}$, the smallest BCA, can be embedded into any BCA.

BCAs and HP, JEP, AP

Let K^0 be the class of all BCAs. Then

- \mathbf{K}^0 has HP, since the axioms of BCAs are universal.
- JEP is a special case of AP, since $\mathbf{2} = \{0,1\}$, the smallest BCA, can be embedded into any BCA.

So we need only prove

Theorem

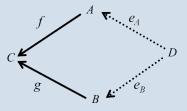
The class K^0 of BCAs has the amalgamation property.

Amalgamation property and BCAs: The finite case

sgh = strong graph homomorphism

Theorem

Suppose A, B, C are finite graphs and $f : A \to C$ and $g : B \to C$ are sghs. Then there are a graph D, and sghs $e_A : D \to A$ and $e_B : D \to B$ s.t. the following diagram is commutative:



Background

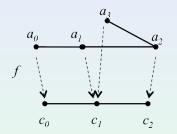
Construction of D: The finite case

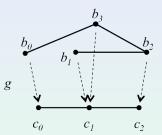
Let

$$D = \{ \langle a, b \rangle \in A \times B : f(a) = g(b) \}$$
$$\langle \langle a, b \rangle, \langle a', b' \rangle \rangle \in R_D \iff \langle a, a' \rangle \in R_A, \langle b, b' \rangle \in R_B$$
$$e_A(\langle a, b \rangle) = a$$
$$e_B(\langle a, b \rangle) = b$$

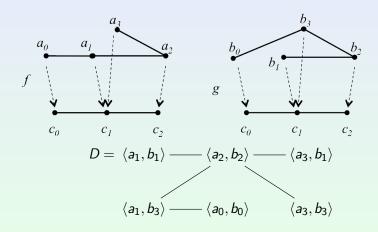
Then e_A and e_B are sghs and $f \circ e_A = g \circ e_B$.

An example





An example



Construction of D: The infinite case

Suppose that $\mathfrak{A} = \langle A, \mathscr{C}_A \rangle$ and $\mathfrak{B} = \langle B, \mathscr{C}_B \rangle$ are two BCAs and $\mathfrak{C} = \langle C, \mathscr{C}_C \rangle$ is isomorphic to a common substructure of \mathfrak{A} and \mathfrak{B} . Let D be the Boolean amalgamated free product of A and B over C, w.l.o.g. $A, B \leq D$. Define $R \subseteq \text{Ult}(D) \times \text{Ult}(D)$ by

$$\langle H, H'
angle \in R \iff \langle H \cap A, H' \cap A
angle \in R_{\mathscr{C}_A}$$
and
 $\langle H \cap B, H' \cap B
angle \in R_{\mathscr{C}_B}.$

- *R* is reflexive, symmetric and closed.
- The dual of R is a contact relation on D extending both C_A and C_B.

Theorem

The class \mathbf{K}^0 of BCAs has the amalgamation property.

Theorem

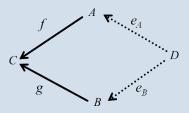
The class K^1 of connected Boolean contact algebras does not have the amalgamation property.

Theorem

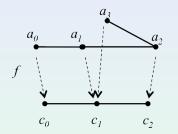
The class K^1 of connected Boolean contact algebras does not have the amalgamation property.

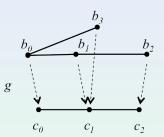
Proof.

We prove this by showing that, for some sghs $f : A \to C$ and $g : B \to C$ any amalgamation D of A, B over C in K^0 is not a connected graph

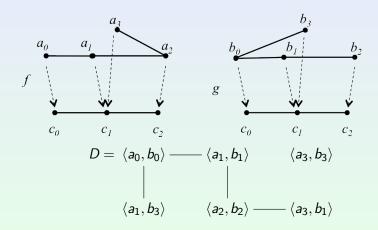


A counter example





A counter example



Fraïssé limits

The class of finite BCAs has HP, JEP, and AP.

Theorem

There is a countable homogeneous and ω – categorical BCA $\mathfrak{B} = \langle B, \mathscr{C} \rangle$, which is universal in the sense that each countable BCA is isomorphic to a substructure of \mathfrak{B} .

In a sense, \mathfrak{B} (or the corresponding closed graph on Ult(B)) can be regarded as another 'limit' of finite graphs.

Mnogo blagodarya Thank you Dziękuję Danke Merci