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Results Background Proof

Boolean contact algebras

A Boolean contact algebra 〈B,C 〉 is a Boolean algebra B together
with a binary relation C on B which satisfies for all x ,y ,z ∈ B

C0. 0(−C )x
C1. x 6= 0 implies xC x (domain reflexivity)
C2. xC y implies yC x (symmetry)
C3. xC y and y ≤ z implies xC z . (monotonicity)
C4. xC (y + z) implies (xC y or xC z) (distributivity)

A BCA is connected if
• x 6= 0 and x 6= 1 implies xC − x (connectivity)
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Hereditary and extension properties
A class K of L – structures has the

1. Hereditary property (HP) if K is closed under substructures.
2. Joint embedding property (JEP) if for any A,B ∈K, there are

some C ∈K and embeddings eA : A→ C , eB : B → C .
3. Amalgamation property (AP) if for all A,B,C ∈K such that C

is (isomorphic to) a common substructure of A and B , say,
with embeddings hB : C ↪→ B and hA : C ↪→ A, there are some
D ∈K and embeddings eA : A ↪→ D and eB : B ↪→ D such that
eA ◦hA = eB ◦hB .

Figure: Amalgamation property
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Fraïssé limits

In this work, we prove that the class of BCAs has HP, JEP, and AP.
Thus, by Fraïssé’s result,

Theorem
There is a countable homogeneous and ω – categorical BCA
B= 〈B,C 〉, which is universal in the sense that each countable
BCA is isomorphic to a substructure of B.

In a companion paper, we show

Theorem
The relation algebra A generated by C on B is finite.
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Qualitative spatial reasoning

• Investigates properties of relations – “part–of”, “contact”

S. Leśniewski
1886–1939

• Mereology (Leśniewski, 1915)
• Spatio - temporal relations (Nicod, 1920)
• Pointless geometry (De Laguna, 1922,
Whitehead, 1929)

• Geometry of solids (Tarski, 1927)
• Region Connection Calculus (Randell, Cui,
and Cohn, 1992)

• No knowledge about “points” is necessary.
• The relational calculus is “pointless”.
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Standard contact structures

• The regular closed sets of a topological space X form a
complete Boolean algebra under the operations

a+b = a∪b, a ·b = cl(int(a∩b)), a∗ = cl(X \a), 0= /0, 1= X .

Write RegCl(X ) for this Boolean algebra. Observe that it is
possible that a ·b = 0, but a∩b 6= /0.

• The standard contact relation Cτ on RegCl(X ) is defined as,
for all regular closed sets a,b

aCτb⇐⇒ a∩b 6= /0.
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Basic facts on BCAs

• There is only one contact relation on 2 = {0,1}.
• Let B be a Boolean algebra.

• The smallest contact relation on B is given by
xCminy ⇐⇒ x ·y 6= 0. Cmin is called the overlap relation.

• The largest contact relation on B is Cmax = B+×B+.
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Finite BCAs and graphs
Let B be a finite Boolean algebra, and At(B) its atom set.
*a reflexive and symmetric relation on X = a graph on X*

Theorem
There is a bijective order preserving correspondence between the
contact relations on B and the graphs on At(B).

• If C is a contact relation on B , let

RC = {〈a,b〉 ∈ At(B)2 : ↑a× ↑b ⊆ C }

Note: for atoms a,b, 〈a,b〉 ∈ C iff ↑a× ↑b ⊆ C .
• If R is a graph on At(B), set

CR =
⋃
{↑a× ↑b : 〈a,b〉 ∈ R}

• CRC
= C , RCR = R .
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What kind of graph morphisms correspond to BCA embeddings?
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Strong graph homomorphism (sgh)
Let A,C be two graphs. A mapping f : (A,RA)→ (C ,RC ) is a sgh
if RC is the image of RA under f , i.e.
• f is an onto graph homomorphism
• any edge in C is the image of some edge in A under f .

Example: Suppose A= {a0,a1,a2,a3} and C = {c0,c1,c2} are as
below. Then f : A→ C is a strong graph homomorphism.
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BCA embeddings and strong graph homomorphisms

Theorem
Let 〈A,CA〉 and 〈B,CB〉 be two finite BCAs.
• If e : A→ B is a BCA embedding, then u : At(B)→ At(C ) is a
strong graph homomorphism, where

u(x) =
∧
{a ∈ A : e(a)≥ x}.

• If u : At(B)→ At(A) is a strong graph homomorphism, then
e : A→ B is a BCA embedding, where

e(a) =
∨
{x ∈ At(B) : u(x)≤ a}.
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Duality for BCAs

Let B be a Boolean algebra and Ult(B) its Stone space.

Theorem (Düntsch & Winter, RelMiCS 10)

There is a bijective order preserving correspondence between the
contact relations on B and the graphs on Ult(B) which are closed
in the product topology of Ult(B).

• If R is a graph on Ult(B), set CR =
⋃
{F ×G : 〈F ,G 〉 ∈ R}.

• If C is a contact relation on B , let
RC = {〈F ,G 〉 ∈ Ult(B)2 : F ×G ⊆ C }.

• CRC
= C , RCR = R .
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Duality for maps

Let A,B be two Boolean algebras and e : A→ B a Boolean
embedding. The dual of e is the map u : Ult(B)� Ult(A) defined
by u(F ) = e−1(F ). If e is an inclusion, then u(F ) = F ∩A.

Theorem

• Let 〈A,CA〉 and 〈B,CB〉 be BCAs with dual relations RA and
RB , and suppose that A is a (Boolean) subalgebra of B. Then,
CA = CB � A if and only if

RA = {〈F ∩A,G ∩A〉 : F ,G ∈ Ult(B),〈F ,G 〉 ∈ RB}.
• e is a BCA embedding iff RB is the image of RA under u.
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BCAs and HP, JEP, AP

Let K0 be the class of all BCAs. Then

• K0 has HP, since the axioms of BCAs are universal.
• JEP is a special case of AP, since 2 = {0,1}, the smallest
BCA, can be embedded into any BCA.

So we need only prove

Theorem
The class K0 of BCAs has the amalgamation property.
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Amalgamation property and BCAs: The finite case

sgh = strong graph homomorphism

Theorem
Suppose A,B,C are finite graphs and f : A→ C and g : B → C are
sghs. Then there are a graph D, and sghs eA : D→ A and
eB : D→ B s.t. the following diagram is commutative:
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Construction of D: The finite case

Let

D = {〈a,b〉 ∈ A×B : f (a) = g(b)}
〈〈a,b〉,〈a′,b′〉〉 ∈ RD ⇐⇒ 〈a,a′〉 ∈ RA,〈b,b′〉 ∈ RB

eA(〈a,b〉) = a
eB(〈a,b〉) = b

Then eA and eB are sghs and f ◦ eA = g ◦ eB .
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An example

D = 〈a1,b1〉 〈a2,b2〉 〈a3,b1〉

〈a1,b3〉 〈a0,b0〉 〈a3,b3〉
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Construction of D: The infinite case

Suppose that A= 〈A,CA〉 and B= 〈B,CB〉 are two BCAs and
C= 〈C ,CC 〉 is isomorphic to a common substructure of A and B.
Let D be the Boolean amalgamated free product of A and B over
C , w.l.o.g. A,B ≤ D. Define R ⊆ Ult(D)×Ult(D) by

〈H,H ′〉 ∈ R ⇐⇒ 〈H ∩A,H ′∩A〉 ∈ RCA and
〈H ∩B,H ′∩B〉 ∈ RCB .

• R is reflexive, symmetric and closed.
• The dual of R is a contact relation on D extending both CA
and CB .

Theorem
The class K0 of BCAs has the amalgamation property.
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Theorem
The class K1 of connected Boolean contact algebras does not have
the amalgamation property.

Proof.
We prove this by showing that, for some sghs f : A→ C and
g : B → C any amalgamation D of A,B over C in K0 is not a
connected graph
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A counter example

D = 〈a0,b0〉 〈a1,b1〉 〈a3,b3〉

〈a1,b3〉 〈a2,b2〉 〈a3,b1〉
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A counter example
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Fraïssé limits

The class of finite BCAs has HP, JEP, and AP.

Theorem
There is a countable homogeneous and ω – categorical BCA
B= 〈B,C 〉, which is universal in the sense that each countable
BCA is isomorphic to a substructure of B.

In a sense, B (or the corresponding closed graph on Ult(B)) can be
regarded as another ‘limit’ of finite graphs.



Results Background Proof

Mnogo blagodarya
Thank you
Dziȩkujȩ
Danke
Merci
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