An Evaluation of Automated Theorem Proving
in Regular Algebra
(Extended Abstract)

Alasdair Armstrong

Department of Computer Science, The University of Sheffield, UK
a.armstrong@dcs.shef.ac.uk

Introduction The Isabelle/HOL environment [8] combines the power of au-
tomated reasoning with higher-order features for theory engineering and proof
management. Its built-in Sledgehammer tool integrates state of the art ATP
and SMT tools, allowing for powerful automated reasoning in proofs [2]. The-
ory engineering features such as typeclasses and locales support the effective
design of large theory hierarchies and allow for theorem propagation in these hi-
erarchies [6]. They also allow for the connection between abstract algebras and
concrete models.

When using regular algebras such as x-continuous Kleene algebras or quan-
tales, many proof obligations can be discharged using only first-order axioms.
There are many first-order regular algebras, such as Kleene algebras, Pratt’s
action algebras and Boffa’s algebras. Action algebras are particularly interesting
as they have an axiomatisation based on Galois connections and an equivalent
purely equational axiomatisation [9]. This result is interesting, as one might ex-
pect that purely equational axioms might be more amenable to ATP than other
sets of axioms. However, this purely equational axiomatisation requires a large
signature. This paper attempts to ascertain which of action or Kleene algebras
are better from an ATP standpoint, providing insight into the trade-off between
an equational axiomatisation and a larger signature.

To achieve this, Isabelle’s built in benchmarking tool Mirabelle is used on
facts from a large repository' for algebraic methods in Isabelle which has been
documented in previous papers [5]. Recently the repository has been extended
to support higher-order regular algebra, and many higher-order order concepts
such as Galois connections have been implemented in this setting [1]. We have
also begun work on extending this repository with explicit carrier sets, allow-
ing us to formalise concepts such as Galois connections between different par-
tial orders, subalgebras and other concepts from universal algebra. Even in this
higher-order setting, automated reasoning remains a valuable tool. However, a
question remains—exactly how much does the carrier set based axiomatisation
these features require impact the usefulness of ATP and SMT tools?

Regular Algebra A dioid is a structure (D,+,-,0,1) where (D,+,0) is a
semilattice with least element 0, (D, -, 1) is a monoid, - distributes over + from

! http://staffwww.dcs.shef.ac.uk/people/G.Struth /isa/

both the left and right, and 0-z =0 = x - 0. An action algebra [9] is an algebra
(A,+,0,-,1,+,—,*) such that (A,+,-,0,1) is a dioid, and satisfying

L R
r<z+ysry<zesy<r—z, (1)
14+z*2" 4o < z*, l+yy+ax<y=z"<y (2, 3)

where the natural partial order < is defined as x <y <z +y=y.
A Galois connection between two posets (A4,<4) and (B,<p) is a pair of
functions f : A — B and g : B — A such that the following equivalence holds

f@)<pyez<agly).

The function f is called the lower adjoint of the Galois connection, while g
is the upper adjoint. Axiom (1) defines the left and right residuals, < and —
as the upper adjoints of (-y) and (z-). (1L) and (1R) thus describe families
of Galois connections indexed by y and x respectively. Galois connections have
many interesting properties, from which the properties of residuation are derived.

Pratt’s main result is that there exists an equivalent set of axioms for action
algebra which are purely equational. These axioms are shown below:

z—oy<z—(y+2), z(x—y) <y<z—uay,
y+— o< (y+2) « z, (y=x) < y<yz<+ z,
¥ < (z+y)T, 1+z'z" +x <az¥,

(z =) <z—uz
A Kleene algebra [7] is a structure (K, +,-,0,1,*) where (K,+,-,0,1) is a
dioid, satisfying the following 4 axioms:
1+ zz* < a”, 1+z%x <z*, (4, 5)
ztay<y=azxz<y, z+yr <y=zz* <y. (6, 7)
The axioms of Kleene algebra can be derived from those of action algebra.
A quantale (also called a standard Kleene algebra or S-Algebra by Con-

way [4]) is a structure (@, V/,) such that (@,\/) is a complete lattice, - is asso-
ciative, and satisfying the infinite distributivity laws

x \/y :\/xy and \/y x:\/yx,

yey yey yey yey

where Y C Q. The residuation operators from action algebra are defined as

gc—>y:\/{z|xz§y} and y(—xZ\/{Z|Z$§y}~

It is easy to show that these residuals satisfy (1L) and (1R). A quantale is unital
if - has an identity element 1. The star operation can then be naturally defined
in two ways, either as

' = u(Ay.1 + xy) or x* = \/ ™
neN

both of which can be shown to be equivalent by way of Kleene’s fixed point
theorem. It can then be shown that (@, V,0,-,1,<,—.*) is an action algebra
and (@,V,-,0,1,*) is a Kleene algebra. ATP tools are usually limited to first-
order logic, and as such are unable to deal with higher-order axioms such as the
infinite distributivity laws above. Nevertheless, in a quantale many proof goals
can be discharged with first order statements derived from these first order
axioms [1]. It is therefore interesting to know which first order regular algebras
are most useful from an ATP perspective, as many can be defined and used in
this higher-order setting.

Experiments In the remainder of this paper, two experiments are conducted.
First, action algebras and Kleene algebras are benchmarked to find if either
allows for faster automated proofs. Some analysis is then conducted to ascertain
whether there are many theorems of both action algebra and Kleene algebra
which can be proven automatically in one but not the other.

The second experiment concerns the performance impact of using explicit
carrier sets when formalising regular algebra in Isabelle. By formalising Kleene
algebra with and without explicit carrier sets, the effect they have on ATP
support can be investigated.

First Experiment The first experiment analyses the time efficiency of the
provers used by Isabelle’s Sledgehammer tool when applied to 20 problems in
both action algebra and Kleene algebra. Sledgehammer itself has already been
extensively tested and benchmarked in [3].

Why only 20 facts? To ensure fairness only properties that could be derived
directly from the axioms within a 300 second period were considered. The reason
for this is simple—in an ordinary Isabelle workflow, one starts by proving useful
lemmas which are used in later proofs. For example, one might want to prove
that * is isotone, z < y = z* < y*. In both Kleene and action algebra this
proof might require several auxiliary lemmas, however, the ideal set of lemmas
would be different in both cases. The order in which results are proved is quite
important, and a specific order would bias the results towards a certain algebra.

While this approach ensures fairness, it has a downside. There are relatively
few properties which can be derived directly from the axioms in both algebras
in a reasonable timeframe, limiting the sample size to a small set of 20 lemmas.

Isabelle’s built in benchmarking tool Mirabelle was used to measure the per-
formance for each of the provers for these 20 problems. Table 1 displays the
running times in seconds for each of the various provers. In practice all the
provers are run together, with the fastest prover ‘winning’, so for each problem
we take the minimum time given by any prover. This is shown in Table 2.

There is clearly some correlation between the time it takes to find a proof in
action algebra and the time it takes in Kleene algebra. The correlation coefficient
is roughly 0.45 — i.e. not uncorrelated, but not perfectly correlated either.

The provers used in these experiment are E, Z3, Vampire and SPASS. Z3 and
Vampire were run remotely. This set of provers is essentially the default set of
provers used by Sledgehammer. The only prover which appears noticeably worse
at a specific algebra is SPASS. This is misleading, as SPASS tends to either

E remote_z3 remote_vampire spass

7# KLE[ACT[diff KLE[ACT[diff KLE[ACT[diff] KLE[ACT[diff
1][110.61] 110.2] -0.41 F F F|| 7.25/10.15| 2.90([193.06| 1.39|-191.67
2 |(103.36| 0.78|-102.58 F| 1.53 F|| 6.02] 2.00| -4.02|[100.47| 0.10{-100.37
3 1.58 F Fi 1.44 F F|| 1.10{72.61| 71.51|| 0.12|100.42| 100.30
4 1.06(116.19| 115.13|| 1.42 F F|| 1.08] 3.78| 2.71|| 0.09] 3.95| 3.85
5 1.11]116.52| 115.42|| 1.41 F F| 1.07] 13.2| 12.13| 0.09] 3.97| 3.89
6 [/100.66{111.01| 10.35 F F F|| 41.24]44.77| 3.53|{134.07 F F
7 36.45(100.33| 63.93| 1.49 F F|| 37.95] 2.21|-35.74((100.41|100.25| -0.16
8 0.84] 0.94 0.1]| 1.42| 1.45| 0.03|f 1.86| 3.00| 1.15|| 0.09] 1.50 1.41
9 0.80] 1.91 1.12|| 1.39/ 1.4| 0.01} 1.89| 1.98| 0.10{ 0.08] 0.11| 0.02
10 ||105.05] 0.99]-104.06||22.57| 1.4|-21.18|| 29.36|28.01| -1.35|{104.88| 0.89|-103.10
11 || 139.5/100.98| -38.52 F| 3.24 F| 27.04|29.14| 2.10{|113.64/100.21| -13.43
12 1.97] 41.36] 394 F F F|| 1.50] 3.20| 1.60{{135.05 F F
13 || 105.2] 0.87]-104.29| 25.2] 1.39|-23.82| 3.90| 1.95| -1.93|{100.77| 0.13|-100.64
14 || 102.1| 39.72] -62.38|| 3.27 F F|| 1.39] 7.66| 6.27||114.47|153.76| 39.29
15 {|100.89] 0.91] -99.98|| 1.47| 1.41| -0.06 F| 2.01 F| 0.49] 0.23| -0.27
16 [|114.02{100.83| -13.2 F F F|125.65]40.98|-84.67 F| 51.97 F
17 F F F F| 3.14 F F(31.29 F F| 10.37 F
18 || 61.82{100.85| 39.03|| 1.82 F F| 29.31| 2.23|-27.07|{100.35/100.46] 0.10
19 0.36| 0.37| 0.02f 1.38| 1.34| -0.04|| 1.09 F F| 0.11] 0.09] -0.01
20 0.82] 0.84| 0.03|| 1.6 F F| 1.13] 1.09| -0.04(| 0.10{ 0.11] 0.01

-140.92 -45.09 -50.75 -361.66

Table 1. Prover running times (s) for action and Kleene algebras

perform extremely well for some problems or extremely slowly for others. The
small sample size could therefore skew the result in one direction or the other.

What is clear however, is that having a variety of provers is undoubtedly a
good thing. Each prover has different strengths and weaknesses in this problem
domain. Z3 is usually extremely fast when it succeeds, even though it sometimes
cannot find a proof (represented by an F in Table 1). E and Vampire tend to be
the most reliable, finding proofs when other provers fail.

At first glance action algebra might appear to be slightly faster. However,
there is no statistically significant difference overall between using action algebra
and Kleene algebra when all the provers are taken into account (in Table 2).

||Kleene|action|difference
1 7.25] 1.39 -5.86
2 6.02| 0.10 -5.91
3 0.12| 72.61 72.49
4 0.09] 3.78 3.69
5 0.09| 3.97 3.89
6 41.24| 44.77 3.53
7 1.49) 2.21 0.72
8 0.09| 0.94 0.85
9 0.08] 0.11 0.02
10 || 22.57] 0.89 -21.69

|| Kleene|action|difference
11 || 27.04] 3.24 -23.80
12 1.50| 3.20 1.70
13 3.88] 0.13 -3.75
14 1.39| 7.66 6.27
15 0.49] 0.23 -0.27
16 || 114.02] 40.98 -73.04
17 0.00| 3.14 3.14
18 1.82| 2.23 0.42
19 0.10] 0.09 -0.01
20 0.10| 0.11 0.01

Table 2. Minimum prover times (s) for action and Kleene algebras

Another useful way to compare the two algebras is to compare how much can
be automatically proven from the axioms, not just how quickly. Using the axioms
of Kleene algebra, the sliding rule, (zy)*z < x(yx)* and a variant z*z < zz*
can be automatically proven. Properties such as z* < (z*)*, and that the star
is isotone can also be automatically derived using just the axioms of Kleene
algebra. These properties cannot be automatically derived in action algebra.
Furthermore one can show that zy < y = 2y < y and yxr < y = yz* < y.
These two properties are also easy to show in action algebra, provided that
one has already proven that the star is isotone—which, as mentioned, cannot
automatically be derived from the axioms of action algebra via Sledgehammer.

Overall, the choice of first order regular algebra seems to matter little. The
performance difference is not significance, and one could simply derive the axioms
of Kleene algebra from those of action algebra anyway.

Second Experiment While there is no significant difference between action
algebras and Kleene algebras (both without explicit carrier sets) in terms of
performance, is there a significant difference in ATP usefulness when formalising
algebras with and without explicit carrier sets in Isabelle?

An algebra, such as a dioid (D,+,-,0,1), has an explicit carrier set if we
represent D using an actual set in Isabelle rather than the set being implicit
in the type. This requires us to add additional axioms to our algebras, stating
that the operations are closed with respect to the carrier set. For example, in
the dioid case, axioms would be needed stating that if x € D and y € D then
x+y€Dandx-ye D, and also that 0,1 € D.

This increase in the number of axioms might lead to a significant slowdown
in ATP search times, as more axioms inevitably create a larger search space.
For this experiment, equivalent facts about dioids have been proven with and
without explicit carrier sets, and then Kleene algebras have been formalised on
top of both. As above, 18 problems provable directly from the axioms in both
algebras within 300 seconds were selected. Table 3 shows the time it took for
Sledgehammer to return a proof for each of the 18 problems, both for the explicit
carrier set and non-explicit carrier set algebra. As with above, the sample size is
again necessarily quite small—there are only so many facts we can automatically
prove just from the axioms.

Analysing the results, it is clear that there is a statistically significant differ-
ence between using carrier sets and not using carrier sets, with the non-carrier

||non-explicit|explicit |difference # ||non-explicit|explicit |difference
1 0.19| 0.45 -0.26 10 0.12 0.32 -0.20
2 0.15 0.38 -0.23 11 76.47| 31.50 44.96
3 2.30[21.86 -19.56 12 1.16] 4.38 -3.22
4 0.13| 0.46 -0.33 13 1.32| 102.46| -101.14
5 0.11 0.78 -0.67 14 1.12 1.14 -0.01
6 0.11 1.25 -1.15 15 1.22| 102.00| -100.78
7 0.12 0.77 -0.65 16 0.12 0.24 -0.12
8 0.11 1.27 -1.16 17 1.21| 66.15 -64.94
9 0.60 1.38 -0.77 18 1.22| 63.60 -62.38

Table 3. Minimum prover times (s) for explicit and non-explicit carrier sets

set version being much more efficient. However, this is not a huge obstacle, as
ATP is still very useful even with explicit carrier sets. Furthermore, carrier sets
are absolutely essential for formalising many mathematical concepts.

The only problem out of the 18 which was more efficient with explicit carrier
sets than without was that 1+ x + 2*2* < 2*. The reason for this was that it is
quite a difficult problem for most of the provers, as only SPASS was able to prove
it for the carrier set based case, while E was able to solve the problem without
carrier sets. For each of the provers there are usually several cases where the
explicit carrier set based algebra wins out over the non-carrier set based variant.
This is most likely because even though the search space with carrier sets is
larger, there is still the chance that a prover may still find a proof more quickly.
By using four provers, this effect is diminished, but it can appear when only few
provers are capable of tackling a problem.

Conclusion These results show that while the use of different first-order regu-
lar algebras has little effect on prover performance, adding explicit carrier sets
does impact performance significantly. On the other hand, previous experiments
in formalising concepts such as Galois connections indicates that carrier sets
provide a significant boost in expressivity [1], which can make the trade-off
worthwhile. Unfortunately there does not seem to be an easy way in Isabelle to
connect explicit carrier set and non-explicit carrier set algebras and get the best
of both worlds. These results could be made more conclusive with a larger set
of examples, but this is difficult to achieve while ensuring fairness.

References

1. A. Armstrong and G. Struth. Automated reasoning in higher-order regular algebra
(to appear). In T. G. Griffin and W. Kahl, editors, RAMiCs 2012, volume 7560 of
LNCS. Springer, 2012.

2. J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof in
Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors, FroCos 2011,
LNCS, pages 12-27. Springer, 2011.

3. S. Bohme and T. Nipkow. Sledgehammer: Judgement day. In J. Giesl and R. Hahnle,
editors, Automated Reasoning (IJCAR 2010), volume 6173 of LNCS, pages 107-121.
Springer, 2010.

4. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

5. S. Foster, G. Struth, and T. Weber. Automated engineering of relational and alge-
braic methods in Isabelle/HOL — (invited tutorial). In H. de Swart, editor, RAM:iCS
2011, volume 6663 of LNCS, pages 52—67. Springer, 2011.

6. F. Haftmann and M. Wenzel. Local theory specifications in Isabelle/Isar. In S. Be-
rardi, F. Damiani, and U. de’Liguoro, editors, TYPES 2008, volume 5497 of LNCS,
pages 153-168. Springer, 2008.

7. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366-390, 1994.

8. L. Paulson, T. Nipkow, and M. Wenzel. Isabelle.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html, 2011.

9. V. R. Pratt. Action logic and pure induction. In J. van Eijck, editor, JELIA ’90,
volume 478 of LNCS, pages 97-120. Springer, 1990.

