

Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata

<u>Masaki Waga</u>

Kyoto University 12 May 2021, YR-OWLS Based on the paper at FORMATS'19

Masaki Waga

Kyoto University 12 May 2021, YR-OWLS Based on the paper at FORMATS'19

京都大学

YOTO UNIVERS

Safety Critical CPSs

Self-driving car crash in Arizona: Red light runner hits Waymo van

Copyright 2018 Scripps Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed. Photo by: Air15

BBC	Sign in	News	Sport	Reel	Worklife	Travel	Future	М
NEW	/S							
Home Vide	o World Asia UK	Busine	ess Te	ch S	cience S	tories E	Entertainme	nt 8
Technolog	v							

Tesla Model 3: Autopilot engaged during fatal crash

🕓 17 May 2019

🔗 🔰 🗹 < Share

https://www.abc15.com/news/region-southeast-valley/chandler/waymo-car-involved-in-chandler-arizona-crash

https://www.bbc.com/news/technology-48308852

M. Waga (Kyoto U.)

Monitoring

<u>Specification:</u> No (RPM > 4000) for > 1 sec.

Monitoring

<u>Given</u>: Signal and Pattern Spec. **<u>Goal</u>**: Find all the matching intervals

Given: Signal and Pattern Spec. **Goal:** Find all the matching intervals

Given: Signal and Pattern Spec. **Goal:** Find all the matching intervals

<u>Given</u>: Signal and Pattern Spec. **<u>Goal</u>**: Find all the matching intervals

Timed Pattern Matching [Ulus+, FORMATS'14] **Given:** Signal and Pattern Spec. **Goal:** Find all the matching intervals Pattern Specification: (RPM > 4000) for > 1 sec. **RPM** 4000 .2 sec. 1.2 sec. end 7 6.5 2.9 sec. 6.7 3.2 6 0 5.5 5 4.5 4 3.5 3 2 2.5 3 3.5 4 4.5 5 5.5 6 begin

M. Waga (Kyoto U.)

Qualitative → Quantitative

Pattern Specification: (RPM > 4000) for > 1 sec.

Qualitative → Quantitative

Pattern Specification: (RPM > 4000) for > 1 sec.

Qualitative → Quantitative

Pattern Specification: (RPM > 4000) for > 1 sec.

[Bakhirkin+, FORMATS'17]

Given: Signal and Pattern Spec. Goal: Find all the matching intervals + satisfaction degree

Input

[Bakhirkin+, FORMATS'17]

• Real-valued piecewise-constant signal σ

• e.g., $120^{100}_{100}_{45}_{45}_{45}_{4.0 \ 6.2 \ 8.010.0 \ t}$

- Pattern Specification ${\mathscr W}$
 - **Spec.** to be monitored
 - e.g., The velocity should not keep > 80 for > 1 sec.

<u>Output</u>

- Function assigning the satisfaction degree to each subsignal $\sigma([t,t'))$
 - . e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0, 4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5, 7.8) = 40$, ...

satisfaction degree of \mathscr{W} for $\sigma([2.0,4.0))$

Input

• e.g.,

[Bakhirkin+, FORMATS'17]

• Real-valued piecewise-constant signal σ

120

100

60 45

Pattern Specification ${\mathscr W}$

- <u>Spec.</u> to be monitored
 - e.g., The velocity should not keep > 80 fc

0 2.0 4.0 6.2 8.010.0

<u>Output</u>

- Function assigning the satisfaction degree to each subsignal $\sigma([t,t'))$
 - . e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0, 4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5, 7.8) = 40$, ...

satisfaction degree of \mathscr{W} for $\sigma([2.0,4.0))$

Input

• e.g.,

[Bakhirkin+, FORMATS'17]

• Real-valued piecewise-constant signal σ

120

100

60 45

- <u>Spec.</u> to be monitored
 - e.g., The velocity should not keep > 80 fc

<u>Output</u>

• Function assigning the satisfaction degree to each subsignal $\sigma([t,t'))$

6.2 8.010.0 6.5 7.8

. e.g., $\mathcal{M}(\sigma, \mathcal{W})(2.0, 4.0) = -20$, $\mathcal{M}(\sigma, \mathcal{W})(6.5, 7.8) = 40$, ...

satisfaction degree of \mathscr{W} for $\sigma([2.0,4.0))$

Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata

<u>Masaki Waga</u>

Kyoto University 12 May 2021, YR-OWLS Based on the paper at FORMATS'19

Online Pattern Matching \bigcirc 120 100 60 45 0 t 6.2 8.0 10.0 4.0

Online Quantitative Timed Pattern Matching with Semiring-Valued Weighted Automata

<u>Masaki Waga</u>

Kyoto University 12 May 2021, YR-OWLS Based on the paper at FORMATS'19

Timed symbolic weighted automata (TSWA)

- New formalism for spec.
 - Automata structure is good for online monitoring
- Generality of semiring (same as the usual WFA)

	Boolean	sup-inf	tropical
S	{True/False}	R ∪ {±∞}	R ∪ {+∞}
\oplus	V	sup	inf
\otimes	٨	inf	+

M. Waga (Kyoto U.)

Contribution

- Introduced timed symbolic weighted automata (TSWA)
 - TSWA: timed automata with signal constraints (TSA)

Automata structure

+ semiring-valued weight function

Quantitative semantics

- Gave <u>online</u> algorithm for quantitative timed pattern matching
- Implementation + experiments → Scalable!!

Related Works

Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - <u>TSWA</u>: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Timed Automaton (TA)

Timed Symbolic Automaton (TSA)

Timed Symbolic Weighted Automaton (TSWA)

start
$$\rightarrow (l_0, v < 15) \xrightarrow{c < 5 / c := 0} (l_1, v > 5) \xrightarrow{c < 10} (l_2, \top)$$

$$\kappa_r \left(u, (a_1 a_2 \dots a_m) \right) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r (u, (a_i))$$

$$\kappa_r \left(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a) \right) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r (x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, <, <\}$$

$$\kappa_r (x \succ d, (a)) = a(x) - d \quad \text{where } \succ \in \{\ge, >\}$$

$$\kappa_r (x \prec d, (a)) = d - a(x) \quad \text{where } \prec \in \{\le, <\}$$

M. Waga (Kyoto U.)

Timed Symbolic Weighted Automaton (TSWA)

M. Waga (Kyoto U.)

- $\kappa(\Lambda(l), u)$: weight for the stay at *l* with signal values *u*
- Semiring: set S with accumulating operators \oplus and \otimes
- We can use any complete and idempotent semiring

Semantics: Weighted TTS

- *l*: location
- v: clock valuation
- *t*: absolute time
- *u*: sequence of signal values after the latest discrete transition

 \rightarrow ($l_0, c=0, 0, \varepsilon$)

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\})$$

One path in Weighted TTS

$$\rightarrow (l_0, c=0, 0, \varepsilon)^{2.0} \stackrel{2.0}{\longrightarrow} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 2, \varepsilon)$$

$$5.0 \\ - \rightarrow (l_1, c=5, 7, \{v=7\} \{v=12\})$$

$$\rightarrow (l_0, c=0, 0, \varepsilon)^{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 2, \varepsilon)$$

$$5.0 \qquad 5.0 \qquad e \qquad (l_1, c=5, 7, \{v=7\}\{v=12\}) \xrightarrow{e} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v > 5, \{v=7\}\{v=12\})$$

$$\rightarrow (l_0, c=0, 0, \varepsilon) \xrightarrow{2.0} (l_0, c=2, 2, \{v=7\}) \xrightarrow{e} (l_1, c=0, 2, \varepsilon)$$

$$5.0 \\ - \rightarrow (l_1, c=5, 7, \{v=7\}\{v=12\}) \xrightarrow{\bigotimes e} (l_2, c=5, 7, \varepsilon)$$

$$\kappa(v > 5, \{v=7\}\{v=12\})$$

	Boolean	sup-inf	tropical
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
\oplus	V	sup	inf
\otimes	٨	inf	+

M. Waga (Kyoto U.)

$$\rightarrow (l_0, c=0, 0, \varepsilon) \stackrel{4.0}{\bullet} \stackrel{(l_0, c=4, 4, \{v=7\}\{v=12\})}{\leftarrow} (l_1, c=0, 4, \varepsilon) \stackrel{3.0}{\bullet} \stackrel{(l_1, c=3, 7, \{v=12\})}{\leftarrow} (l_2, c=3, 7, \varepsilon)$$

$$\kappa(v < 15, \{v=7\}\{v=12\}) \otimes \kappa(v > 5, \{v=12\})$$

		Boolean	sup-inf	tropical
	S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
	\oplus	V	sup	inf
• • •	\otimes	٨	inf	+
	21		M. Waga (Kyoto U.)

 \oplus

 $\rightarrow (l_0, c=0, 0, \varepsilon) \stackrel{4.0}{\bullet} \stackrel{(l_0, c=4, 4, \{v=7\}\{v=12\})}{\bullet} \stackrel{e}{\to} (l_1, c=0, 4, \varepsilon) \stackrel{(l_1, c=3, 7, \{v=12\})}{\bullet} \stackrel{(l_2, c=3, 7, \varepsilon)}{\bullet}$ $\kappa(v < 15, \{v=7\}\{v=12\}) \otimes \kappa(v > 5, \{v=12\})$

		Boolean	sup-inf	tropical
\bigoplus	S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$
	\oplus	V	sup	inf
• • •	\bigotimes	٨	inf	+
	21		M. Waga (Kvoto U.)

Timed symbolic weighted automata (TSWA)

 $c<5\ /c:=0$

 $l_0, v < 15$

start –

c < 10

 $l_1, v > 5$

TSA: the automata structure

<u>Weight function</u> (κ): the one-step semantics (weight on each transition)

Semiring operations (\otimes, \oplus) : how to accumulate weights One-step semantics \rightarrow semantics for a path/TSWA

Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - <u>TSWA</u>: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Review: Reachability by zones

Infinitely many reachable states!! → symbolic analysis by **zones**

Review: Reachability by zones

Infinitely many reachable states!! → symbolic analysis by **zones**

M. Waga (NII)

Reachable at **all** the transitions (\land)

$$\rightarrow (l, Z) \rightarrow (l, \{v + T \mid v \in Z, T \in \mathbb{R}_+\}) \rightarrow (l', Z')$$

Reachable at **all** the transitions (\land)

$$\rightarrow (l, Z) \rightarrow (l, \{v + T \mid v \in Z, T \in \mathbb{R}_+\}) \xrightarrow{e} (l', Z')$$
 Reachable for **one** for **one** path (V)

Reachable at **all** the transitions (\land)

$$T$$

$$\rightarrow (l, Z) \rightarrow (l, \{v + T \mid v \in Z, T \in \mathbb{R}_{+}\}) \stackrel{e}{\rightarrow} (l', Z')$$
Reachability
$$V$$

$$\bigvee_{p \in Paths} \left(\bigwedge_{i} (p_{i}, p_{i+1}) \in E \right)$$
Reachable for one path (v)

Reachable at **all** the transitions (^)

$$T$$

$$\rightarrow (l, Z) \xrightarrow{- \rightarrow} (l, \{v + T \mid v \in Z, T \in \mathbb{R}_+\}) \xrightarrow{e} (l', Z')$$
Reachability
$$V$$

$$\bigvee_{p \in Paths} \left(\bigwedge_{i} (p_i, p_{i+1}) \in E \right)$$
Reachable for **one** path (v)

	Boolean	sup-inf	tropical	
S	{True/False}	$\mathbb{R} \cup \{\pm \infty\}$	$\mathbb{R} \cup \{+\infty\}$	
\oplus	V	sup	inf	
\bigotimes	٨	inf	+	
27	_	M. Waga (NII)		

 \rightarrow (*l*₀,*c* = *T* = 0, ε)

 ${\bullet}$

M. Waga (Kyoto U.)

$$\rightarrow (l_0, c = T = 0, \epsilon) \longrightarrow (l_0, 0 < c = T < 3.5, \\ \{v = 7\})$$

$$\rightarrow (l_0, c = T = 0, \epsilon) \qquad (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\kappa(v < 15, \{v = 7\})$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

• Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

$$\rightarrow (l_0, c = T = 0, \epsilon) \qquad (l_0, 0 < c = T < 3.5, \{v = 7\})$$

$$\kappa(v < 15, \{v = 7\})$$

$$(l_1, 0 = c < T < 3.5, \epsilon)$$

$$(l_1, 0 < c < T < 3.5, \{v = 7\})$$

M. Waga (Kyoto U.)

$$\rightarrow (l_{0}, c = T = 0, \varepsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\})$$

$$\kappa(v < 15, \{v = 7\})$$

$$(l_{1}, 0 = c < T < 3.5, \varepsilon)$$

$$(l_{1}, 0 < c < T < 3.5, \{v = 7\})$$

$$\rightarrow (l_{0,c} = T = 0, \varepsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\})$$

$$\{v = 7\}) \qquad (l_{0}, c = T = 3.5, \{v = 7\})$$

$$(l_{1}, 0 = c < T < 3.5, \varepsilon)$$

$$(l_{1}, 0 < c < T < 3.5, \{v = 7\})$$

$$\rightarrow (l_{0,c} = T = 0, \varepsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\})$$

$$\{v = 7\}) \qquad (l_{0}, c = T = 3.5, \{v = 7\})$$

$$(l_{1}, 0 = c < T < 3.5, \varepsilon)$$

$$(l_{1}, 0 < c < T < 3.5, \{v = 7\}) \rightarrow (l_{1}, 0 < c < T = 3.5, \{v = 7\})$$

$$\rightarrow (l_{0}, c = T = 0, \varepsilon) \rightarrow (l_{0}, 0 < c = T < 3.5, \{v = 7\})$$

$$\{v = 7\}) \qquad (l_{0}, c = T = 3.5, \{v = 7\})$$

$$(l_{1}, 0 = c < T < 3.5, \varepsilon) \qquad (l_{1}, c = 0 < T = 3.5, \varepsilon)$$

$$(l_{1}, 0 < c < T < 3.5, \varepsilon) \qquad (l_{1}, 0 < c < T = 3.5, \{v = 7\})$$

$$\xrightarrow{(l_{0,c}=T=0,\varepsilon)} (l_{0,0} < c = T = 3.5, \{v = 7\}) (l_{0,0} < c = T = 7, \{v = 7\} \{v = 12\}) (l_{0,0} < c < T \in (3.5, 7), \varepsilon) (l_{1,0} < c < T \in (3.5, 7), \varepsilon) (l_{1,0} < c < T \in (3.5, 7), \varepsilon) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), \{v = 12\}) (l_{1,0} < c < T \in (3.5, 7), (l_{1,0} < c < T \in (3.5$$

$$(l_{0,c}=T=0,\varepsilon) \leftarrow (l_{0,0}< c=T<3.5, \{v=7\}) \leftarrow (l_{0}, c=T=7, \{v=7\}) \leftarrow (l_{0}, 3.5 < c=T=7, \{v=7\}, \{v=7\}, \{v=12\}) \leftarrow (v<15, \{v=7\}, \{v=12\}) \leftarrow (l_{1}, 0 < c < T \in (3.5, 7), \varepsilon) \leftarrow (l_{1}, c=0 < T=3.5, \varepsilon) \leftarrow (l_{1}, 0 < c < T \in (3.5, 7), \{v=12\}) \leftarrow (l_{1}, 0 < c < T=3.5, \{v=7\}) \leftarrow (l_{1}, 0 < c < T \in (3.5, 7), \{v=12\}) \leftarrow (l_{1}, 0 < c < T=3.5, \{v=7\}) \leftarrow (l_{1}, 0 < c < T \in (3.5, 7), \{v=12\}) \leftarrow (v=7) \{v=12\}) \leftarrow (v=7) \{v=12\}) \leftarrow (v=12) \leftarrow (v=7) \{v=12\}) \leftarrow (v=12) \leftarrow (v=7) \{v=12\}) \leftarrow (v=7) \{v=12\}$$

• Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

M. Waga (Kyoto U.)

• Accepted \Leftrightarrow transit to acc. loc. at $T = |\sigma| (= 7.0)$

M. Waga (Kyoto U.)

Main Theorem: Correctness

<u>Thm.</u>

The shortest distance in the zone graph with weight is same as the shortest distance in the weighted TTS for any complete and idempotent semiring.

Local Conclusion: Zone Construction with Weight

- The construction is basically same as the usual zone construction
- Weights are same as weighted TTS
- The state space is finite thanks to zones and finite horizon of the input signal

Matching Automata for Pattern Matching

[Bakhirkin+, FORMATS'18]

start
$$\rightarrow l_0, v < 15$$
 $c < 5 / c := 0$ $l_1, v > 5$ $c < 10$ l_2, \top
• Add l_{init} to wait for the beginning of the matching
• Add clock variable *T*' for the beginning of the matching

$$\operatorname{start} \longrightarrow \left(\begin{array}{c} & & \\ & &$$
Outline

- Motivation + Introduction
- Technical Part
 - Timed symbolic weighted automata (TSWA)
 - <u>TSWA</u>: TA with signal constraints + weight function
 - Quantitative monitoring/timed pattern matching algorithm
 - Idea: zone construction with weight
- Experiments

Environment of Experiments

- **Semirings**: sup-inf ($\mathbb{R} \cup \{\pm \infty\}$, sup, inf) and tropical ($\mathbb{R} \cup \{+\infty\}$, inf, +)
- Used 3 original benchmarks (automotive):
 - Inspired by ST-Lib [Kapinski+, SAE Technical Paper'16]
- Overshoot: |v_{ref} v| gets large after v_{ref} changed
 Only matches the sub-signals of length < 150 time units
- **Ringing**: v(t) v(t-10) gets positive and negative repeatedly
 Only matches the sub-signals of **length < 80 time units**
- Overshoot (unbounded): |v_{ref} v| gets large after v_{ref} changed
 No such *bounded*
- Amazon EC2 c4.large instance / Ubuntu 18.04 LTS (64 bit)
 - 2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, 3.75 GiB RAM

Execution Time Bounded Unbounded

- Execution time is **linear** for the bounded spec.
 - 1,000 entries / 1 or 2 sec.
- Execution time explodes for the unbounded spec.

Conclusion

- Introduced timed symbolic weighted automata (TSWA)
 - **TSWA**: TA with signal constraints + weight function
- Gave <u>quantitative monitoring/timed pattern matching</u> <u>algorithm</u>
 - **Idea**: zone construction with weight
- Implementation + experiments
 - <u>scalable</u> for bounded specifications

Appendix

Example: "Robust" Semantics

Weight Function: minimum distance from the threshold

$$\kappa_r(u, (a_1 a_2 \dots a_m)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(u, (a_i))$$

$$\kappa_r(\bigwedge_{i=1}^n (x_i \bowtie_i d_i), (a)) = \inf_{i \in \{1, 2, \dots, n\}} \kappa_r(x_i \bowtie_i d_i, (a)) \text{ where } \bowtie_i \in \{>, \ge, <, <\}$$

$$\kappa_r(x \succ d, (a)) = a(x) - d \text{ where } \succ \in \{\ge, >\}$$

$$\kappa_r(x \prec d, (a)) = d - a(x) \text{ where } \prec \in \{\le, <\}$$

Robustness

Semiring: sup-inf semiring

Example: "Robust" Semantics

Weight Function: minimum distance from the threshold

 $<\}$

Robustness

Semiring: sup-inf semiring

		Boolean	sup-inf	tropical
	S	{True/False}	ℝ ∪ {±∞}	ℝ ∪ {+ ∞}
	\oplus	V	sup	inf
	\otimes	۸	inf	+
	41		M Wao	a (Kvoto II

Comparison of the semiring

 $\rightarrow (l_0, c=0, 0, \varepsilon) = - (l_0, c=2, 2, \{v=7\}) \longrightarrow (l_1, c=0, 3, \varepsilon) = (l_1, c=5, 7, \{v=7\} \{v=12\}) \longrightarrow (l_2, c=5, 7, \varepsilon)$ $\kappa(v < 15, \{v=13\}) = 2 \qquad \bigotimes \qquad \kappa(v > 5, \{v=13\}) = 8$

Sup-inf semiring

 $2 \otimes 8 = \inf(2, 8) = 2$

Tropical semiring

 $2 \otimes 8 = 2 + 8 = 10$

	Boolean	sup-inf	tropical
S	{True/False}	ℝ ∪ {± ∞}	ℝ ∪ {+∞ }
\oplus	V	sup	inf
\bigotimes	٨	inf	+

M. Waga (Kyoto U.)

[Ulus+, FORMATS'14]

- Real-time spec. *W*
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high for > 1 sec.

Output

Input

- All the subsignals $\sigma([t,t'))$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., σ([4.0,8.0)), σ([6.0,8.0)), σ([6.0,7.5)), ...

Input

[Ulus+, FORMATS'14]

Output

- All the subsignals $\sigma([t,t'))$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., σ([4.0,8.0)), σ([6.0,8.0)), σ([6.0,7.5)), ...

Input

[Ulus+, FORMATS'14]

- Finite-valued signal σ • System <u>log</u> discretized!! v_{high} • e.g., 0 4.0 8.0 t
- Real-time spec. *W*
 - **Spec.** to be monitored
 - e.g., The velocity should not keep high t

Output

- All the subsignals $\sigma([t,t'))$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., σ([4.0,8.0)), σ([6.0,8.0)), σ([6.0,7.5)), ...

Input

[Ulus+, FORMATS'14]

- All the subsignals $\sigma([t,t'))$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., σ([4.0,8.0)), σ([6.0,8.0)), σ([6.0,7.5)), ...

Input

[Ulus+, FORMATS'14]

- All the subsignals $\sigma([t,t'))$ of the <u>log</u> satisfies the <u>spec.</u>
 - e.g., $\sigma([4.0,8.0))$, $\sigma([6.0,8.0))$, $\sigma([6.0,7.5))$, ...

Input

[Ulus+, FORMATS'14]

זעו. עעמעס (NII)

- Output
- All the subsignals $\sigma([t,t'))$ of the *log* satisfies the **spec**.
 - e.g., $\sigma([4.0, 8.0))$, $\sigma([6.0, 8.0))$, $\sigma([6.0, 7.5))$, ...

We want to know **how robustly** the spec. is satisfied!!