Interaction laws of monads and comonads

Tarmo Uustalu
joint work with Shin-ya Katsumata and Exequiel Rivas

OWLS seminar, 29 July 2020

Effects happen in interaction

- To run,

an effectful program behaving as
 a computation needs to interact with

a environment
that an effect-providing machine behaves as

- E.g.,
- a nondeterministic program needs a machine making choices;
- a stateful program needs a machine coherently responding to fetch and store commands.

This talk

- We propose and study
- functor-functor interaction laws,
- monad-comonad interaction laws.
as mathematical concepts for describing interaction protocols in this scenario.
- Functor-functor interaction laws are for unrestricted notions of computation
- Monad-comonad interaction laws are for notions of computation that are closed under
- "doing nothing" (just returning),
- sequential composition.

Outline

- Functor-functor and monad-comonad interaction laws
- Some examples and degeneracy theorems
- Dual—greatest interacting functor or monad; Sweedler dual—greatest interacting comonad
- Some examples
- Residual interaction laws (to counteract degeneracies, but not only)
- Object-object and monoid-comonoid interaction laws in duoidal categories

Functor-functor interaction laws

- Let \mathcal{C} be a Cartesian category (symmetric monoidal will work too).
- Think $\mathcal{C}=$ Set.
- A functor-functor interaction law is given by two functors $F, G: \mathcal{C} \rightarrow \mathcal{C}$ and a family of maps

$$
\phi_{X, Y}: F X \times G Y \rightarrow X \times Y
$$

natural in X, Y.

- Legend:
X - values, $F X$ - computations
Y - states, GY - environments (incl an initial state)

Examples of functor-functor interaction laws

- $F X=\underbrace{O \times}_{\text {outp }}((\underbrace{\Rightarrow}_{\text {inp }} X) \underbrace{\times}_{\text {ext ch }}(\underbrace{O^{\prime} \times}_{\text {outp }} X))$,
$G Y=\underbrace{O \Rightarrow}_{\text {inp }}((\underbrace{I \times}_{\text {outp }} Y) \underbrace{+}_{\text {int ch }}(\underbrace{O^{\prime} \Rightarrow}_{\text {inp }} Y))$
for some sets O, I, O^{\prime}
- $\phi\left(\left(o,\left(f,\left(o^{\prime}, x\right)\right)\right), g\right)=$
case $g o$ of $\left\{\begin{array}{lll}\operatorname{inl}(i, y) & \mapsto & (f i, y) \\ \operatorname{inr} h & \mapsto & \left(x, h o^{\prime}\right)\end{array}\right.$
- We can vary ϕ, e.g., change o^{\prime} to $o * o^{\prime}$ in the 2nd case for some *: $O \times O^{\prime} \rightarrow O^{\prime}$
- We can also vary G, e.g., take $G^{\prime} Y=\mathbb{N} \Rightarrow(I \times Y)$
- $\left.\phi^{\prime}(o,(f,-)), g\right)=$ let $(i, y)=g 42$ in $(f i, y)$
- (This is like session types, no?)

Monad-comonad interaction laws

- A monad-comonad interaction law is given by a monad (T, η, μ) and a comonad (D, ε, δ) and a family of maps

$$
\psi_{X, Y}: T X \times D Y \rightarrow X \times Y
$$

natural in X, Y such that

- Legend:
X - values, $T X$ - computations
Y - states, $D Y$ - environments (incl an initial state)

Some examples of mnd-cmnd int laws

- $T X=S \Rightarrow X$ (the reader monad),
$D Y=S_{0} \times Y$
for some S_{0}, S and $c: S_{0} \rightarrow S$
- $\psi\left(f,\left(s_{0}, y\right)\right)=\left(f\left(c s_{0}\right), y\right)$
- Legend:
X - values, S - "views" of store,
Y - (control) states, S_{0} - states of store
- $T X=S \Rightarrow(S \times X)$ (the state monad),
$D Y=S_{0} \times\left(S_{0} \Rightarrow Y\right)$
for some $S_{0}, S, c: S_{0} \rightarrow S$ and $d: S_{0} \times S \rightarrow S_{0}$ forming a (very well-behaved) lens
- $\psi\left(f,\left(s_{0}, g\right)\right)=\operatorname{let}\left(s^{\prime}, x\right)=f\left(c s_{0}\right)$ in $\left(x, g\left(d\left(s_{0}, s^{\prime}\right)\right)\right)$
- $T X=\mu Z \cdot X+Z \times Z, D Y=\nu W . Y \times(W+W)$

Monad-comonad interaction laws are monoids

- A functor-functor interaction law map between (F, G, ϕ), $\left(F^{\prime}, G^{\prime}, \phi^{\prime}\right)$ is given by nat. transfs. $f: F \rightarrow F^{\prime}$, $g: G^{\prime} \rightarrow G$ such that

- Functor-functor interaction laws form a category with a composition-based monoidal structure.
- These categories are isomorphic:
- monad-comonad interaction laws;
- monoid objects of the category of functor-functor interaction laws.

Some degeneracy thms for func-func int laws

- Assume \mathcal{C} is extensive ("has well-behaved coproducts").
- If F has a nullary operation, i.e., a family of maps

$$
c_{x}: 1 \rightarrow F X
$$

natural in X (eg, $F=$ Maybe)
or a binary commutative operation, i.e., a family of maps

$$
c_{x}: X \times X \rightarrow F X
$$

natural in X such that

(eg, $\left.F=\mathcal{M}_{\text {fin }}^{+}\right)$and F interacts with G, then $G Y \cong 0$.

A degeneracy thm for mnd-cmnd int laws

- If T has a binary associative operation, ie a family of maps $c_{x}: X \times X \rightarrow T X$ natural in X such that

where

$$
\begin{aligned}
& \ell_{X}=(X \times X) \times X \xrightarrow{c_{X} \times \eta_{X}} T X \times T X \xrightarrow{c_{T X}} T T X \xrightarrow{\mu_{X}} T X \\
& r_{X}=X \times(X \times X) \xrightarrow{\eta_{X} \times c_{X}} T X \times T X \xrightarrow{c_{T X}} T T X \xrightarrow{\mu_{X}} T X
\end{aligned}
$$

(eg, $T=$ List $^{+}$), then any int law ψ of T and D obeys

Dual of a functor

- Assume now \mathcal{C} is Cartesian closed.
- For a functor $G: \mathcal{C} \rightarrow \mathcal{C}$, its dual is the functor $G^{\circ}: \mathcal{C} \rightarrow \mathcal{C}$ is

$$
G^{\circ} X=\int_{Y} G Y \Rightarrow(X \times Y)
$$

(if this end exists).

- $(-)^{\circ}$ is a functor $[\mathcal{C}, \mathcal{C}]^{\mathrm{op}} \rightarrow[\mathcal{C}, \mathcal{C}]$
(if all functors $\mathcal{C} \rightarrow \mathcal{C}$ are dualizable;
if not, restrict to some full subcategory of $[\mathcal{C}, \mathcal{C}]$ closed under dualization).

Dual of a functor ctd

- The dual G° is the "greatest" functor interacting with G.
- These categories are isomorphic:
- functor-functor interaction laws;
- pairs of functors F, G with nat. transfs. $F \rightarrow G^{\circ}$;
- pairs of functors F, G with nat. transfs. $G \rightarrow F^{\circ}$.

$$
\frac{F X \times G Y \rightarrow X \times Y}{\overline{F X \rightarrow \underbrace{\int_{Y} G Y \Rightarrow(X \times Y)}_{G^{\circ} X}}}
$$

Some examples of dual

- Let $G Y=1$. Then $G^{\circ} X \cong 0$.
- Let $G Y=\Sigma a: A \cdot G^{\prime} a Y$, then $G^{\circ} X \cong \Pi a: A \cdot\left(G^{\prime} a\right)^{\circ} X$.
- In particular, for $G Y=0$, we have $G^{\circ} X \cong 1$ and, for $G Y=G_{0} Y+G_{1} Y$, we have $G^{\circ} X \cong G_{0}^{\circ} X \times G_{1}^{\circ} X$.
- Let $G Y=A \Rightarrow Y$. We have $G^{\circ} X \cong A \times X$.
- But: Let $G Y=$ Пa: $A \cdot G^{\prime}$ a Y. We only have $\Sigma a: A .\left(G^{\prime} a\right)^{\circ} X \rightarrow G^{\circ} X$.
- $\mathrm{Id}^{\circ} \cong \mathrm{Id}$.
- But we only have $G_{0}^{\circ} \cdot G_{1}^{\circ} \rightarrow\left(G_{0} \cdot G_{1}\right)^{\circ}$.
- For any G with a nullary or a binary commutative operation, we have $G^{\circ} X \cong 0$.

Dual of a comonad / Sweedler dual a monad

- The dual D° of a comonad D is a monad.
- This is because $(-)^{\circ}:[\mathcal{C}, \mathcal{C}]^{\mathrm{op}} \rightarrow[\mathcal{C}, \mathcal{C}]$ is lax monoidal, so send monoids to monoids.
- But $(-)^{\circ}$ is not oplax monoidal, does not send comonoids to comonoids.
- So the dual T° of a monad T is generally not a comonad.
- However we can talk about the Sweedler dual T^{\bullet} of T.
- Informally, it is defined as the greatest functor D that is smaller than the functor T° and carries a comonad structure $\eta^{\bullet}, \mu^{\bullet}$ agreeing with $\eta^{\circ}, \mu^{\circ}$.

Dual of a comonad / Sweedler dual of a monad ctd

- Formally, the Sweedler dual of the monad T is the comonad ($\left.T^{\bullet}, \eta^{\bullet}, \mu^{\bullet}\right)$ together with a natural transformation $\iota: T^{\bullet} \rightarrow T^{\circ}$ such that

and such that, for any comonad (D, ε, δ) together with a natural transformation ψ satisfying the same conditions, there is a unique comonad map $h: D \rightarrow T^{\bullet}$ satisfying

Some examples of dual and Sweedler dual

- Let $T X=$ List $^{+} X \cong \Sigma n: \mathbb{N} .([0 . . n] \Rightarrow X)$ (the nonempty list monad).
- We have $T^{\circ} Y \cong \Pi n: \mathbb{N}$. $([0 . . n] \times Y)$ but $T^{\bullet} Y \cong Y \times(Y+Y)$.
- Let $T X=S \Rightarrow(S \times X) \cong(S \Rightarrow S) \times(S \Rightarrow X)$ (the state monad).
- We have $T^{\circ} Y=(S \Rightarrow S) \Rightarrow(S \times Y)$ but $T^{\bullet} Y=S \times(S \Rightarrow Y)$.

Residual interaction laws

- Given a monad $\left(R, \eta^{R}, \mu^{R}\right)$ on \mathcal{C}.
- Eg, $R=$ Maybe, \mathcal{M}^{+}or \mathcal{M}.
- A residual functor-functor interaction law is given by two functors $F, G: \mathcal{C} \rightarrow \mathcal{C}$ and a family of maps

$$
\phi_{X, Y}: F X \times G Y \rightarrow R(X \times Y)
$$

natural in X, Y.

Residual interaction laws ctd

- A residual monad-comonad interaction law is given by a monad (T, η, μ), a comonad (D, ε, δ) and a family of maps

$$
\psi_{X, Y}: T X \times D Y \rightarrow R(X \times Y)
$$

natural in X, Y such that

- R-residual functor-functor interaction laws form a monoidal category with R-residual monad-comonad interaction laws as monoids.

Interaction laws and Chu spaces

- The Day convolution of F, G is

$$
(F \star G) Z=\int^{X, Y} \mathcal{C}(X \times Y, Z) \bullet(F X \times G Y)
$$

(if this coend exists).

- These categories are isomorphic:
- functor-functor interaction laws;
- Chu spaces on ($[\mathcal{C}, \mathcal{C}]$, Id,$\star$) with vertex Id, ie, triples of two functors F, G with a nat transf $F \star G \rightarrow$ Id.
(if \star is defined for all functors).

$$
\frac{F X \times G Y \rightarrow X \times Y}{\frac{\overline{\mathcal{C}(X \times Y, Z) \rightarrow \mathcal{C}(F X \times G Y, Z)}}{\underbrace{X, Y}_{(F \star G) Z} \mathcal{C}(X \times Y, Z) \bullet(F X \times G Y)} \rightarrow Z}
$$

Interaction laws and Chu spaces ctd

- We do not immediately get another chacterization of the category of monad-comonad interaction laws.
- That's because the standard monoidal structure on the above category of Chu spaces is constructed from the Day convolution.
- But we want a monoidal structure from composition.

Interaction laws and Hasegawa's glueing

- Given a duoidal category $(\mathcal{F}, I, \cdot, J, \star)$ closed wrt. (J, \star).
- Given also a monoid $\left(R, \eta^{R}, \mu^{R}\right)$ in (\mathcal{F}, I, \cdot).
- Define $(-)^{\circ}: \mathcal{F}^{\mathrm{op}} \rightarrow \mathcal{F}$ by $G^{\circ}=G \rightarrow R$.
- (-$)^{\circ}$ is lax monoidal.
- By an argument by Hasegawa, the comma category $\mathcal{F} \downarrow(-)^{\circ}$ has a (I, \cdot) based monoidal structure.
- Now take $\mathcal{F}=[\mathcal{C}, \mathcal{C}]$ with (I,.) its composition monoidal and $(J, \star,-\star)$ its Day convolution SMC structure (if \star and $-\star$ are defined for all functors).
- Then these categories are isomorphic:
- R-residual monad-comonad interaction laws;
- monoids in the monoidal category $[\mathcal{C}, \mathcal{C}] \downarrow(-)^{\circ}$.

Relation to effect handling (jww Niels Voorneveld)

- An R-residual mnd-cmnd int law of T, D explains how some of the effects of a computation are dealt with by the environment, some are left alone or transformed.
- Given
- an int law $\psi_{Y, Z}: T(Y \Rightarrow Z) \rightarrow D Y \Rightarrow R Z$,
- a coalgebra $(B, \beta: B \rightarrow D B)$ of D
(a coeffect producer) and
- an algebra $(C, \gamma: R C \rightarrow C)$ of R
(a residual effect handler)
we get an algebra
$\left(B \Rightarrow C,(\beta \Rightarrow \gamma) \circ \psi_{B, C}: T(B \Rightarrow C) \rightarrow B \Rightarrow C\right)$
of T (an effect handler).
- In fact, mnd-mnd interaction laws are in a bijection with carrier-exponentiating functors from
$(\operatorname{Coalg}(D))^{\mathrm{op}} \times \mathbf{A l g}(R) \rightarrow \mathbf{A l g}(T)$.

Takeaway

- A single framework for talking about computations, environments and interaction
- Lots of mathematical structure around, a lot can be stated very generally
- What are some recipes for calculating the Sweedler dual?
- Sweedler dual in the residual case
- Relationship of interaction laws to session types

