Verification of Uninterpreted and Partially Interpreted Programs

Umang Mathur

Joint work with Madhusudan Parthasarathy and Mahesh Viswanathan

University of Illinois at Urbana Champaign

1. Introduction

2. Uninterpreted Programs

Syntax and Semantics

Verification

3. Coherence

Verification of Coherent Programs

Checking Coherence

- 4. *k*-Coherence
- 5. Verification Modulo Theories

Introduction

Program verification is undecidable, in general.

However, decidable classes do exist:

- Programs without loops or recursion (straight-line)
- Programs working over finite domains (Boolean programs)
- Models like Petri Nets not natural for modeling programs

Today : Decidable verification for programs with loops/recursion while working over infinite domains.

Uninterpreted Programs

- Programs over an uninterpreted vocabulary
 - Constant, function and relation symbols are *completely uninterpreted*.
- Work over arbitrary data models
 - Data models provide interpretations to symbols in the program.
- Satisfy ϕ if ϕ holds in *all* data models

Fix a finite set V of program variables. Fix a first order vocabulary $\Sigma = (C, F, R)$.

Program Syntax

 $\begin{array}{l} \langle \mathsf{stmt} \rangle ::= \mathsf{skip} \mid x := c \mid x := y \mid x := f(\mathsf{z}) \\ & \mid \mathsf{if}(\langle \mathsf{cond} \rangle) \mathsf{then} \langle \mathsf{stmt} \rangle \mathsf{else} \langle \mathsf{stmt} \rangle \mid \mathsf{while}(\langle \mathsf{cond} \rangle) \langle \mathsf{stmt} \rangle \\ & \mid \mathsf{assume}(\langle \mathsf{cond} \rangle) \mid \langle \mathsf{stmt} \rangle; \langle \mathsf{stmt} \rangle \end{array}$

$$\begin{array}{l} \langle \mathsf{cond} \rangle ::= \mathsf{true} \ | \ x = y \ | \ x = c \ | \ c = d \ | \ R(\mathbf{z}) \\ \\ | \ \langle \mathsf{cond} \rangle \lor \langle \mathsf{cond} \rangle \ | \ \neg \langle \mathsf{cond} \rangle \end{array}$$

where, $x, y, z \in V$, $c \in C$, $f \in F$ and $R \in R$.

Example

```
assume (T \neq F);
b := F;
while (x \neq y) {
   d := key(x);
  if (d = k) then {
     b := T;
     r := x;
   x := n(x);
```

- Searches for an element with key k in a list starting at x and ending at y.
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Example

```
assume (T \neq F);
b := F;
while (x \neq y) {
   d := key(x);
  if (d = k) then {
     b := T;
     r := x;
   x := n(x);
```

- Searches for an element with key k in a list starting at x and ending at y.
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Example

```
assume (T \neq F);
b := F;
while (x \neq y) {
   d := key(x);
  if (d = k) then {
     b := T;
     r := x;
   x := n(x);
```

- Searches for an element with key k in a list starting at x and ending at y.
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Uninterpreted Programs: Executions

Executions are finite sequences over the following alphabet

$$\Pi = \begin{cases} \text{"}x := y", \text{"}x := f(\mathbf{z})", \\ \text{"assume}(x = y)", \text{"assume}(x \neq y)", \\ \text{"assume}(R(\mathbf{z}))", \text{"assume}(\neg R(\mathbf{z}))" \end{cases} \quad \begin{vmatrix} x, y, \mathbf{z} \in V, \\ f \in \mathcal{F}, R \in \mathcal{R} \end{vmatrix}$$

Uninterpreted Programs: Executions

Executions are finite sequences over the following alphabet

$$\Pi = \begin{cases} \text{"}x := y", \text{"}x := f(\mathbf{z})", \\ \text{"assume}(x = y)", \text{"assume}(x \neq y)", \\ \text{"assume}(R(\mathbf{z}))", \text{"assume}(\neg R(\mathbf{z}))" \end{cases} \begin{vmatrix} x, y, \mathbf{z} \in V, \\ f \in \mathcal{F}, R \in \mathcal{R} \end{vmatrix}$$

Set of executions is a regular language defined inductively:

$$Exec(skip) = \{\epsilon\}$$

$$Exec(x := y) = \{"x := y"\}$$

$$Exec(x := f(z)) = \{"x := f(z)"\}$$

$$Exec(assume(c)) = \{"assume(c)"\} \cdot Exec(s_1)$$

$$\cup \{"assume(\neg c)"\} \cdot Exec(s_2)$$

$$Exec(s_1; s_2) = Exec(s_1) \cdot Exec(s_2)$$

$$Exec(while c \{s\}) = (\{"assume(c)"\} \cdot Exec(s))^* \cdot \{"assume(\neg c)"\}$$

Semantics given by a first order structure $\mathtt{M}=(\mathcal{U}_\mathtt{M},[\![]\!]_\mathtt{M})$ on $\Sigma.$

Definition (Values of Variables)

$$\begin{array}{rcl} \operatorname{val}_{\mathbb{M}}(\epsilon,x) &= & [\![\widehat{x}]\!]_{\mathbb{M}} & \text{for every } x \in V \\ \operatorname{val}_{\mathbb{M}}(\rho \cdot ``x := y",z) &= & \operatorname{val}_{\mathbb{M}}(\rho,y) & \text{if } z \text{ is } x \\ \operatorname{val}_{\mathbb{M}}(\rho \cdot ``x := f(z_1,\ldots)",y) &= & [\![f]\!]_{\mathbb{M}}(\operatorname{val}_{\mathbb{M}}(\rho,z_1),\ldots) & \text{if } y \text{ is } x \\ \operatorname{val}_{\mathbb{M}}(\rho \cdot a,x) &= & \operatorname{val}_{\mathbb{M}}(\rho,x) & \text{otherwise} \end{array}$$

Semantics given by a first order structure $M = (\mathcal{U}_M, \llbracket]_M)$ on Σ .

Definition (Feasibility of Execution)

An execution ρ is feasible in M if for every prefix $\sigma' = \sigma \cdot$ "assume(c)" of ρ , we have

- 1. $\operatorname{val}_{M}(\sigma, x) = \operatorname{val}_{M}(\sigma, y)$ if c is (x = y),
- 2. $\operatorname{val}_{\mathtt{M}}(\sigma, x) \neq \operatorname{val}_{\mathtt{M}}(\sigma, y)$ if c is $(x \neq y)$,
- 3. $(\operatorname{val}_{\mathbb{M}}(\sigma, z_1), \dots, \operatorname{val}_{\mathbb{M}}(\sigma, z_r)) \in \llbracket R \rrbracket_{\mathbb{M}}$ if c is $R(z_1, \dots, z_r)$, and
- 4. $(\operatorname{val}_{\mathbb{M}}(\sigma, z_1), \dots, \operatorname{val}_{\mathbb{M}}(\sigma, z_r)) \notin \llbracket R \rrbracket_{\mathbb{M}} \text{ if } c \text{ is } \neg R(z_1, \dots, z_r).$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

 $\varphi ::= \texttt{true} ~|~ x = y ~|~ R(\textbf{z}) ~|~ \varphi \lor \varphi ~|~ \neg \varphi$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

 $\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$

 ${\it P}\models\varphi$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi$ iff for every execution $\rho \in \mathsf{Exec}(P)$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi$ iff for every execution $\rho \in \text{Exec}(P)$ and for every FO structure M such that ρ is feasible in M,

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi$ iff for every execution $\rho \in \text{Exec}(P)$ and for every FO structure M such that ρ is feasible in M, M satisfies $\varphi[\text{val}_{M}(\rho, V)/V]$.

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program and let φ be an assertion in the following grammar.

$$arphi ::= extsf{true} \mid x = y \mid R(extsf{z}) \mid arphi \lor arphi \mid \neg arphi$$

 $P \models \varphi$ iff for every execution $\rho \in \text{Exec}(P)$ and for every FO structure M such that ρ is feasible in M, M satisfies $\varphi[\text{val}_{M}(\rho, V)/V]$.

Theorem [1, 3]

Verification of uninterpreted programs is undecidable.

Coherence

How do we verify a single execution?

— Execution ρ — assume($T \neq F$) b := Fassume($x \neq y$) d := key(x)assume(d = k)b := Tr := xx := n(x)assume(x = y)

 $\varphi \equiv \texttt{b=T} \Rightarrow \texttt{key(r)=k}$

How do we verify a single execution?

Execution ρ	_	$ VC(\rho, \varphi)$ $$
$assume(\mathtt{T}\neq\mathtt{F})$		$\mathtt{T}\neq \mathtt{F}$
b := F	\wedge	$\mathtt{b}_1 = \mathtt{F}$
$assume(\mathtt{x} \neq \mathtt{y})$	\wedge	$\mathtt{x}_0\neq \mathtt{y}_0$
d := key(x)	\wedge	$\mathtt{d}_1 = \mathtt{key}(\mathtt{x}_0)$
assume(d = k)	\wedge	$\mathtt{d}_1 = \mathtt{k}_0$
b := T	\wedge	$b_2 = T$
r := x	\wedge	$\mathtt{r}_1=\mathtt{x}_0$
x := n(x)	\wedge	$\mathtt{x}_1 = \mathtt{n}(\mathtt{x}_0)$
$assume(\mathtt{x}=\mathtt{y})$	\wedge	$x_1 = y_0$
$arphi \equiv {\tt b=T} \Rightarrow {\tt key(r)=k}$	\Rightarrow	$(\mathtt{b}_2 = \mathtt{T} \Rightarrow \mathtt{key}(\mathtt{r}_1) = \mathtt{k}_0)$

How do we verify a single execution?

Execution ρ	_	$ VC(\rho, \varphi)$ $$
$assume(\mathtt{T}\neq\mathtt{F})$		$\mathtt{T}\neq \mathtt{F}$
$\mathtt{b}:=\mathtt{F}$	∧	$b_1 = F$
$assume(\mathtt{x} \neq \mathtt{y})$	\wedge	$\mathtt{x}_0\neq \mathtt{y}_0$
d := key(x)	\wedge	$\mathtt{d}_1 = \mathtt{key}(\mathtt{x}_0)$
$assume(\mathtt{d}=\mathtt{k})$	\wedge	$\mathtt{d}_1 = \mathtt{k}_0$
b := T	\wedge	$b_2 = T$
$\mathtt{r}:=\mathtt{x}$	\wedge	$r_1 = x_0$
x := n(x)	\wedge	$\mathtt{x}_1 = \mathtt{n}(\mathtt{x}_0)$
$assume(\mathtt{x}=\mathtt{y})$	^	$x_1 = y_0$
$\varphi \equiv \texttt{b=T} \Rightarrow \texttt{key(r)=k}$	\Rightarrow	$(\mathtt{b}_2 = \mathtt{T} \Rightarrow \mathtt{key}(\mathtt{r}_1) = \mathtt{k}_0)$

 φ holds in every ${\tt M}$ in which ρ is feasible

iff

 $VC(\rho, \varphi)$ is valid in T_{EUF}

• Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm
 - Polynomial time when φ is a single atom.

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm
 - Polynomial time when φ is a single atom.
- But programs have infinitely many executions.

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm
 - Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm
 - Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?
- Coherence to the rescue!

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in T_{EUF} .
 - Congruence closure algorithm
 - Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?
- Coherence to the rescue!
 - Allows congruence closure to be performed in a *streaming* fashion.

Congruence on Ground Terms

Let $\Sigma = (\mathcal{C}, \mathcal{F})$ be a FO-vocabulary. Let $t_1, t'_1, t_2, \ldots, t_k, t'_k$ be ground terms on Σ and let $f \in \mathcal{F}$ be a *k*-ary function. Then,

$$\frac{t_1 = t'_1 \qquad t_2 = t'_2 \qquad \dots \qquad t_k = t'_k}{f(t_1, t_2, \dots, t_k) = f(t'_1, t'_2, \dots, t'_k)}$$

Congruence on Ground Terms

Let $\Sigma = (\mathcal{C}, \mathcal{F})$ be a FO-vocabulary. Let $t_1, t'_1, t_2, \ldots, t_k, t'_k$ be ground terms on Σ and let $f \in \mathcal{F}$ be a *k*-ary function. Then,

$$\frac{t_1 = t'_1 \quad t_2 = t'_2 \quad \dots \quad t_k = t'_k}{f(t_1, t_2, \dots, t_k) = f(t'_1, t'_2, \dots, t'_k)}$$

Interpretation

In every FO structure M,

if
$$[t_1]_{\mathbb{M}} = [t'_1]_{\mathbb{M}}, [t_2]_{\mathbb{M}} = [t'_2]_{\mathbb{M}}, \dots, \text{ and } [t_k]_{\mathbb{M}} = [t'_k]_{\mathbb{M}}$$

then $[f(t_1, t_2, \dots, t_k)]_{\mathbb{M}} = [f(t'_1, t'_2, \dots, t'_k)]_{\mathbb{M}}$

Congruence Closure on Executions

$$\operatorname{assume}(x = y) \longrightarrow x_1 := f(x) \longrightarrow y_1 := f(y)$$

Congruence Closure on Executions

Congruence Closure on Executions

 φ : $x_1 = y_1$

 φ holds after the execution

 φ : x = y

 φ : x = y

Unbounded memory required to infer equality relationships in a streaming setting.

Again, unbounded memory required to infer equality relationships in a streaming setting.

Algebraic View of Executions

Terms Computed

$$\begin{array}{rcl} \operatorname{Term}(\epsilon,x) &=& \widehat{x} & \text{for every } x \in V \\ \operatorname{Term}(\rho \cdot ``x := y",z) &=& \operatorname{Term}(\rho,y) & \text{if } z \text{ is } x \\ \operatorname{Term}(\rho \cdot ``x := f(z_1,\ldots)",y) &=& f(\operatorname{Term}(\rho,z_1),\ldots) & \text{if } y \text{ is } x \\ \operatorname{Term}(\rho \cdot a,x) &=& \operatorname{Term}(\rho,x) & \text{otherwise} \end{array}$$

Terms Computed

$$\begin{array}{rcl} \operatorname{Term}(\epsilon, x) &=& \widehat{x} & \text{for every } x \in V \\ \operatorname{Term}(\rho \cdot ``x := y", z) &=& \operatorname{Term}(\rho, y) & \text{if } z \text{ is } x \\ \operatorname{Term}(\rho \cdot ``x := f(z_1, \ldots)", y) &=& f(\operatorname{Term}(\rho, z_1), \ldots) & \text{if } y \text{ is } x \\ \operatorname{Term}(\rho \cdot a, x) &=& \operatorname{Term}(\rho, x) & \text{otherwise} \end{array}$$

Equalities

$$\alpha(\varepsilon) = \varnothing$$

$$\alpha(\rho \cdot \text{``assume}(x = y)\text{''}) = \alpha(\rho) \cup \{(\mathsf{Term}(\rho, x), \mathsf{Term}(\rho, y))\}$$

$$\alpha(\rho \cdot a) = \alpha(\rho) \quad \text{otherwise}$$

Terms Computed

$$\begin{array}{rcl} \operatorname{Term}(\epsilon, x) &=& \widehat{x} & \text{for every } x \in V \\ \operatorname{Term}(\rho \cdot ``x := y", z) &=& \operatorname{Term}(\rho, y) & \text{if } z \text{ is } x \\ \operatorname{Term}(\rho \cdot ``x := f(z_1, \ldots)", y) &=& f(\operatorname{Term}(\rho, z_1), \ldots) & \text{if } y \text{ is } x \\ \operatorname{Term}(\rho \cdot a, x) &=& \operatorname{Term}(\rho, x) & \text{otherwise} \end{array}$$

Equalities

$$\alpha(\varepsilon) = \varnothing$$

$$\alpha(\rho \cdot \text{``assume}(x = y)\text{''}) = \alpha(\rho) \cup \{(\mathsf{Term}(\rho, x), \mathsf{Term}(\rho, y))\}$$

$$\alpha(\rho \cdot a) = \alpha(\rho) \quad \text{otherwise}$$

Disequalities

 $\beta(\varepsilon) = \emptyset$ $\beta(\rho \cdot \text{``assume}(x \neq y)\text{''}) = \beta(\rho) \cup \{(\text{Term}(\rho, x), \text{Term}(\rho, y))\}$ $\beta(\rho \cdot a) = \beta(\rho) \text{ otherwise}$

An execution is coherent if it is memoizing and has early assumes.

An execution is coherent if it is memoizing and has early assumes.

Definition (Memoizing Execution)

An execution ρ is memoizing if for every prefix of ρ of the form

$$\sigma' = \sigma \cdot "x := f(y_1, \ldots, y_r)"$$

we have the following.

If there is a term $t \in \text{ComputedTerms}(\sigma)$ such that $t \cong_{\alpha(\sigma)} \text{Term}(\sigma', x)$, then there is a variable $z \in V$ such that $\text{Term}(\sigma, z) \cong_{\alpha(\sigma)} \text{Term}(\sigma', x)$. Here,

- ComputedTerms $(\sigma) = {\text{Term}(\pi, \nu) \mid \nu \in V, \pi \text{ is a prefix of } \sigma},$
- $\cong_{\alpha(\rho)}$ is the smallest congruence induced by $\alpha(\rho)$.

Coherence: Memoizing

assume $(T \neq F)$; b := F;while $(x \neq y)$ { d := key(x);if (d = k) then { b := T;r := x;x := n(x);

- All executions of this program are *vacuously* memoizing.
- No term is recomputed.

Example exeuction: Non Memoizing

NOT a memoizing execution

Example exeuction: Memoizing

 \checkmark memoizing execution

Definition (Early Assumes)

An execution ρ is said to have early assumes if for every prefix of ρ of the form

$$\sigma' = \sigma \cdot \text{``assume}(x = y)$$
''

we have the following.

If there is a term $s \in \text{ComputedTerms}(\sigma)$ such that s is a $\alpha(\sigma)$ -superterm of either $\text{Term}(\sigma, x)$ or $\text{Term}(\sigma, y)$, then there is a variable $z \in V$ such that $\text{Term}(\sigma, z) \cong_{\alpha(\sigma)} s$.

Here, t_1 is a $\alpha(\sigma)$ -superterm of t_2 if there are terms t'_1 and t'_2 such that t'_1 is a superterm of t'_2 , $t_1 \cong_{\alpha(\sigma)} t'_1$ and $t_2 \cong_{\alpha(\sigma)} t'_2$.

Example exeuction: Violation of Early Assumes

Coherence

assume $(T \neq F)$; b := F;while $(x \neq y)$ { d := key(x);if (d = k) then { b := T;r := x;x := n(x);

- In every execution, equality assume assume(x = y) occurs on terms without any superterms.
- All executions are coherent!

An uninterpreted program $P \in \langle \text{stmt} \rangle$ is coherent if all executions of P are coherent.

An uninterpreted program $P \in \langle \mathsf{stmt} \rangle$ is coherent if all executions of P are coherent.

Decidability of Verification of Coherent Programs [1]

Verification of uninterpreted coherent programs is PSPACE-complete.

Proof.

• Regular language $L^{\varphi}_{\rm coherent}$ such that for any coherent execution $\rho,$

$$\rho \in L^{\varphi}_{\mathsf{coherent}}$$
 iff $\rho \models \varphi$

• The question $Exec(P) \subseteq L^{\varphi}_{coherent}$ is decidable.

- $P \models \varphi$ iff $P^{\neg \varphi} \models false$, where $P^{\neg \varphi} = P$; assume $(\neg \varphi)$
- Regular language $L_{\text{coh-feas}}$ such that for any coherent execution ρ ,

 $\rho \in \mathit{L}_{\mathsf{coh-feas}}$ iff ρ is feasible in some FO-structure M

• $P \models \varphi$ iff $\operatorname{Exec}(P^{\neg \varphi}) \cap L_{\operatorname{coh-feas}} = \varnothing$

Streaming Congruence Closure

- $\mathcal{A}_{\text{coh-feas}} = (Q \uplus \{q_{\text{reject}}\}, q_0, \delta) \text{ with } L(\mathcal{A}_{\text{coh-feas}}) = L_{\text{coh-feas}}.$
- All states in Q are accepting.
- q_{reject} is absorbing reject state, represents an infeasible execution.
- States in Q are triplets:

Transitions δ update these relationships in a streaming fashion.

Transitions δ update these relationships in a streaming fashion.

 $x_1 = f(x)$

Transitions δ update these relationships in a streaming fashion.

$$x_1 = f(x) \longrightarrow y_1 = f(y)$$

Transitions δ update these relationships in a streaming fashion.

 $x_1 = f(x) \longrightarrow y_1 = f(y) \longrightarrow \operatorname{assume}(x = y)$

Congruence Closure

Transitions δ update these relationships in a streaming fashion.

$$x_1 = f(x) \longrightarrow y_1 = f(y) \longrightarrow \operatorname{assume}(x = y) \longrightarrow \operatorname{assume}(x \neq y)$$

Congruence Closure

Correctness of $\mathcal{A}_{coh-feas}$

Let $\rho \in \Pi^*$ be a coherent execution. Let $q = \delta^*(q_0, \rho)$. Then,

• If ho is not feasible in any M, then $q = q_{\text{reject}}$

• Otherwise,
$$q = (\sim, d, P)$$
 with

 $- \operatorname{\mathsf{Term}}(\rho, x) \cong_{\alpha(\rho)} \operatorname{\mathsf{Term}}(\rho, y) \text{ iff } [x]_{\sim} = [y]_{\sim}.$

 $- ([x]_{\sim}, [y]_{\sim}) \in d \text{ iff there is } (t_x, t_y) \in \beta(\rho) \text{ such that}$ $t_x \cong_{\alpha(\rho)} \operatorname{Term}(\rho, x) \text{ and } t_y \cong_{\alpha(\rho)} \operatorname{Term}(\rho, y).$

 $- f(\operatorname{Term}(\rho, x)) \cong_{\alpha(\rho)} \operatorname{Term}(\rho, y) \text{ iff } F(f)([x]_{\sim}) = [y]_{\sim}$

Decidability of Checking Coherence [1]

There is a DFA $\mathcal{A}_{\mathsf{check-coh}}$ such that for an execution $\rho \in \Pi^*$, we have

 $\rho \in L(\mathcal{A}_{\mathsf{check-coh}}) \text{ iff } \rho \text{ is coherent}$

Decidability of Checking Coherence [1]

There is a DFA $\mathcal{A}_{\mathsf{check-coh}}$ such that for an execution $\rho \in \Pi^*$, we have

 $\rho \in L(\mathcal{A}_{\mathsf{check-coh}})$ iff ρ is coherent

- $\mathcal{A}_{check-coh}$ ignores all letters of the form "assume $(x \neq y)$ ".
- States of $A_{check-coh}$ maintain (\sim, F, B):
 - ullet ~ and F are as in $\mathcal{A}_{\mathsf{coh-feas}}$
 - *B* keeps track of the following information: for a given equiv. class *c* and for a function *f*, if *f*(*c*) has been computed before.

```
assume (x \neq z);
y := n(x);
assume (y \neq z);
y := n(y);
while (y \neq z) {
   x := n(x);
   y := n(y);
\varphi \equiv z = n(n(x))
```

assume $(x \neq z)$; y := n(x); ------ $\rightarrow n(\hat{x})$ assume $(y \neq z)$; $y := n(y); \xrightarrow{n(n(\widehat{x}))}$ while $(y \neq z)$ { x := n(x);y := n(y); $\varphi \equiv z = n(n(x))$

- Re-computation without storing prior equivalent terms.
- Insufficient number of program variables to store intermediate terms.

```
assume (x \neq z);
y := n(x);
 assume (y \neq z);
{g:= y; }
y := n(y);
while (y \neq z) {
    x := n(x);
  (g:= y; )
    y := n(y);
 \varphi \equiv z = n(n(x))
```

- Can be made coherent.
- By adding additional ghost variables and assignments to them.
- Write-only and do not change semantics.

Definition (k-Coherent Executions and Programs)

Let $k \in \mathbb{N}$. Let V be a set of variables and let $G = \{g_1, \ldots, g_k\}$ be additional ghost variables $(V \cap G = \emptyset)$. Let $\Pi_G = \Pi \cup \{ "g := x" \mid g \in G, x \in V \}$. An execution over V is k-coherent if there is an execution ρ' over Π_G such that ρ' is coherent and $\rho'|_{\Pi} = \rho$.

A programs is k-coherent if all its executions are.

Definition (k-Coherent Executions and Programs)

Let $k \in \mathbb{N}$. Let V be a set of variables and let $G = \{g_1, \ldots, g_k\}$ be additional ghost variables $(V \cap G = \emptyset)$. Let $\Pi_G = \Pi \cup \{ "g := x" \mid g \in G, x \in V \}$. An execution over V is k-coherent if there is an execution ρ' over Π_G such that ρ' is coherent and $\rho'|_{\Pi} = \rho$.

A programs is k-coherent if all its executions are.

Theorem [1]

Checking *k*-coherence is decidable in PSPACE. Further, verification of *k*-coherent programs is decidable in PSPACE.

Verification Modulo Theories

```
assume (T \neq F);
      if (a \leq b) then {
         if (a \leq c) then
             \min := a;
         else min := c;
      else {
         if (b < c) then
             min := b;
         else min := c;
      \varphi \equiv \min \leq \mathtt{a} \wedge \min \leq \mathtt{b}
           \wedge \min < \mathsf{c}
Find the minimum of a, b and c
```

```
assume (T \neq F);
     if (a \leq b) then {
        if (a \leq c) then
            \min := a;
        else min := c;
     else {
        if (b < c) then
            \min := b;
                             Does not
        else min := c;
                             hold in
                                all M.
     \varphi \equiv \min \leq \mathtt{a} \wedge \min \leq \mathtt{b}
           \wedge \min < c
Find the minimum of a, b and c
```

```
assume (T \neq F);
     if (a < b) then {
        if (a \leq c) then
            \min := a;
        else min := c;
     else {
        if (b < c) then
            \min := b;
                             Does not
         else min := c;
                             hold in
                               all M.
     \varphi \equiv \min \leq \mathtt{a} \wedge \min \leq \mathtt{b}
           \wedge \min < c
Find the minimum of a, b and c
```



```
assume (T \neq F);
     if (a < b) then {
         if (a \leq c) then
             \min := a;
         else min := c;
     else {
         if (b < c) then
             \min := b;
         else min := c;
     \varphi \equiv \min \leq \mathtt{a} \wedge \min \leq \mathtt{b}
           \wedge \min < c
Find the minimum of a, b and c
```

This program satisfies φ if \leq is interpreted as a total order:

- $\forall x \cdot x \leq x$
- $\forall x, y, z \cdot x \leq y \wedge y \leq z \implies x \leq z$
- $\forall x, y \cdot x \leq y \land y \leq x \implies x = y$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program over vocabulary Σ . Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\textbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program over vocabulary Σ . Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P\models\varphi \text{ modulo }A$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program over vocabulary Σ . Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\textbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi \text{ modulo } A \text{ iff for every execution } \rho \in \mathsf{Exec}(P)$

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program over vocabulary Σ . Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\mathbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi$ modulo A iff for every execution $\rho \in \text{Exec}(P)$ and for every FO structure M such that $M \models A$ and ρ is feasible in M,

Let $P \in \langle \text{stmt} \rangle$ be an uninterpreted program over vocabulary Σ . Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$\varphi ::= \texttt{true} \mid x = y \mid R(\textbf{z}) \mid \varphi \lor \varphi \mid \neg \varphi$$

 $P \models \varphi$ modulo A iff for every execution $\rho \in \text{Exec}(P)$ and for every FO structure M such that $M \models A$ and ρ is feasible in M, M satisfies $\varphi[val_M(\rho, V)/V]$.

$$A = \{ \forall x, y \cdot f(x, y) = f(y, x) \}$$

$$A = \{ \forall x, y \cdot f(x, y) = f(y, x) \}$$

$$x_1 := f(x, y) \longrightarrow y_1 := f(y, x)$$

$$x_1 := f(x, y) \rightarrow y_1 := f(y, x') \longrightarrow z := g(x_1) \longrightarrow z' := g(y_1) \rightarrow \operatorname{assume}(x = x')$$

$$x_1 := f(x, y) \rightarrow y_1 := f(y, x') \longrightarrow z := g(x_1) \longrightarrow z' := g(y_1) \rightarrow \text{assume}(x = x')$$

Implied equality
 $z = z'$

Definition (Memoizing modulo axioms)

Let A be a set of axioms and let $\rho \in \Pi^*$ be an execution. Then, ρ is said to be memoizing modulo A if the following holds.

Let $\sigma' = \sigma \cdot "x := f(z)$ " be a prefix of ρ . If there is a term

 $t' \in \text{ComputedTerms}(\sigma)$ such that $t' \cong_{A \cup \kappa(\sigma)} \text{Term}(\sigma', x)$, then there must exist some variable $y \in V$ such that $\text{Term}(\sigma, y) \cong_{A \cup \kappa(\sigma)} t$.

Definition (Memoizing modulo axioms)

Let A be a set of axioms and let $\rho \in \Pi^*$ be an execution. Then, ρ is said to be memoizing modulo A if the following holds. Let $\sigma' = \sigma \cdot "x := f(\mathbf{z})"$ be a prefix of ρ . If there is a term $t' \in \text{ComputedTerms}(\sigma)$ such that $t' \cong_{A \cup \kappa(\sigma)} \text{Term}(\sigma', x)$, then there

must exist some variable $y \in V$ such that $\operatorname{Term}(\sigma, y) \cong_{A \cup \kappa(\sigma)} t$.

Here,

 $\kappa(\varepsilon) = \varnothing$ $\kappa(\rho \cdot \text{``assume}(x = y)\text{''}) = \kappa(\rho) \cup \{(\text{Term}(\rho, x) = \text{Term}(\rho, y))\}$ $\kappa(\rho \cdot \text{``assume}(x \neq y)\text{''}) = \kappa(\rho) \cup \{(\text{Term}(\rho, x) \neq \text{Term}(\rho, y))\}$ $\kappa(\rho \cdot \text{``}R(z_1, \ldots)\text{''}) = \kappa(\rho) \cup \{R(\text{Term}(\rho, z_1), \ldots)\}$ $\kappa(\rho \cdot a) = \kappa(\rho) \text{ otherwise}$

Definition (Early assumes modulo axioms)

Let A be a set of axioms and let $\rho \in \Pi^*$ be an execution. Then, ρ is said to have early assumes modulo A if the following holds.

Let $\sigma' = \sigma \cdot$ "assume(c)" be a prefix of ρ , where c is any of $x = y, x \neq y$, $R(\mathbf{z})$, or $\neg R(\mathbf{z})$. Let $t \in \text{ComputedTerms}(\sigma)$ be a term computed in σ such that t has been *dropped*, i.e., for every $x \in V$, we have $\text{Term}(\sigma, x) \ncong_{A \cup \kappa(\sigma)} t$. For any term $t' \in \text{ComputedTerms}(\sigma)$, if $t \cong_{A \cup \kappa(\sigma')} t'$, then $t \cong_{A \cup \kappa(\sigma)} t'$.

Relational axioms	Decidability
EPR	×
Reflexivity	1
Irreflexivity	1
Symmetry	1
Transitivity	1
Partial Order	1
Total Order	1

Functional axioms	Decidability
Associativity	×
Commutativity	1
Idempotence	1

Combinations	Decidability
All combinations	
of decidable	1
axioms	

Thank You!

Homomorphism h_{comm}^f uses auxiliary variable $v^* \notin V$:

$$h_{\text{comm}}^{f}(a) = \begin{cases} a \cdot "v^* := f(y, x)" \cdot "assume(z = v^*)" & \text{if } a = "z := f(x, y)" \\ a & \text{otherwise} \end{cases}$$

Coherence Modulo Commutativity

An execution ρ is coherent modulo A iff $h_{\text{comm}}^f(a)$ is coherent modulo \emptyset .

Feasibility Modulo Commutativity

An execution ρ is feasible modulo A iff $h_{\text{comm}}^f(a)$ is feasible modulo \emptyset .

References I

- U. Mathur, P. Madhusudan, and M. Viswanathan.
 Decidable verification of uninterpreted programs.
 Proc. ACM Program. Lang., 3(POPL), Jan. 2019.
- U. Mathur, P. Madhusudan, and M. Viswanathan.
 What's decidable about program verification modulo axioms?
 In A. Biere and D. Parker, editors, *Tools and Algorithms for the Construction and Analysis of Systems*, pages 158–177, Cham, 2020.
 Springer International Publishing.
- M. Müller-Olm, O. Rüthing, and H. Seidl.
 Checking herbrand equalities and beyond.
 In R. Cousot, editor, Verification, Model Checking, and Abstract Interpretation, pages 79–96, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.