Verification of Uninterpreted and Partially Interpreted Programs

Umang Mathur

Joint work with
Madhusudan Parthasarathy and Mahesh Viswanathan
University of Illinois at Urbana Champaign

Table of contents

1. Introduction
2. Uninterpreted Programs

Syntax and Semantics
Verification
3. Coherence

Verification of Coherent Programs
Checking Coherence
4. k-Coherence
5. Verification Modulo Theories

Introduction

Program Verification

Program verification is undecidable, in general.
However, decidable classes do exist:

- Programs without loops or recursion (straight-line)
- Programs working over finite domains (Boolean programs)
- Models like Petri Nets - not natural for modeling programs

Today: Decidable verification for programs with loops/recursion while working over infinite domains.

Uninterpreted Programs

What are Uninterpreted Programs?

- Programs over an uninterpreted vocabulary
- Constant, function and relation symbols are completely uninterpreted.
- Work over arbitrary data models
- Data models provide interpretations to symbols in the program.
- Satisfy ϕ if ϕ holds in all data models

Uninterpreted Programs: Syntax

Fix a finite set V of program variables.
Fix a first order vocabulary $\Sigma=(\mathcal{C}, \mathcal{F}, \mathcal{R})$.

Program Syntax

$$
\begin{aligned}
\langle\text { stmt }\rangle::= & \text { skip }|x:=c| x:=y \mid x:=f(\mathbf{z}) \\
& \mid \text { if }(\langle\text { cond }\rangle) \text { then }\langle\text { stmt }\rangle \text { else }\langle\text { stmt }\rangle \mid \text { while }(\langle\text { cond }\rangle)\langle\text { stmt }\rangle \\
& \mid \text { assume }(\langle\text { cond }\rangle) \mid\langle\text { stmt }\rangle ;\langle\text { stmt }\rangle \\
\langle\text { cond }\rangle::= & \text { true }|x=y| x=c|c=d| R(\mathbf{z}) \\
& \mid\langle\text { cond }\rangle \vee\langle\text { cond }\rangle \mid \neg\langle\text { cond }\rangle
\end{aligned}
$$

where, $x, y, z \in V, c \in \mathcal{C}, f \in \mathcal{F}$ and $R \in \mathcal{R}$.

Example

```
assume (T F F F);
    b := F;
    while (x\not= y) {
        d:= key(x);
        if (d = k) then {
        b}:=\textrm{T}
        r := x;
        }
        x := n(x);
    }
```

- Searches for an element with key k in a list starting at x and ending at y .
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Example

```
assume (T F F ; ;
    b:= F;
    while (x\not= y) {
        d:= key(x);
        if (d = k) then {
            b := T;
        r:= x;
        }
        x := n(x);
    }
```

- Searches for an element with key k in a list starting at x and ending at y .
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Example

```
assume (T F F F);
    b := F;
    while (x\not= y) {
        d:= key(x);
        if (d = k) then {
        b}:=\textrm{T}
        r := x;
        }
        x := n(x);
    }
```

- Searches for an element with key k in a list starting at x and ending at y .
- T and F are uninterpreted constants
- key and n are uninterpreted functions

Uninterpreted Programs: Executions

Executions are finite sequences over the following alphabet

$$
\Pi=\left\{\begin{array}{l|l}
" x:=y ", ~ " x:=f(\mathbf{z}) ", & \\
\text { "assume }(x=y) ", \text { "assume }(x \neq y) ", & x, y, \mathbf{z} \in V, \\
\text { "assume }(R(\mathbf{z})) ", \text { "assume }(\neg R(\mathbf{z})) " & f \in \mathcal{F}, R \in \mathcal{R}
\end{array}\right\}
$$

Uninterpreted Programs: Executions

Executions are finite sequences over the following alphabet

$$
\Pi=\left\{\begin{array}{l|l}
\text { " } x:=y ", " x:=f(\mathbf{z}) ", & \\
\text { "assume }(x=y) ", \text { "assume }(x \neq y) ", & x, y, \mathbf{z} \in V, \\
\text { "assume }(R(\mathbf{z})) ", \text { "assume }(\neg R(\mathbf{z})) " & f \in \mathcal{F}, R \in \mathcal{R}
\end{array}\right\}
$$

Set of executions is a regular language defined inductively:

Exec(skip)
$\operatorname{Exec}(x:=y)$
$\operatorname{Exec}(x:=f(\mathbf{z}))$
Exec(assume(c))
$\operatorname{Exec}\left(\right.$ if c then s_{1} else $\left.s_{2}\right)=\{$ "assume $(c) "\} \cdot \operatorname{Exec}\left(s_{1}\right)$
$\operatorname{Exec}\left(\right.$ if c then s_{1} else $\left.s_{2}\right)=\cup\{$ "assume $(\neg c) "\} \cdot \operatorname{Exec}\left(s_{2}\right)$
$\operatorname{Exec}\left(s_{1} ; s_{2}\right) \quad=\operatorname{Exec}\left(s_{1}\right) \cdot \operatorname{Exec}\left(s_{2}\right)$
$\operatorname{Exec}($ while $c\{s\})=(\{\text { "assume }(c) "\} \cdot \operatorname{Exec}(s))^{*} \cdot\{$ "assume $(\neg c) "\}$

Uninterpreted Programs: Semantics

Semantics given by a first order structure $\mathrm{M}=\left(\mathcal{U}_{\mathrm{M}}, \llbracket \rrbracket_{\mathrm{M}}\right)$ on Σ.

Definition (Values of Variables)

$$
\begin{aligned}
\operatorname{val}_{M}(\epsilon, x) & =\llbracket \hat{x} \rrbracket_{M} & & \text { for every } x \in V \\
\operatorname{val}_{M}\left(\rho \cdot{ }^{\prime \prime x}:=y ", z\right) & =\operatorname{val}_{M}(\rho, y) & & \text { if } z \text { is } x \\
\operatorname{val}_{M}\left(\rho \cdot " x:=f\left(z_{1}, \ldots\right) ", y\right) & =\llbracket f \rrbracket_{M}\left(\left.v a\right|_{M}\left(\rho, z_{1}\right), \ldots\right) & & \text { if } y \text { is } x \\
\operatorname{val}_{M}(\rho \cdot a, x) & =\operatorname{val}_{M}(\rho, x) & & \text { otherwise }
\end{aligned}
$$

Uninterpreted Programs: Semantics

Semantics given by a first order structure $\mathrm{M}=\left(\mathcal{U}_{\mathrm{M}}, \llbracket \rrbracket_{\mathrm{M}}\right)$ on Σ.

Definition (Feasibility of Execution)

An execution ρ is feasible in M if for every prefix $\sigma^{\prime}=\sigma$. "assume(c)" of ρ, we have

1. $\operatorname{val}_{M}(\sigma, x)=\operatorname{val}_{M}(\sigma, y)$ if c is $(x=y)$,
2. $\operatorname{val}_{\mathrm{M}}(\sigma, x) \neq \operatorname{val}_{\mathrm{M}}(\sigma, y)$ if c is $(x \neq y)$,
3. $\left(\operatorname{val}_{M}\left(\sigma, z_{1}\right), \ldots, \operatorname{val}_{M}\left(\sigma, z_{r}\right)\right) \in \llbracket R \rrbracket_{M}$ if c is $R\left(z_{1}, \ldots, z_{r}\right)$, and
4. $\left(\operatorname{val}_{M}\left(\sigma, z_{1}\right), \ldots, \operatorname{val}_{M}\left(\sigma, z_{r}\right)\right) \notin \llbracket R \rrbracket_{M}$ if c is $\neg R\left(z_{1}, \ldots, z_{r}\right)$.

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ iff for every execution $\rho \in \operatorname{Exec}(P)$

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ iff for every execution $\rho \in \operatorname{Exec}(P)$ and for every FO structure M such that ρ is feasible in M,

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ iff for every execution $\rho \in \operatorname{Exec}(P)$ and for every FO structure M such that ρ is feasible in M, M satisfies $\varphi\left[\operatorname{val}_{\mathrm{M}}(\rho, V) / V\right]$.

Uninterpreted Programs: Verification

Definition (Verification of Uninterpreted Programs)

Let $P \in\langle$ stmt \rangle be an uninterpreted program and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ iff for every execution $\rho \in \operatorname{Exec}(P)$ and for every FO structure M such that ρ is feasible in M, M satisfies $\varphi\left[\operatorname{val}_{\mathrm{M}}(\rho, V) / V\right]$.

Theorem [1, 3]

Verification of uninterpreted programs is undecidable.

Coherence

How do we verify a single execution?

Execution $\rho \longrightarrow$

$$
\begin{gathered}
\text { assume }(\mathrm{T} \neq \mathrm{F}) \\
\mathrm{b}:=\mathrm{F} \\
\text { assume }(\mathrm{x} \neq \mathrm{y}) \\
\mathrm{d}:=\mathrm{key}(\mathrm{x}) \\
\text { assume }(\mathrm{d}=\mathrm{k}) \\
\mathrm{b}:=\mathrm{T} \\
\mathrm{r}:=\mathrm{x} \\
\mathrm{x}:=\mathrm{n}(\mathrm{x}) \\
\text { assume }(\mathrm{x}=\mathrm{y}) \\
\varphi \equiv \mathrm{b}=\mathrm{T} \Rightarrow \mathrm{key}(\mathrm{r})=\mathrm{k}
\end{gathered}
$$

How do we verify a single execution?

Execution $\rho \longrightarrow$

$$
\begin{gathered}
\text { assume }(T \neq F) \\
b:=F \\
\text { assume }(x \neq y) \\
d:=k e y(x) \\
\text { assume }(d=k) \\
b:=T \\
r:=x \\
x:=n(x) \\
\text { assume }(x=y)
\end{gathered}
$$

$$
\varphi \equiv \mathrm{b}=\mathrm{T} \Rightarrow \operatorname{key}(\mathrm{r})=\mathrm{k}
$$

$$
\begin{array}{cc}
& V C(\rho, \varphi)- \\
& \mathrm{T} \neq \mathrm{F} \\
\wedge & \mathrm{~b}_{1}=\mathrm{F} \\
\wedge & \mathrm{x}_{0} \neq \mathrm{y}_{0} \\
\Lambda & \mathrm{~d}_{1}=\mathrm{key}\left(\mathrm{x}_{0}\right) \\
\Lambda & \mathrm{d}_{1}=\mathrm{k}_{0} \\
\Lambda & \mathrm{~b}_{2}=\mathrm{T} \\
\Lambda & \mathrm{r}_{1}=\mathrm{x}_{0} \\
\Lambda & \mathrm{x}_{1}=\mathrm{n}\left(\mathrm{x}_{0}\right) \\
\Lambda & \mathrm{x}_{1}=\mathrm{y}_{0} \\
& \\
\Rightarrow & \left(\mathrm{~b}_{2}=\mathrm{T} \Rightarrow \operatorname{key}\left(\mathrm{r}_{1}\right)=\mathrm{k}_{0}\right)
\end{array}
$$

How do we verify a single execution?

Execution $\rho \longrightarrow$

assume $(T \neq F)$ $\mathrm{b}:=\mathrm{F}$
assume $(x \neq y)$
$\mathrm{d}:=\operatorname{key}(\mathrm{x})$
assume $(d=k)$
$\mathrm{b}:=\mathrm{T}$
$r:=x$
$\mathrm{x}:=\mathrm{n}(\mathrm{x})$
assume $(x=y)$
$\varphi \equiv \mathrm{b}=\mathrm{T} \Rightarrow \operatorname{key}(\mathrm{r})=\mathrm{k}$

$$
\begin{array}{cc}
& V C(\rho, \varphi)- \\
& \mathrm{T} \neq \mathrm{F} \\
\wedge & \mathrm{~b}_{1}=\mathrm{F} \\
\wedge & \mathrm{x}_{0} \neq \mathrm{y}_{0} \\
\Lambda & \mathrm{~d}_{1}=\mathrm{key}\left(\mathrm{x}_{0}\right) \\
\Lambda & \mathrm{d}_{1}=\mathrm{k}_{0} \\
\Lambda & \mathrm{~b}_{2}=\mathrm{T} \\
\Lambda & \mathrm{r}_{1}=\mathrm{x}_{0} \\
\Lambda & \mathrm{x}_{1}=\mathrm{n}\left(\mathrm{x}_{0}\right) \\
\Lambda & \mathrm{x}_{1}=\mathrm{y}_{0} \\
& \\
\Rightarrow & \left(\mathrm{~b}_{2}=\mathrm{T} \Rightarrow \operatorname{key}\left(\mathrm{r}_{1}\right)=\mathrm{k}_{0}\right)
\end{array}
$$

φ holds in every M in which ρ is feasible

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm
- Polynomial time when φ is a single atom.

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm
- Polynomial time when φ is a single atom.
- But programs have infinitely many executions.

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm
- Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm
- Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?
- Coherence to the rescue!

How do we verify a single execution?

- Verification of a single execution can be reduced to checking validity of a quantifier-free formula in $T_{\text {EUF }}$.
- Congruence closure algorithm
- Polynomial time when φ is a single atom.
- But programs have infinitely many executions.
- How do we recover decidability?
- Coherence to the rescue!
- Allows congruence closure to be performed in a streaming fashion.

Congruence Closure

Congruence on Ground Terms

Let $\Sigma=(\mathcal{C}, \mathcal{F})$ be a FO-vocabulary. Let $t_{1}, t_{1}^{\prime}, t_{2}, \ldots, t_{k}, t_{k}^{\prime}$ be ground terms on Σ and let $f \in \mathcal{F}$ be a k-ary function. Then,

$$
\frac{t_{1}=t_{1}^{\prime} \quad t_{2}=t_{2}^{\prime} \quad \ldots \quad t_{k}=t_{k}^{\prime}}{f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right)}
$$

Congruence Closure

Congruence on Ground Terms

Let $\Sigma=(\mathcal{C}, \mathcal{F})$ be a FO-vocabulary. Let $t_{1}, t_{1}^{\prime}, t_{2}, \ldots, t_{k}, t_{k}^{\prime}$ be ground terms on Σ and let $f \in \mathcal{F}$ be a k-ary function. Then,

$$
\frac{t_{1}=t_{1}^{\prime} \quad t_{2}=t_{2}^{\prime} \quad \ldots \quad t_{k}=t_{k}^{\prime}}{f\left(t_{1}, t_{2}, \ldots, t_{k}\right)=f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right)}
$$

Interpretation

In every FO structure M,

$$
\begin{array}{rc}
\text { if } & \llbracket t_{1} \rrbracket_{\mathrm{M}}=\llbracket t_{1}^{\prime} \rrbracket_{\mathrm{M}}, \llbracket t_{2} \rrbracket_{\mathrm{M}}=\llbracket t_{2}^{\prime} \rrbracket_{\mathrm{M}}, \ldots, \text { and } \llbracket t_{k} \rrbracket_{\mathrm{M}}=\llbracket t_{k}^{\prime} \rrbracket_{\mathrm{M}} \\
\text { then } & \llbracket f\left(t_{1}, t_{2}, \ldots, t_{k}\right) \rrbracket_{\mathrm{M}}=\llbracket f\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{k}^{\prime}\right) \rrbracket_{\mathrm{M}}
\end{array}
$$

Congruence Closure on Executions

$$
\operatorname{assume}(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

[^0]

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Initially

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Initially

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Initially

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Initially

Congruence Closure on Executions

$$
\text { assume }(x=y) \longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f(y)
$$

Initially

φ holds
after the execution

Congruence Closure on Executions

$$
\text { assume }(x=y) \rightarrow x:=f(x)-----\rightarrow x:=f(x) \longrightarrow y:=f(y)------>y:=f(y)
$$

Congruence Closure on Executions

$$
\text { assume }(x=y) \rightarrow x:=f(x)-----\rightarrow x:=f(x) \longrightarrow y:=f(y)------>y:=f(y)
$$

Congruence Closure on Executions

Congruence Closure on Executions

Congruence Closure on Executions

Congruence Closure on Executions

$$
\text { assume }(x=y) \rightarrow x:=f(x)-----\rightarrow x:=f(x) \longrightarrow y:=f(y)------>y:=f(y)
$$

φ holds
after the execution

Congruence Closure on Executions

$$
\text { assume }(x=y) \rightarrow x:=f(x)-----\rightarrow x:=f(x) \longrightarrow y:=f(y)----->y:=f(y)
$$

φ holds
after the execution

Unbounded memory required to infer equality relationships in a streaming setting.

Congruence Closure on Executions

n times
$x_{1}:=f(x) \rightarrow y_{1}:=f(y)---\rightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow$ assume $(x=y)$

Congruence Closure on Executions

n times
$x_{1}:=f(x) \rightarrow y_{1}:=f(y)----\longrightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow$ assume $(x=y)$

Congruence Closure on Executions

n times

$$
x_{1}:=f(x) \rightarrow y_{1}:=f(y)---\rightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow \text { assume }(x=y)
$$

Congruence Closure on Executions

n times

$$
x_{1}:=f(x) \rightarrow y_{1}:=f(y)---\rightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow \text { assume }(x=y)
$$

Congruence Closure on Executions

n times

$$
x_{1}:=f(x) \rightarrow y_{1}:=f(y)----x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow \text { assume }(x=y)
$$

φ holds
after the execution

Congruence Closure on Executions

n times
$x_{1}:=f(x) \rightarrow y_{1}:=f(y)---x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow$ assume $(x=y)$

φ holds
after the execution
Again, unbounded memory required to infer equality relationships in a streaming setting.

Algebraic View of Executions

Terms Computed

$$
\begin{aligned}
\operatorname{Term}(\epsilon, x) & =\widehat{x} & & \text { for every } x \in V \\
\operatorname{Term}\left(\rho \cdot " x:=y^{\prime \prime}, z\right) & =\operatorname{Term}(\rho, y) & & \text { if } z \text { is } x \\
\left.\operatorname{Term}\left(\rho \cdot " x:=f\left(z_{1}, \ldots\right)\right)^{\prime \prime}, y\right) & =f\left(\operatorname{Term}\left(\rho, z_{1}\right), \ldots\right) & & \text { if } y \text { is } x \\
\operatorname{Term}(\rho \cdot a, x) & =\operatorname{Term}(\rho, x) & & \text { otherwise }
\end{aligned}
$$

Algebraic View of Executions

Terms Computed

$$
\begin{aligned}
\operatorname{Term}(\epsilon, x) & =\widehat{x} & & \text { for every } x \in V \\
\operatorname{Term}(\rho \cdot " x:=y ", z) & =\operatorname{Term}(\rho, y) & & \text { if } z \text { is } x \\
\left.\operatorname{Term}\left(\rho \cdot " x:=f\left(z_{1}, \ldots\right)\right)^{\prime \prime}, y\right) & =f\left(\operatorname{Term}\left(\rho, z_{1}\right), \ldots\right) & & \text { if } y \text { is } x \\
\operatorname{Term}(\rho \cdot a, x) & =\operatorname{Term}(\rho, x) & & \text { otherwise }
\end{aligned}
$$

Equalities

$$
\begin{aligned}
\alpha(\varepsilon) & =\varnothing \\
\alpha(\rho \cdot \text { "assume }(x=y) ") & =\alpha(\rho) \cup\{(\operatorname{Term}(\rho, x), \operatorname{Term}(\rho, y))\} \\
\alpha(\rho \cdot a) & =\alpha(\rho) \quad \text { otherwise }
\end{aligned}
$$

Algebraic View of Executions

Terms Computed

$$
\begin{aligned}
\operatorname{Term}(\epsilon, x) & =\widehat{x} & & \text { for every } x \in V \\
\operatorname{Term}(\rho \cdot " x:=y ", z) & =\operatorname{Term}(\rho, y) & & \text { if } z \text { is } x \\
\left.\operatorname{Term}\left(\rho \cdot " x:=f\left(z_{1}, \ldots\right)\right)^{\prime \prime}, y\right) & =f\left(\operatorname{Term}\left(\rho, z_{1}\right), \ldots\right) & & \text { if } y \text { is } x \\
\operatorname{Term}(\rho \cdot a, x) & =\operatorname{Term}(\rho, x) & & \text { otherwise }
\end{aligned}
$$

Equalities

$$
\begin{aligned}
\alpha(\varepsilon) & =\varnothing \\
\alpha(\rho \cdot \text { "assume }(x=y) ") & =\alpha(\rho) \cup\{(\operatorname{Term}(\rho, x), \operatorname{Term}(\rho, y))\} \\
\alpha(\rho \cdot a) & =\alpha(\rho) \quad \text { otherwise }
\end{aligned}
$$

Disequalities

$$
\begin{aligned}
\beta(\varepsilon) & =\varnothing \\
\beta(\rho \cdot \text { "assume }(x \neq y) ") & =\beta(\rho) \cup\{(\operatorname{Term}(\rho, x), \operatorname{Term}(\rho, y))\} \\
\beta(\rho \cdot a) & =\beta(\rho) \quad \text { otherwise }
\end{aligned}
$$

Coherence

An execution is coherent if it is memoizing and has early assumes.

Coherence

An execution is coherent if it is memoizing and has early assumes.

Coherence: Memoizing

Definition (Memoizing Execution)

An execution ρ is memoizing if for every prefix of ρ of the form

$$
\sigma^{\prime}=\sigma \cdot " x:=f\left(y_{1}, \ldots, y_{r}\right) "
$$

we have the following.
If there is a term $t \in \operatorname{Computed} \operatorname{Terms}(\sigma)$ such that $t \cong{ }_{\alpha(\sigma)} \operatorname{Term}\left(\sigma^{\prime}, x\right)$, then there is a variable $z \in V$ such that $\operatorname{Term}(\sigma, z) \cong{ }_{\alpha(\sigma)} \operatorname{Term}\left(\sigma^{\prime}, x\right)$. Here,

- ComputedTerms $(\sigma)=\{\operatorname{Term}(\pi, v) \mid v \in V, \pi$ is a prefix of $\sigma\}$,
- $\cong_{\alpha(\rho)}$ is the smallest congruence induced by $\alpha(\rho)$.

Coherence: Memoizing

```
assume (T 
    b := F;
    while (x\not= y) {
            d:= key(x);
            if (d = k) then {
            b := T;
            r := x;
            }
            x := n(x);
    }
```

- All executions of this program are vacuously memoizing.
- No term is recomputed.

Example exeuction: Non Memoizing

$$
\text { assume } \left.(x=y) \rightarrow x:=f(x)-----\rightarrow x:=f(x) \longrightarrow \begin{array}{c}
n \text { times }
\end{array} \begin{array}{c}
n \text { times } \\
\\
\text { - }
\end{array}\right)
$$

Re-computation of terms deemed equivalent by $\widehat{x}=\widehat{y}$.
The older term $f(\widehat{x})$ has been dropped.

NOT a memoizing execution

Example exeuction: Memoizing

n times

$$
\text { assume }(x=y) \longrightarrow x:=f(x) \longrightarrow y:=f(y)-------x:=f(x) \longrightarrow y:=f(y)
$$

Re-computation happens in tandem (at least one older equivalent terms is available in some variable at the time of re-computation)

Coherence: Early Assumes

Definition (Early Assumes)

An execution ρ is said to have early assumes if for every prefix of ρ of the form

$$
\sigma^{\prime}=\sigma \cdot \text { "assume }(x=y) "
$$

we have the following.
If there is a term $s \in \operatorname{Computed} \operatorname{Terms}(\sigma)$ such that s is a
$\alpha(\sigma)$-superterm of either $\operatorname{Term}(\sigma, x)$ or $\operatorname{Term}(\sigma, y)$, then there is a variable $z \in V$ such that $\operatorname{Term}(\sigma, z) \cong_{\alpha(\sigma)} s$.

Here, t_{1} is a $\alpha(\sigma)$-superterm of t_{2} if there are terms t_{1}^{\prime} and t_{2}^{\prime} such that t_{1}^{\prime} is a superterm of $t_{2}^{\prime}, t_{1} \cong_{\alpha(\sigma)} t_{1}^{\prime}$ and $t_{2} \cong_{\alpha(\sigma)} t_{2}^{\prime}$.

Example exeuction: Violation of Early Assumes

n times

$$
x_{1}:=f(x) \rightarrow y_{1}:=f(y)---\rightarrow x_{1}:=f(x) \longrightarrow y_{1}:=f\left(y_{1}\right) \longrightarrow \text { assume }(x=y)
$$

Does NOT satisfy early assumes

Example exeuction: Early Assumes

n times
assume $(x=y) \longrightarrow x:=f(x) \longrightarrow y:=f(y)-------\rightarrow x:=f(x) \longrightarrow y:=f(y)$
$\mathbb{\checkmark}$ Early Assume

Coherence

```
assume (T f F F);
```

 b:= F;

$\mathrm{d}:=\operatorname{key}(\mathrm{x})$;

b:= T;
r:= x;
\}
$\mathrm{x}:=\mathrm{n}(\mathrm{x})$;
\}

- In every execution, equality assume assume $(x=y)$ occurs on terms without any superterms.
- All executions are coherent!

Coherent Programs and their Verification

An uninterpreted program $P \in\langle$ stmt \rangle is coherent if all executions of P are coherent.

Coherent Programs and their Verification

An uninterpreted program $P \in\langle$ stmt \rangle is coherent if all executions of P are coherent.

Decidability of Verification of Coherent Programs [1]

Verification of uninterpreted coherent programs is PSPACE-complete.

Proof.

- Regular language $L_{\text {coherent }}^{\varphi}$ such that for any coherent execution ρ,

$$
\rho \in L_{\text {coherent }}^{\varphi} \text { iff } \rho \models \varphi
$$

- The question $\operatorname{Exec}(P) \subseteq L_{\text {coherent }}^{\varphi}$ is decidable.

Regularity of Feasible Coherent Executions

- $P \models \varphi$ iff $P^{\neg \varphi} \models$ false, where $P^{\neg \varphi}=P$; assume $(\neg \varphi)$
- Regular language $L_{\text {coh-feas }}$ such that for any coherent execution ρ,

$$
\rho \in L_{\text {coh-feas }} \text { iff } \rho \text { is feasible in some FO-structure M }
$$

- $P \models \varphi$ iff $\operatorname{Exec}\left(P^{\neg \varphi}\right) \cap L_{\text {coh-feas }}=\varnothing$

Streaming Congruence Closure

- $\mathcal{A}_{\text {coh-feas }}=\left(Q \uplus\left\{q_{\text {reject }}\right\}, q_{0}, \delta\right)$ with $L\left(\mathcal{A}_{\text {coh-feas }}\right)=L_{\text {coh-feas }}$.
- All states in Q are accepting.
- $q_{\text {reject }}$ is absorbing reject state, represents an infeasible execution.
- States in Q are triplets:

Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

$$
x_{1}=f(x)
$$

Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

$$
x_{1}=f(x) \longrightarrow y_{1}=f(y)
$$

Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

$$
x_{1}=f(x) \longrightarrow y_{1}=f(y) \longrightarrow \text { assume }(x=y)
$$

Congruence Closure

Streaming Congruence Closure

Transitions δ update these relationships in a streaming fashion.

$$
x_{1}=f(x) \longrightarrow y_{1}=f(y) \longrightarrow \text { assume }(x=y) \longrightarrow \text { assume }(x \neq y)
$$

Congruence Closure

Streaming Congruence Closure

Correctness of $\mathcal{A}_{\text {coh-feas }}$

Let $\rho \in \Pi^{*}$ be a coherent execution. Let $q=\delta^{*}\left(q_{0}, \rho\right)$. Then,

- If ρ is not feasible in any M, then $q=q_{\text {reject }}$
- Otherwise, $q=(\sim, d, P)$ with
$-\operatorname{Term}(\rho, x) \cong_{\alpha(\rho)} \operatorname{Term}(\rho, y)$ iff $[x]_{\sim}=[y]_{\sim}$.
$-\left([x]_{\sim},[y]_{\sim}\right) \in d$ iff there is $\left(t_{\mathrm{x}}, t_{y}\right) \in \beta(\rho)$ such that $t_{x} \cong{ }_{\alpha(\rho)} \operatorname{Term}(\rho, x)$ and $t_{y} \cong_{\alpha(\rho)} \operatorname{Term}(\rho, y)$.
$-f(\operatorname{Term}(\rho, x)) \cong_{\alpha(\rho)} \operatorname{Term}(\rho, y)$ iff $F(f)([x] \sim)=[y]_{\sim}$

Checking Coherence

Decidability of Checking Coherence [1]

There is a DFA $\mathcal{A}_{\text {check-coh }}$ such that for an execution $\rho \in \Pi^{*}$, we have

$$
\rho \in L\left(\mathcal{A}_{\text {check-coh }}\right) \text { iff } \rho \text { is coherent }
$$

Checking Coherence

Decidability of Checking Coherence [1]

There is a DFA $\mathcal{A}_{\text {check-coh }}$ such that for an execution $\rho \in \Pi^{*}$, we have

$$
\rho \in L\left(\mathcal{A}_{\text {check-coh }}\right) \text { iff } \rho \text { is coherent }
$$

- $\mathcal{A}_{\text {check-coh }}$ ignores all letters of the form "assume $(x \neq y)$ ".
- States of $\mathcal{A}_{\text {check-coh }}$ maintain (\sim, F, B) :
- \sim and F are as in $\mathcal{A}_{\text {con-feas }}$
- B keeps track of the following information: for a given equiv. class c and for a function f, if $f(c)$ has been computed before.
k-Coherence

k-Coherence

$$
\begin{aligned}
& \text { assume }(x \neq z) ; \\
& y:=n(x) ; \\
& \text { assume }(y \neq z) ; \\
& y:=\mathrm{n}(\mathrm{y}) ; \\
& \text { while }(\mathrm{y} \neq \mathrm{z})\{ \\
& \mathrm{x}:=\mathrm{n}(\mathrm{x}) ; \\
& \qquad \mathrm{y}:=\mathrm{n}(\mathrm{y}) ; \\
& \} \\
& \varphi \equiv \mathrm{z}=\mathrm{n}(\mathrm{n}(\mathrm{x}))
\end{aligned}
$$

k-Coherence

```
assume (x = z ; ;
y := n(x); ------>n(\widehat{x})
assume (y f= z);
y := n(y); ---->nn(n(\widehat{x}))
while (y f z z) {
    x := n(x);
    y:= n(y);
}
\varphi\equiv z= n(n(x))
```

- Re-computation without storing prior equivalent terms.
- Insufficient number of program variables to store intermediate terms.

k-Coherence

```
assume (x f z );
    y:= n(x);
    assume (y f z );
g := y;
y:=-n(y);
while (y f z z) {
        x:= n(x);
        \prime\mp@code{= - %;}
        y := n(y);
}
    \varphi z = n(n(x))
```

- Can be made coherent.
- By adding additional ghost variables and assignments to them.
- Write-only and do not change semantics.

k-Coherence

Definition (k-Coherent Executions and Programs)

Let $k \in \mathbb{N}$. Let V be a set of variables and let $G=\left\{g_{1}, \ldots, g_{k}\right\}$ be additional ghost variables ($V \cap G=\varnothing$).
Let $\Pi_{G}=\Pi \cup\{$ " $g:=x " \mid g \in G, x \in V\}$.
An execution over V is k-coherent if there is an execution ρ^{\prime} over Π_{G} such that ρ^{\prime} is coherent and $\left.\rho^{\prime}\right|_{n}=\rho$.
A programs is k-coherent if all its executions are.

k-Coherence

Definition (k-Coherent Executions and Programs)

Let $k \in \mathbb{N}$. Let V be a set of variables and let $G=\left\{g_{1}, \ldots, g_{k}\right\}$ be additional ghost variables ($V \cap G=\varnothing$).
Let $\Pi_{G}=\Pi \cup\{$ " $g:=x " \mid g \in G, x \in V\}$.
An execution over V is k-coherent if there is an execution ρ^{\prime} over Π_{G} such that ρ^{\prime} is coherent and $\left.\rho^{\prime}\right|_{n}=\rho$.
A programs is k-coherent if all its executions are.

Theorem [1]

Checking k-coherence is decidable in PSPACE. Further, verification of k-coherent programs is decidable in PSPACE.

Verification Modulo Theories

Adding Interpretations

```
assume (T F F ; ;
if (a 
        if (a\leqc) then
            min:= a;
        else min := c;
    }
    else {
        if (b \leq c) then
        min:= b;
        else min := c;
    }
\varphi\equiv\operatorname{min}\leq\textrm{a}\wedge\operatorname{min}\leq\textrm{b}
    \min \leqc
```

Find the minimum of a, b and c

Adding Interpretations

```
assume (T F F);
if (a\leqb) then {
        if (a\leqc) then
            min := a;
        else min := c;
}
else {
            if (b}\leqc)\mathrm{ then
        min:= b; Does not
            else min := c; hold in
                        all M.
\varphi\equiv\operatorname{min}\leq\textrm{a}\wedge\operatorname{min}\leq\textrm{b}
    \min \leqc
Find the minimum of \(a, b\) and \(c\)
```


Adding Interpretations

\}
else \{
if ($b \leq c$) then
assume ($\mathrm{T} \neq \mathrm{F}$);
if ($\mathrm{a} \leq \mathrm{b}$) then $\{$
 min $:=a$;
else $\min :=c$; $\min :=\mathrm{b}$; Does not hold in all M.
$\varphi \equiv \min \leq \mathrm{a} \wedge \min \leq \mathrm{b}$ $\wedge \min \leq c$

Find the minimum of a, b and c

Adding Interpretations

```
assume (T F F ; ;
if (a\leqb) then {
        if (a\leqc) then
            min:= a;
        else min := c;
    }
    else {
        if (b}\leqc)\mathrm{ then
        min:= b;
        else min := c;
}
\varphi\equiv\operatorname{min}\leq\textrm{a}\wedge\operatorname{min}\leq\textrm{b}
    \min \leqc
```

Find the minimum of a, b and c

This program satisfies φ if \leq is interpreted as a total order:

- $\forall x \cdot x \leq x$
- $\forall x, y, z \cdot x \leq y \wedge y \leq z \Longrightarrow x \leq z$
- $\forall x, y \cdot x \leq y \wedge y \leq x \Longrightarrow x=y$

Adding Interpretations

Definition (Verification Modulo Axioms)

Let $P \in\langle$ stmt \rangle be an uninterpreted program over vocabulary Σ. Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

Adding Interpretations

Definition (Verification Modulo Axioms)

Let $P \in\langle$ stmt \rangle be an uninterpreted program over vocabulary Σ. Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ modulo A

Adding Interpretations

Definition (Verification Modulo Axioms)

Let $P \in\langle$ stmt \rangle be an uninterpreted program over vocabulary Σ. Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ modulo A iff for every execution $\rho \in \operatorname{Exec}(P)$

Adding Interpretations

Definition (Verification Modulo Axioms)

Let $P \in\langle$ stmt \rangle be an uninterpreted program over vocabulary Σ. Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ modulo A iff for every execution $\rho \in \operatorname{Exec}(P)$ and for every FO structure M such that $\mathrm{M} \vDash A$ and ρ is feasible in M ,

Adding Interpretations

Definition (Verification Modulo Axioms)

Let $P \in\langle$ stmt \rangle be an uninterpreted program over vocabulary Σ. Let A be a set of first order sentences over Σ and let φ be an assertion in the following grammar.

$$
\varphi::=\text { true }|x=y| R(\mathbf{z})|\varphi \vee \varphi| \neg \varphi
$$

$P \models \varphi$ modulo A iff for every execution $\rho \in \operatorname{Exec}(P)$ and for every FO structure M such that $\mathrm{M} \models A$ and ρ is feasible in M, M satisfies $\varphi\left[\operatorname{val}_{\mathrm{M}}(\rho, V) / V\right]$.

Coherence Modulo Axioms

Coherence modulo axioms
Memoizing modulo axioms
:---:
modulo axioms

Example

$$
A=\{\forall x, y \cdot f(x, y)=f(y, x)\}
$$

Example

$$
A=\{\forall x, y \cdot f(x, y)=f(y, x)\}
$$

$$
x_{1}:=f(x, y) \longrightarrow y_{1}:=f(y, x)
$$

Example

$$
x_{1}:=f(x, y) \longrightarrow y_{1}:=f(y, x) \quad \begin{gathered}
A=\{\forall x, y \cdot f(x, y)=f(y, x)\} \\
\text { re-computation } \\
\text { modulo } A
\end{gathered}
$$

Example

$$
\begin{aligned}
& A=\{\forall x, y \cdot f(x, y)=f(y, x)\} \\
& x_{1}:=f(x, y) \longrightarrow y_{1}:=f(y, x) \\
& x_{1}:=f(x, y) \rightarrow y_{1}:=f\left(y, x^{\prime}\right) \longrightarrow z:=g\left(x_{1}\right) \longrightarrow z^{\prime}:=g\left(y_{1}\right) \rightarrow \text { assume }\left(x=x^{\prime}\right)
\end{aligned}
$$

Example

$$
x_{1}:=f(x, y) \longrightarrow y_{1}:=f(y, x) \quad \begin{gathered}
A=\{\forall x, y \cdot f(x, y)=f(y, x)\} \\
x_{1}:=f(x, y) \rightarrow y_{1}:=f\left(y, x^{\prime}\right) \longrightarrow z:=g\left(x_{1}\right) \longrightarrow z^{\prime}:=g\left(y_{1}\right) \rightarrow \text { assume }\left(x=x^{\prime}\right) \\
\text { re-computation } \\
\text { modulo } A
\end{gathered}
$$

Memoizing Modulo Axioms

Definition (Memoizing modulo axioms)

Let A be a set of axioms and let $\rho \in \Pi^{*}$ be an execution. Then, ρ is said to be memoizing modulo A if the following holds.
Let $\sigma^{\prime}=\sigma \cdot$ " $x:=f(\mathbf{z})$ " be a prefix of ρ. If there is a term $t^{\prime} \in \operatorname{Computed} \operatorname{Terms}(\sigma)$ such that $t^{\prime} \cong_{A \cup \kappa(\sigma)} \operatorname{Term}\left(\sigma^{\prime}, x\right)$, then there must exist some variable $y \in V$ such that $\operatorname{Term}(\sigma, y) \cong_{A \cup k(\sigma)} t$.

Memoizing Modulo Axioms

Definition (Memoizing modulo axioms)

Let A be a set of axioms and let $\rho \in \Pi^{*}$ be an execution. Then, ρ is said to be memoizing modulo A if the following holds.
Let $\sigma^{\prime}=\sigma$. " $x:=f(\mathbf{z})$ " be a prefix of ρ. If there is a term $t^{\prime} \in \operatorname{Computed} \operatorname{Terms}(\sigma)$ such that $t^{\prime} \cong_{A \cup k(\sigma)} \operatorname{Term}\left(\sigma^{\prime}, x\right)$, then there must exist some variable $y \in V$ such that $\operatorname{Term}(\sigma, y) \cong_{A \cup k(\sigma)} t$.

Here,

$$
\begin{aligned}
\kappa(\varepsilon) & =\varnothing \\
\kappa(\rho \cdot " \operatorname{assume}(x=y) ") & =\kappa(\rho) \cup\{(\operatorname{Term}(\rho, x)=\operatorname{Term}(\rho, y))\} \\
\kappa(\rho \cdot " \operatorname{assume}(x \neq y) ") & =\kappa(\rho) \cup\{(\operatorname{Term}(\rho, x) \neq \operatorname{Term}(\rho, y))\} \\
\kappa\left(\rho \cdot " R\left(z_{1}, \ldots\right) "\right) & =\kappa(\rho) \cup\left\{R\left(\operatorname{Term}\left(\rho, z_{1}\right), \ldots\right)\right\} \\
\kappa(\rho \cdot a) & =\kappa(\rho) \quad \text { otherwise }
\end{aligned}
$$

Early Assumes Modulo Axioms

Definition (Early assumes modulo axioms)
Let A be a set of axioms and let $\rho \in \Pi^{*}$ be an execution. Then, ρ is said to have early assumes modulo A if the following holds.

Let $\sigma^{\prime}=\sigma$. "assume(c)" be a prefix of ρ, where c is any of $x=y, x \neq y$, $R(\mathbf{z})$, or $\neg R(\mathbf{z})$.
Let $t \in \operatorname{Computed} \operatorname{Terms}(\sigma)$ be a term computed in σ such that t has been dropped, i.e., for every $x \in V$, we have $\operatorname{Term}(\sigma, x) \not ¥_{A \cup k(\sigma)} t$. For any term $t^{\prime} \in \operatorname{Computed} \operatorname{Terms}(\sigma)$, if $t \cong \cong_{A \cup \kappa\left(\sigma^{\prime}\right)} t^{\prime}$, then $t \cong \cong_{A \cup \kappa(\sigma)} t^{\prime}$.

Verification Modulo Axioms - Decidability Landscape [2]

Relational axioms	Decidability
EPR	X
Reflexivity	\checkmark
Irreflexivity	\checkmark
Symmetry	\checkmark
Transitivity	\checkmark
Partial Order	\checkmark
Total Order	\checkmark

Functional axioms	Decidability
Associativity	X
Commutativity	\checkmark
Idempotence	\checkmark
Combinations	Decidability
All combinations	
of decidable	\checkmark
axioms	

Thank You!

Coherence Modulo Commutativity

Homomorphism $h_{\text {comm }}^{f}$ uses auxiliary variable $v^{*} \notin V$:
$h_{\text {comm }}^{f}(a)= \begin{cases}a \cdot " v^{*}:=f(y, x) " \cdot " \operatorname{assume}\left(z=v^{*}\right) " & \text { if } a=" z:=f(x, y) " \\ a & \text { otherwise }\end{cases}$

Coherence Modulo Commutativity

An execution ρ is coherent modulo A iff $h_{\text {comm }}^{f}(a)$ is coherent modulo \varnothing.

Feasibility Modulo Commutativity

An execution ρ is feasible modulo A iff $h_{\text {comm }}^{f}(a)$ is feasible modulo \varnothing.

References I

國 U．Mathur，P．Madhusudan，and M．Viswanathan．
Decidable verification of uninterpreted programs．
Proc．ACM Program．Lang．，3（POPL），Jan． 2019.
䍰 U．Mathur，P．Madhusudan，and M．Viswanathan．
What＇s decidable about program verification modulo axioms？
In A．Biere and D．Parker，editors，Tools and Algorithms for the
Construction and Analysis of Systems，pages 158－177，Cham， 2020.
Springer International Publishing．
國 M．Müller－Olm，O．Rüthing，and H．Seidl．
Checking herbrand equalities and beyond．
In R．Cousot，editor，Verification，Model Checking，and Abstract Interpretation，pages 79－96，Berlin，Heidelberg，2005．Springer Berlin Heidelberg．

[^0]: Initially

