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This talk is based on



1. Motivation of this work


2. Set of natural numbers and measure density


3. Density of regular languages and REG-measurability


4. REG-(im)measurability of several languages


5. Open problems

Outline



The Primitive Words Conjecture
[Dömösi-Horvath-Ito 1991]

• A non-empty word  is said to be primitive if it can not be represented as a 
power of shorter words, i.e.,  
 

 denotes the set of all primitive  words over .

w
w = un ⇒ u = w (and n = 1)

𝖰A A

• The case  is trivial ( ). Here after we only consider the case 
 for , and simply write .

#(A) = 1 𝖰A = A
A = {a, b} 𝖰A 𝖰

Conjecture:   is not context-free.𝖰

ababab = (ab)3 ∉ 𝖰ababa ∈ 𝖰Example：



Why is “primitivity” important?
• Primitive words are like prime numbers. 

Fact: For every non-empty word , there exists a unique primitive word  
such that  for some .

w v
w = vk k ≥ 1

• Primitive words and its special class called Lyndon words play a central role 
in algebraic coding theory and combinatorics on words, also in text 
compression (cf. Lyndon factorisation, Burrows–Wheeler transformation).

• For a word , we denote its conjugate (by )  by . 
If  and  are non-empty,  is called a proper conjugate. 
Fact:  is primitive   for every proper conjugate.

w = uv u vu u−1wu = vu
u v u−1wu

w ⇔ w ≠ u−1wu

Note: if we regard a conjugation as a (partial) morphism on words, “  is primitive” means 
“  has no non-trivial automorphism” (cf. rigid graphs, rigid models in model theory) .

w
w
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My motivating intuition

(Intuition 1)  is “very large” while there is no “good approximation” 
                    by regular languages.


(Intuition 2) Every “very large” context-free language has some  
                    “good approximation” by regular languages.

𝖰

My (naive) idea: if we can formalise the above intuition and prove it, then the 
primitive words conjecture is true!

→ I proved that (the formal statement) of Intuition 1 is true, but Intuition 2 is false.



Approximation of languages

Rough set approximation [Păun-Polkowski-Skowron 1996]

Minimal cover-automata [Câmpeanu-Sânten-Yu 1999]

Minimal regular cover [Domaratzki-Shallit-Yu 2001]

Convergent-reliability / Slender-reliability [Kappes-Kintala 2004]

Bounded-ε-approximation [Eisman-Ravikumar 2005]

Degree of approximation [Cordy-Salomaa 2007]

Measure density [Buck 1946]

We adopt and extend Buck’s measure density 
 to formalise “approximation by regular languages”.
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Natural density of a subset of  ℕ ( ∋ 0)

• For an arithmetic progression 
 
　　　　　　　  
 
we define its natural density  as 
 
            ・if  (i.e., )  then  

            ・if  (i.e.,  is infinite) then 

S = {cn + d ∣ n ∈ ℕ}

δ(S)

c = 0 S = {d} δ(S) = 0

c ≠ 0 S δ(S) =
1
c

Intuitively,  represents the “largeness” of . More formally, it represents 
the probability that a randomly chosen natural number  is in .

δ(S) S
n S



Measure density of a subset of ℕ
[Buck 1946] "The measure theoretic approach to density”

• For a set of numbers , its outer measure  of  is defined as S ⊆ ℕ μ*(S) S
μ*(S) = inf {∑

i

δ(Xi) ∣ S ⊆ X, X is a disjoint union of finitely many arithmetic progressions X1, …, Xk}
• If a set  satisfies the condition 

 
            (☆) 

then we call  the measure density of , and we say that “  is measurable”.

S ⊆ ℕ

μ*(S) + μ*(S) = 1
μ*(S) S S

• The class  of all subsets of  satisfying (☆) is the Carathéodory extension of 𝒟μ ℕ
𝒟0 = {X ⊆ ℕ ∣ X is a disjoint union of finitely many arithmetic progresssions}

Theorem (Buck)： 

𝒟0 ⊊ 𝒟μ



Observation
•  

can be seen as the class  of regular languages over a unary alphabet  
: 

                                    

𝒟0 = {X ⊆ ℕ ∣ X is a finitely many disjoint union of arithemtic progressions}
REGA

A = {a}
𝒟0 = {{ |w | ∣ w ∈ L} ∣ L ∈ REGA}

The set of lengths of words in a regular language  (i.e., the Parikh image of ) 
 is a finite union of arithmetic progressions (i.e., ultimately periodic set).

L L

If we can define a “density” notion on  for an arbitrary alphabet , we can 
naturally extend Buck’s measure density to formal languages!

REGA A
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Density of formal languages

• The asymptotic density  of a 
language  over  is defined as 
 




• The density  is defined as 

δA(L)
L A

δA(L) = lim
n→∞

#(L ∩ An)
#(An)

δ*A (L)

δ*A (L) = lim
n→∞

1
n

n−1

∑
i=0

#(L ∩ Ai)
#(Ai)

Fact: if  converges then 
 also converges, and 

moreover .

δA(L)
δ*A (L)

δA(L) = δ*A (L)

But the converse is not true! 
trivial example:  
　　 (diverges) but 
　　

L = (AA)*
δA(L) = ⊥
δ*A (L) = 1/2



Density of formal languages

• The asymptotic density  of a 
language  over  is defined as 
 




• The density  is defined as 

δA(L)
L A

δA(L) = lim
n→∞

#(L ∩ An)
#(An)

δ*A (L)

δ*A (L) = lim
n→∞

1
n

n−1

∑
i=0

#(L ∩ Ai)
#(Ai)

Fact1 (cf. [Salomaa-Soittla 1978]): for any 
regular language  over ,  converges 
to a rational number.

L A δ*A (L)

Fact2 (cf. [S2]): A regular language  is not 
null (i.e., ) if and only if  is dense 
(i.e., ).

L
δ*A (L) ≠ 0 L

L ∩ A*wA* ≠ ∅ for any w ∈ A*
Not null: measure theoretic “largeness”

Dense:              topological “largeness”

Note: “  is not null   is dense” is true for any language , but 
          “  is dense   is not null” is false for general non-regular languages.

L ⇒ L L
L ⇒ L



Density of formal languages
Note: “  is not null   is dense” is true for any language , but 
          “  is dense   is not null” is false for general non-regular languages.

L ⇒ L L
L ⇒ L

Infinite Monkey Theorem (cf. [Borel 1913]):   .δA(A*wA*) = 1 for any w ∈ A*

 is not dense means that there exists  such that  
(such word is called a forbidden word of ),
L w L ∩ A*wA* = ∅

L
thus  by the infinite monkey theorem.δA(L) ≤ 1 − δA(A*wA*) = 0

The semi-Dyck language  over  
 is dense, but actually null.

𝖣 = {ε, (), (()), ()(), ((())), …} A = {(, )}

)(()(( ))



Density of formal languages

• The asymptotic density  of a 
language  over  is defined as 
 




• The density  is defined as 

δA(L)
L A

δA(L) = lim
n→∞

#(L ∩ An)
#(An)

δ*A (L)

δ*A (L) = lim
n→∞

1
n

n−1

∑
i=0

#(L ∩ Ai)
#(Ai)

Fact1 (cf. [Salomaa-Soittla 1978]): for any 
regular language  over ,  converges 
to a rational number.

L A δ*A (L)

Fact2 (cf. [S2]): A regular language  is not 
null (i.e., ) if and only if  is dense 
(i.e., ).

L
δ*A (L) ≠ 0 L

∀w ∈ A* L ∩ A*wA* ≠ ∅



Measure density of languages
• We now consider the Carathéodory extension of the class of regular languages: 
 
For , its outer measure is defined as 
 . 
 
We say that  is REG-measurable if  holds.

L ⊆ A*
μREG(L) = inf{δ*A (R) ∣ L ⊆ R ∈ REGA}

L μREG(L) + μREG(L) = 1
Lemma: the followings are equivalent 
    (1)  is REG-measurable 
    (2)  

L
μREG(L) = μ

REG
(L) = sup{δ*A (R) ∣ L ⊇ R ∈ REGA}

the inner measure of L

Note:   always holds (if  is defined).μ
REG

(L) ≤ δ*A (L) ≤ μREG(L) δ*A (L)



Measure density of languages
A*

L

K1
K2 ・ 

・ 
・

M1

M2

・ 
・ 
・

 is REG-measurable if we can take an infinite sequence of pairs or regular languages

 such that .

L
(Mn ⊆ L ⊆ Kn)n lim

n→∞
δ*A (Kn∖Mn) = 0
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Example of REG-measurable CFLs
Theorem: 
The semi-Dyck language  over  is  
REG-measurable.

𝖣 = {ε, ab, aabb, abab, …} A = {a, b}

Note:  is null, but there does not exist a null regular superset . 
         (  is dense implies  is dense, and thus  is not null by Fact2)

𝖣 𝖣 ⊆ L
𝖣 𝖣 ⊆ L L

Then, for each ,  and  k ≥ 1 𝖣 ⊆ Lk δ*A (Lk) =
1
k

→ 0 (if k → ∞) .

Thus the infinite sequence  converges to (∅, Lk)k≥1 𝖣 .

Proof: Let   for each .Lk = {w ∈ A* ∣ |w |a = |w |b mod k} k ≥ 1
the # of occurrences of  in a w



Example of REG-measurable CFLs
Theorem: The following languages are all REG-measurable.

1. 


2. 


3.  (the set of all palindromes)


4.  (the Goldstine language)

𝖮3 = {w ∈ {a, b, c}* ∣ |w |a = |w |b  or  |w |a = |w |c }
𝖮4 = {w ∈ {x, x̄, y, ȳ}* ∣ |w |x = |w |x̄  or  |w |y = |w |ȳ }

𝖯 = {w ∈ {a, b}* ∣ w = reverse(w)}

𝖦 = {an1ban2b⋯ankb ∣ k ≥ 1, ni ≠ i for some i}

(1) and (2) are inherently ambiguous context-free languages [Flajolet 1985].
Note: 

The generating function of (4) is transcendental (i.e., not algebraic) [Flajolet 1987], 
thus (4) is also inherently ambiguous by Chomsky-Schützenberger theorem.



Example of REG-measurable CFLs
Theorem: The following languages are all REG-measurable.

1. 


2. 


3.  (the set of all palindromes)


4.  (the Goldstine language)

𝖮3 = {w ∈ {a, b, c}* ∣ |w |a = |w |b  or  |w |a = |w |c }
𝖮4 = {w ∈ {x, x̄, y, ȳ}* ∣ |w |x = |w |x̄  or  |w |y = |w |ȳ }

𝖯 = {w ∈ {a, b}* ∣ w = reverse(w)}

𝖦 = {an1ban2b⋯ankb ∣ k ≥ 1, ni ≠ i for some i}

5.  where  
         and .
𝖪 = S1{c}A* ∪ S2{c}A* A = {a, b, c},

S1 = {a}{biai ∣ i ≥ 1}* S2 = {aib2i ∣ i ≥ 1}*{a}+

Note: the density of (5) is transcendental [Kemp 1980], thus it is inherently 
ambiguous by the fact [Berstel 1972] that the density of every unambiguous 
context-free language is algebraic.



Example of REG-measurable CFLs
Theorem:

For every alphabet  and a language , its suffix extension by  

 is REG-measurable.

A L ⊆ A c ∉ A

L′ = L{c}(A ∪ {c})*

Corollary:  is REG-measurable (because ).𝖪 = (S1 ∪ S2){c}A* S1, S2 ⊆ A∖{c}

Corollary: There exist uncountably many REG-measurable languages.



REG-gap: complexity of  immeasurable sets
• For a language  the difference  of outer and inner 

measure is called the REG-gap of .
L ⊆ A* μREG(L) − μ

REG
(L)

L

REG-gap represents how a given language is “hard to approximate”.

(Intuition 1)  is “very large” while there is no “good approximation” 
                    by regular languages.


(Intuition 2) Every “very large” context-free language has some  
                    “good approximation” by regular languages.

𝖰

Formal statement:  is co-null (i.e., ) but .𝖰 δ*A (𝖰) = 1 μ
REG

(𝖰) = 0

Formal statement: Every co-null context-free language  satisfies L μ
REG

(L) > 0.



(Intuition 1)  is “very large” while there is no “good approximation” 
                    by regular languages.


𝖰

Formal statement:  is co-null (i.e., ) but .𝖰 δ*A (𝖰) = 1 μ
REG

(𝖰) = 0

REG-immesurability of 𝖰

Theorem (1):  is co-null.𝖰

Theorem (2): Every regular subset of  is null. In particular, every non-null 
                     regular language contains infinitely many non-primitive words.

𝖰

Note: The proof of Theorem (2) uses basic semigroup theory 
          (Green’s relation and Green’s theorem)



REG-immesurability of context-free langugaes
(Intuition 2) Every “very large” context-free language has some  
                    “good approximation” by regular languages.
Formal statement: Every co-null context-free language  satisfies L μ

REG
(L) > 0.

Corollary:  is co-null (deterministic) context-free language with 𝖬2 μ
𝖱𝖤𝖦

(𝖬2) = 0.

Theorem: A deterministic context-free language 
                 over  is null 
                but , i.e., whose REG-gap is .

𝖬2 = {w ∈ {a, b}* ∣ |w |a > 2 |w |b } A = {a, b}
μ𝖱𝖤𝖦(𝖬2) = 1 1

Note: This counter-example is inspired by a result of [Eisman-Ravikumar 2011]. 
          They showed that the majority language   
          is “hard to approximate”.

𝖬 = {w ∈ {a, b}* ∣ |w |a > |w |b }



REG-immesurability of context-free langugaes
Theorem: A deterministic context-free language 
                 over  is null 
                but , i.e., whose REG-gap is .

𝖬2 = {w ∈ {a, b}* ∣ |w |a > 2 |w |b } A = {a, b}
μ𝖱𝖤𝖦(𝖬2) = 1 1

Proof:  can be shown by using the law of large numbers.δ*A (𝖬2) = 0
For a regular language  with , we show that  (i.e., ).L δ*A (L) < 1 𝖬2 ⊊ L L ∩ 𝖬2 ≠ ∅
Let  be the syntactic morphism of .η : A* → M = A*/ ≃L L

c = max
m∈M

min
w∈η−1(m)

|w | a4c+1  is non-null implies  is dense 
    (infinite monkey theorem)
L L

 such that  and ∃x, y |x | , |y | ≤ c xa4c+1y ∈ L

|xa4c+1y |b ≤ |x | + |y | ≤ 2c <
1
2

|xa4c+1y |a Thus  and xa4c+1y ∈ 𝖬2 𝖬2 ⊊ L



REG-immesurability of context-free langugaes
(Intuition 2) Every “very large” context-free language has some  
                    “good approximation” by regular languages.
Formal statement: Every co-null context-free language  satisfies L μ

REG
(L) > 0.

Corollary:  is co-null (deterministic) context-free language with 𝖬2 μ
𝖱𝖤𝖦

(𝖬2) = 0.

Theorem: A deterministic context-free language 
                 over  is null 
                but , i.e., whose REG-gap is .

𝖬2 = {w ∈ {a, b}* ∣ |w |a > 2 |w |b } A = {a, b}
μ𝖱𝖤𝖦(𝖬2) = 1 1



Summary

𝖦

𝖰 𝖬2

𝖪

𝖮4𝖮3

𝖬

𝖯DCFL

CFL

UCFL

REG-measurable
(all bounded languages)

(all sufix extensions)
L{c}(A ∪ {c})*

L ⊆ w*1 w*2 ⋯w*k

𝖣
Density 1 but 

the inner measure is 0

(all non-dense 
 languages)

L ∩ A*wA* ≠ ∅

𝖬2



Outline
1. Motivation of this work


2. Set of natural numbers and measure density


3. Density of regular languages and REG-measurability


4. REG-(im)measurability of several languages


5. Open problems



Open problems
1. Can we give an alternative characterisation of the class of null (resp. co-null) 

context-free languages?

2. Can we give an alternative characterisation of REG-measurable (context-free) 
languages?

Note: it is undecidable whether a given CFG generates null (resp. co-null) CFL 
          [Nakamura 2019].

Note: it is undecidable whether a given CFG generates REG-measurable CFL, 
          because REG-measurability is preserved under left/right quotients 
          thus we can apply Greibach’s metatheorem.



Open problems
3. Can we find a language class that “separates”  and CFLs? i.e., 

is there a language class  such that  
・  has full -gap but no co-null context-free language has full -gap, or 

・  is -immeasurable but every co-null context-free language is -measurable?

𝖰
𝒞

𝖰 𝒞 𝒞
𝖰 𝒞 𝒞

Note: measurability can be parameterised by a language class : 
          Define the outer measure of  over  as 
                                       
          and  is said to be -measurable if .

𝒞
L A

μ𝒞 = {δ*A (K) ∣ L ⊆ K ∈ 𝒞}
L 𝒞 μ𝒞(L) + μ𝒞(L) = 1

What’s happen if we consider DCFL,  UCFL,  CFL  or UnCA?𝒞 =



Digression: constrained automata
• A constrained automaton is a pair  of a finite automaton  and a 

semi-linear set  whose dimension  is the # of transition rules of .
(𝒜, S) 𝒜

S ⊆ ℕd d 𝒜

 accepts a word  iff there exists an accepting run  labeled by  and  
the vector  is in  where  is the number of occurrences the -th 
transition rule in .

(𝒜, S) w ρ w
(n1, n2, …, nd) S ni i

ρ

(i.e., Presburger definable set)

 
where 
L((𝒜, S)) = MIX = {w ∈ {a, b, c}* ∣ |w |a = |w |b = |w |c }

S = {(n, n, n) ∣ n ∈ ℕ} .q0

aaaa

bc
𝒜

Example:



Digression: constrained automata
• The class of unambiguous constrained automata is a very well-behaved class:

Many counting-type languages (including  and ) are in UnCA 
(UnCA = the class of unambiguous constrained automata recognisable languages).


Every UnCA language has a holonomic generating function (cf. [Bostan et al. 2020]).


UnCA is closed under Boolean operations and quotients [Cadilhac et al. 2012].


The regularity for UnCA is decidable [Cadilhac et al. 2012].

MIX, 𝖮3, 𝖮4, 𝖬 𝖬2

The context-freeness for some subclass of UnCA is decidable [S3].



Open problems
1. Can we give an alternative characterisation of the class of null (resp. co-null) 

context-free languages?

2. Can we give an alternative characterisation of REG-measurable (context-free) 
languages?

3. Can we find a language class that “separates”  and CFLs? i.e., 
is there a language class  such that  
・  has full -gap but no co-null context-free language has full -gap, or 

・  is -immeasurable but every co-null context-free language is -measurable?

𝖰
𝒞

𝖰 𝒞 𝒞
𝖰 𝒞 𝒞



Thanks!

(Akita-Inu)



References (approximation)

[Buck 1946] The measure theoretic approach to density, AJM.

[Eisman-Ravikumar 2005] Approximate recognition of non-regular languages by finite automata, ACSC2005.

[Câmpeanu-Sânten-Yu 1999] Minimal cover-automata for finite languages, TCS.

[Cordy-Salomaa 2007] On the existence of regular approximations, TCS.

[Domaratzki-Shallit-Yu 2001] Minimal covers of formal languages, DLT2001.

[Păun-Polkowski-Skowron 1996] Rough-Set-Like Approximations of Context-Free and Regular, IPMU1996.

[Kappes-Kintala 2004] Tradeoffs between reliability and conciseness 570 of deterministic finite automata, JALC.



References (density, ambiguity, etc.)

[Berstel 1972] Sur la densité asymptotique de langages formels, ICALP1972.

[Borel 1972] Mécanique Statistique et Irréversibilité, J. Phys.

[Bostan et al. 2020] Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series, ICALP2020.

[Cadilhac et al. 2012] Unambiguous Constrained Automata, DLT2012.

[Dömösi-Ito 2014] Context-Free Languages And Primitive Words.

[Dömösi-Horvath-Ito 1991] On the Connection between Formal Languages and Primitive Words.

[Flajolet 1985] Ambiguity and transcendence, ICALP1985.

[Flajolet 1987] Analytic models and ambiguity of context-free languages, TCS.

[Kemp 1980] A note on the density of inherently ambiguous context-free languages, Acta Informatica.

[Nakamura 2019] Computational Complexity of Several Extensions of Kleene Algebra, Ph.D. Thesis (Tokyo Tech).

[Salomaa-Soittla 1978] Automata Theoretic Aspects of Formal Power Series.



References (my work)

[S1] Asymptotic Approximation by Regular Languages, SOFSEM2021 (to appear).

[S2] An Automata Theoretic Approach to the Zero-One Law for Regular Languages, GandALF2015.

[S3] Context-Freeness of Word-MIX Languages, DLT2020.

The full versions are all available at http://www.math.akita-u.ac.jp/~ryoma


