Synthesizing Computable Functions from Synchronous Specifications

Sarah Winter

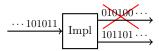
Université libre de Bruxelles, Belgium

January 6, 2021 YR-OWLS, online

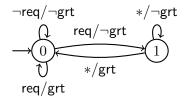
Reactive Synthesis of Non-terminating Systems

synthesize Specification -----→ Implementation

one input is in relation with several outputs algorithm that selects a unique output for each input



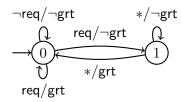
Church Synthesis



Synchronous specifications (synchronous relations)

e.g, given by synchronous transducers with parity acceptance

Church Synthesis



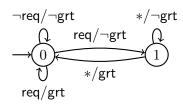
Synchronous specifications (synchronous relations)

e.g, given by synchronous transducers with parity acceptance

Synchronous implementations

given by Mealy machines

Church Synthesis



Synchronous specifications (synchronous relations)

e.g, given by synchronous transducers with parity acceptance

Synchronous implementations

given by Mealy machines

Theorem (Büchi/Landweber'69). It is decidable whether a synchronous specification is implementable by a Mealy machine.

Goal Decide whether a synchronous specification is implementable (by an algorithm/a program/a deterministic Turing machine).

Goal Decide whether a synchronous specification is implementable (by an algorithm/a program/a deterministic Turing machine).

Example.

▶ Specification: contains pairs of the form

$$(a_1a_2a_3\cdots,a_3\cdots)\in\{a,b\}^{\omega}\times\{a,b\}^{\omega}$$

Goal Decide whether a synchronous specification is implementable (by an algorithm/a program/a deterministic Turing machine).

Example.

▶ Specification: contains pairs of the form

$$(a_1a_2a_3\cdots,a_3\cdots)\in\{a,b\}^\omega\times\{a,b\}^\omega$$

▶ no implementation by a Mealy machine exists,

Goal Decide whether a synchronous specification is implementable (by an algorithm/a program/a deterministic Turing machine).

Example.

▶ Specification: contains pairs of the form

$$(a_1a_2a_3\cdots,a_3\cdots)\in\{a,b\}^\omega\times\{a,b\}^\omega$$

- ▶ no implementation by a Mealy machine exists,
- ➤ can be implemented, every deterministic machine has to wait until it sees the third input letter

Example.

► Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters

can be implemented, but, every deterministic machine has to wait arbitrary long to output something valid

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters

- ➤ can be implemented, but, every deterministic machine has to wait arbitrary long to output something valid
- ▶ e.g., implemented by a deterministic machine that computes the function

$$uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$$

What does it mean to be **implementable** for a relation?

What does it mean to be **implementable** for a relation?

There is a computable function f with the same domain as the relation R such that $(\alpha, f(\alpha)) \in R$ for all $\alpha \in \text{dom}(R)$.

What does it mean to be **implementable** for a relation?

▶ There is a computable function f with the same domain as the relation R such that $(\alpha, f(\alpha)) \in R$ for all $\alpha \in \text{dom}(R)$.

A function $f: \Sigma^{\omega} \to \Gamma^{\omega}$ is **computable** if there exists a deterministic Turing machine that

- outputs longer and longer prefixes of an acceptable output
- ▶ while it reads longer and longer prefixes of the input.

Consider a deterministic Turing machine ${\cal M}$ with

Consider a deterministic Turing machine M with

- ► three tapes
 - ▶ a one-way read-only input tape
 - ▶ a two-way working tape
 - ▶ a one-way write-only output tape

Consider a deterministic Turing machine M with

- ▶ three tapes
 - ▶ a one-way read-only input tape
 - ▶ a two-way working tape
 - ▶ a one-way write-only output tape
- ▶ $M(\alpha, k)$ denotes the output written after reading the first k letters of the input sequence α

Consider a deterministic Turing machine M with

- ▶ three tapes
 - ▶ a one-way read-only input tape
 - ▶ a two-way working tape
 - ▶ a one-way write-only output tape
- ▶ $M(\alpha, k)$ denotes the output written after reading the first k letters of the input sequence α

M computes f if for all $\alpha \in \text{dom}(f)$:

- \blacktriangleright $\forall k$: $M(\alpha, k)$ is a prefix of $f(\alpha)$, and
- $\forall i \ \exists j \colon |M(\alpha,j)| \ge i$

A function $f : \Sigma^{\omega} \rightharpoonup \Gamma^{\omega}$ is **continuous** at $\alpha \in \text{dom}(f)$ if

 $\forall i \; \exists j \; \forall \beta \in \text{dom}(f) \colon |\alpha \wedge \beta| \geq j \text{ implies } |f(\alpha) \wedge f(\beta)| \geq i.$

A function $f : \Sigma^{\omega} \rightharpoonup \Gamma^{\omega}$ is **continuous** at $\alpha \in \text{dom}(f)$ if

 $\forall i \; \exists j \; \forall \beta \in \text{dom}(f) \colon |\alpha \wedge \beta| \geq j \text{ implies } |f(\alpha) \wedge f(\beta)| \geq i.$

f is **continuous** if it is continuous at every $\alpha \in \text{dom}(f)$.

A function $f: \Sigma^{\omega} \rightharpoonup \Gamma^{\omega}$ is **continuous** at $\alpha \in \text{dom}(f)$ if

 $\forall i \; \exists j \; \forall \beta \in \text{dom}(f) \colon |\alpha \wedge \beta| \geq j \text{ implies } |f(\alpha) \wedge f(\beta)| \geq i.$

f is **continuous** if it is continuous at every $\alpha \in \text{dom}(f)$.

Examples.

► $f_1: uA\alpha \mapsto A^{|u|}\alpha$ $uB\alpha \mapsto B^{|u|}\alpha$, for all $u \in \{a, b\}^*$, $\alpha \in \{a, b\}^\omega$ is continuous

A function $f: \Sigma^{\omega} \to \Gamma^{\omega}$ is **continuous** at $\alpha \in \text{dom}(f)$ if

 $\forall i \; \exists j \; \forall \beta \in \text{dom}(f) \colon |\alpha \wedge \beta| \geq j \text{ implies } |f(\alpha) \wedge f(\beta)| \geq i.$

f is **continuous** if it is continuous at every $\alpha \in \text{dom}(f)$.

Examples.

- ► $f_1: uA\alpha \mapsto A^{|u|}\alpha$ $uB\alpha \mapsto B^{|u|}\alpha$, for all $u \in \{a, b\}^*, \alpha \in \{a, b\}^\omega$ is continuous
- $f_2 \colon \alpha \mapsto \begin{cases} a^{\omega} & \text{if } \alpha \text{ contains } \infty \text{ many } a \\ b^{\omega} & \text{otherwise} \end{cases}$ for all $\alpha \in \{a, b\}^{\omega}$ is not continuous

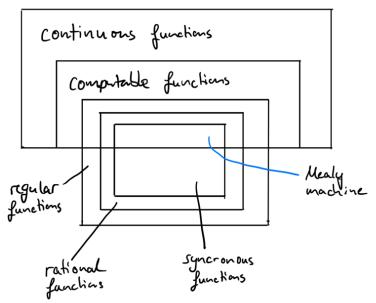
A function $f: \Sigma^{\omega} \to \Gamma^{\omega}$ is **continuous** at $\alpha \in \text{dom}(f)$ if

 $\forall i \; \exists j \; \forall \beta \in \text{dom}(f) \colon |\alpha \wedge \beta| \geq j \text{ implies } |f(\alpha) \wedge f(\beta)| \geq i.$

f is **continuous** if it is continuous at every $\alpha \in \text{dom}(f)$.

Examples.

- ► $f_1: uA\alpha \mapsto A^{|u|}\alpha$ $uB\alpha \mapsto B^{|u|}\alpha$, for all $u \in \{a, b\}^*, \alpha \in \{a, b\}^\omega$ is continuous
- ► $f_2: \alpha \mapsto \begin{cases} a^{\omega} & \text{if } \alpha \text{ contains } \infty \text{ many } a \\ b^{\omega} & \text{otherwise} \end{cases}$ for all $\alpha \in \{a, b\}^{\omega}$ is not continuous
- ▶ If $f: \Sigma^{\omega} \rightharpoonup \Gamma^{\omega}$ is computable, then it is continuous,
- ▶ the converse does not hold.



► In synthesis, often a total specification domain is assumed, else the synthesis task fails by design

- ► In synthesis, often a total specification domain is assumed, else the synthesis task fails by design
- ► Here: We allow partial domain

- ▶ In synthesis, often a total specification domain is assumed, else the synthesis task fails by design
- ► Here: We allow partial domain

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters

- ▶ has partial domain $\{a,b\}^*\{A,B\}\{a,b\}^\omega$
- ▶ e.g., implemented by a deterministic machine that computes the function $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$

- ► In synthesis, often a total specification domain is assumed, else the synthesis task fails by design
- ► Here: We allow partial domain

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters

- ► has partial domain $\{a,b\}^*\{A,B\}\{a,b\}^\omega$
- e.g., implemented by a deterministic machine that computes the function $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$
- ► There is no way to complete the domain and remain implementable!

Theorem (Holtmann/Kaiser/Thomas'10). It is decidable in 2EX-PTIME whether a continuous function can be synthesized from a given synchronous relation with **total domain**.

Theorem (Holtmann/Kaiser/Thomas'10). It is decidable in 2EX-PTIME whether a continuous function can be synthesized from a given synchronous relation with **total domain**.

Theorem (Klein/Zimmermann'14). It is EXPTIME-complete to decide whether a continuous function can be synthesized from a given synchronous relation with **total domain**.

Theorem (Holtmann/Kaiser/Thomas'10). It is decidable in 2EX-PTIME whether a continuous function can be synthesized from a given synchronous relation with **total domain**.

Theorem (Klein/Zimmermann'14). It is EXPTIME-complete to decide whether a continuous function can be synthesized from a given synchronous relation with **total domain**.

Is the function computable?

Implementations for Total Domain

Theorem (Holtmann/Kaiser/Thomas'10). Such a synthesized function is computable by a sequential transducer.

Theorem (Holtmann/Kaiser/Thomas'10). Such a synthesized function is computable by a sequential transducer.

A transducer is **sequential** if its underlying input automaton is a DFA.

Theorem (Holtmann/Kaiser/Thomas'10). Such a synthesized function is computable by a sequential transducer.

A transducer is **sequential** if its underlying input automaton is a DFA.

Example.

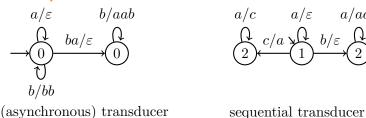
$$\begin{array}{ccc}
a/\varepsilon & b/aab \\
 & ba/\varepsilon & \bigcirc \\
0 & b/bb
\end{array}$$

(asynchronous) transducer

Theorem (Holtmann/Kaiser/Thomas'10). Such a synthesized function is computable by a sequential transducer.

A transducer is **sequential** if its underlying input automaton is a DFA.

Example.



Results for Partial Domain

Results for Partial Domain

Theorem (Filiot/W.). It is EXPTIME-complete to decide whether a continuous function can be synthesized from a given synchronous relation with **partial domain**. Such a synthesized function is computable.

Game view

► Adam plays input letters

Game view

- ► Adam plays input letters
- ► Eve plays output letters

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Problem

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Problem

▶ Eve might need an unbounded lookahead on Adams moves

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Problem

- ▶ Eve might need an unbounded lookahead on Adams moves
- ▶ We want a finite game arena, cannot store the lookahead explicitly

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Problem

- ▶ Eve might need an unbounded lookahead on Adams moves
- ▶ We want a finite game arena, cannot store the lookahead explicitly

Solution

Game view

- ► Adam plays input letters
- ► Eve plays output letters
- ▶ If the input sequence is in the specification domain, input + output sequence must be in relation wrt the specification

Problem

- ▶ Eve might need an unbounded lookahead on Adams moves
- ▶ We want a finite game arena, cannot store the lookahead explicitly

Solution

▶ Instead of an explicit lookahead, store a finite abstraction

Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

Game Idea

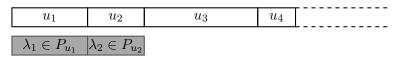
▶ Adam plays input letters, building lookahead profiles

Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)

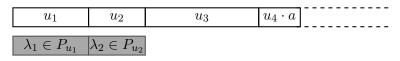
Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



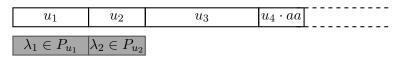
Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



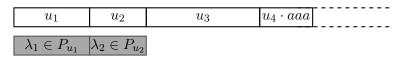
Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



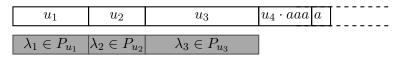
Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)

u_1	u_2	u_3	$u_4 \cdot aaa$
$\lambda_1 \in P_{u_1}$	$\lambda_2 \in P_{u_2}$	$\lambda_3 \in P_{u_3}$]

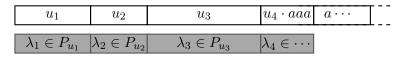
Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

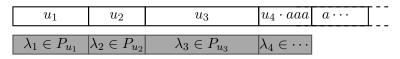
- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

Game Idea

- ▶ Adam plays input letters, building lookahead profiles
- ► Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)

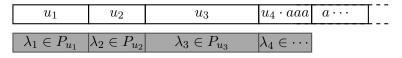


Winning condition If Adam plays a valid input sequence,

Given a finite input word $u \in \Sigma^*$, its **profile** P_u stores all inducible state transformations wrt the specification automaton.

Game Idea

- ▶ Adam plays input letters, building lookahead profiles
- Eve can delay her her move, or chose a state transformation from a lookahead profile (instead of playing output letters)



Winning condition If Adam plays a valid input sequence,

- ▶ Eves makes a move infinitely often,
- ▶ her moves describe an accepting run wrt the specification.

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

- where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters
- ▶ e.g., implemented by a deterministic two-way transducer that computes $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

- where $u \in \{a,b\}^*, \alpha, \beta \in \{a,b\}^{\omega}, A, B$ are special letters
- ▶ e.g., implemented by a deterministic two-way transducer that computes $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$
 - \triangleright transducer goes right until A resp. B is read, no output

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Example.

► Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

- where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters
- ▶ e.g., implemented by a deterministic two-way transducer that computes $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$
 - \triangleright transducer goes right until A resp. B is read, no output
 - beginning, no output

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

- where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters
- e.g., implemented by a deterministic two-way transducer that computes $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$
 - \triangleright transducer goes right until A resp. B is read, no output
 - goes back left to the beginning, no output
 - goes right, outputs A resp. B for every letter until A resp. B is read,

Theorem (Filiot/W.). If a synchronous relation with partial domain is implementable, then it can be implemented by a deterministic two-way transducer.

Example.

▶ Specification: contains pairs of the form

$$(uA\alpha, A^{|u|}\beta) \quad (uB\alpha, B^{|u|}\beta),$$

- where $u \in \{a, b\}^*, \alpha, \beta \in \{a, b\}^{\omega}, A, B$ are special letters
- ▶ e.g., implemented by a deterministic two-way transducer that computes $uA\alpha \mapsto A^{|u|}\alpha \quad uB\alpha \mapsto B^{|u|}\alpha$
 - \triangleright transducer goes right until A resp. B is read, no output
 - goes back left to the beginning, no output
 - goes right, outputs A resp. B for every letter until A resp. B is read,
 - goes right and copies the input

Total domain

▶ Sequential transducers with bounded lookahead suffice

- ▶ Sequential transducers with bounded lookahead suffice
- ▶ Intuitive reason for bounded lookahead

- ▶ Sequential transducers with bounded lookahead suffice
- ▶ Intuitive reason for bounded lookahead
 - ► If an arbitrary long lookahead is needed to determine the next output,

- ▶ Sequential transducers with bounded lookahead suffice
- ▶ Intuitive reason for bounded lookahead
 - ► If an arbitrary long lookahead is needed to determine the next output,
 - ▶ then a deterministic machine may wait forever to output something valid.

- ▶ Sequential transducers with bounded lookahead suffice
- ▶ Intuitive reason for bounded lookahead
 - ► If an arbitrary long lookahead is needed to determine the next output,
 - ▶ then a deterministic machine may wait forever to output something valid.
 - \blacktriangleright Result: a finite output sequence, but the infinite input sequence is valid ${\it f}$

Total domain

- ▶ Sequential transducers with bounded lookahead suffice
- ► Intuitive reason for bounded lookahead
 - ► If an arbitrary long lookahead is needed to determine the next output,
 - ▶ then a deterministic machine may wait forever to output something valid.
 - \blacktriangleright Result: a finite output sequence, but the infinite input sequence is valid ${\bf 1}$

Partial domain

▶ Deterministic two-way transducers suffice, sequential transducers do not

Total domain

- Sequential transducers with bounded lookahead suffice
- ► Intuitive reason for bounded lookahead
 - ► If an arbitrary long lookahead is needed to determine the next output,
 - ▶ then a deterministic machine may wait forever to output something valid.
 - \blacktriangleright Result: a finite output sequence, but the infinite input sequence is valid ${\bf \it f}$

Partial domain

- ▶ Deterministic two-way transducers suffice, sequential transducers do not
- ▶ Unbounded lookahead may be necessary

Impl	Mealy	computable
Spec	machine	
synchronous	EXPTIME-c ¹	EXPTIME-c ²
w/ total domain		
synchronous	EXPTIME-c ¹	$\mathbf{EXPTime}$ - \mathbf{c}^2
w/ partial domain		

¹ Starting from a specification given by a non-deterministic automaton

² Starting from a specification given by a deterministic automaton

Impl	Mealy	computable
Spec	machine	
synchronous	EXPTIME-c ¹	EXPTIME-c ²
w/ total domain		
synchronous	EXPTIME-c ¹	EXPTime-c ²
w/ partial domain		

¹ Starting from a specification given by a non-deterministic automaton

- ▶ Implementations for total domain
 - ▶ sequential transducers suffice
 - bounded lookahead suffices

 $^{^{2}}$ Starting from a specification given by a deterministic automaton

Impl	Mealy	computable
Spec	machine	
synchronous	EXPTIME-c ¹	EXPTIME-c ²
w/ total domain		
synchronous	EXPTIME-c ¹	EXPTime-c ²
w/ partial domain		

¹ Starting from a specification given by a non-deterministic automaton

- ▶ Implementations for total domain
 - sequential transducers suffice
 - bounded lookahead suffices
- ► Implementations for partial domain
 - ▶ deterministic two-way transducers suffice
 - unbounded lookahead may be necessary

 $^{^{2}}$ Starting from a specification given by a deterministic automaton

▶ It is decidable whether a synchronous specification can be implemented.

- ▶ It is decidable whether a synchronous specification can be implemented.
- ▶ What about more powerful specifications?

- ▶ It is decidable whether a synchronous specification can be implemented.
- ▶ What about more powerful specifications?

Theorem (Filiot/W.). It is undecidable whether a given rational relation can be implemented.

- ▶ It is decidable whether a synchronous specification can be implemented.
- ▶ What about more powerful specifications?

Theorem (Filiot/W.). It is undecidable whether a given rational relation can be implemented.

Theorem (Filiot/W.). It is undecidable whether a continuous, computable, resp., sequential function can be synthesized from a given rational relation.

- ▶ It is decidable whether a synchronous specification can be implemented.
- ▶ What about more powerful specifications?

Theorem (Filiot/W.). It is undecidable whether a given rational relation can be implemented.

Theorem (Filiot/W.). It is undecidable whether a continuous, computable, resp., sequential function can be synthesized from a given rational relation.

► Finite word setting: Undecidable whether a sequential function can be synthesized. (Carayol/Löding'14)

Reduction from Post's Correspondence Problem

Reduction from Post's Correspondence Problem

ightharpoonup A PCP instance u_1, \ldots, u_n and v_1, \ldots, v_n .

Reduction from Post's Correspondence Problem

- ightharpoonup A PCP instance u_1, \ldots, u_n and v_1, \ldots, v_n .
- ▶ Rational relation with domain $\{1, ..., n\}^* \{a, b\}^{\omega}$ and pairs

$$i_1 \cdots i_m \alpha \begin{cases} \mapsto u_{i_1} \cdots u_{i_m} \beta & \text{if } \alpha \text{ contains } \infty \text{ many } a \\ \not\mapsto v_{i_1} \cdots v_{i_m} \beta & \text{otherwise} \end{cases}$$
 with $i_1 \cdots i_m \in \{1, \dots, n\}^*$ and $\alpha, \beta \in \{a, b\}^\omega$.

Reduction from Post's Correspondence Problem

- ightharpoonup A PCP instance u_1, \ldots, u_n and v_1, \ldots, v_n .
- ▶ Rational relation with domain $\{1, ..., n\}^* \{a, b\}^{\omega}$ and pairs

$$i_1 \cdots i_m \alpha \begin{cases} \mapsto u_{i_1} \cdots u_{i_m} \beta & \text{if } \alpha \text{ contains } \infty \text{ many } a \\ \not \mapsto v_{i_1} \cdots v_{i_m} \beta & \text{otherwise} \end{cases}$$

with $i_1 \cdots i_m \in \{1, \dots, n\}^*$ and $\alpha, \beta \in \{a, b\}^\omega$.

PCP instance has no solution

- ightharpoonup always $u_{i_1} \cdots u_{i_m} \neq v_{i_1} \cdots v_{i_m}$

Reduction from Post's Correspondence Problem

- ightharpoonup A PCP instance u_1, \ldots, u_n and v_1, \ldots, v_n .
- ▶ Rational relation with domain $\{1, ..., n\}^* \{a, b\}^{\omega}$ and pairs

$$i_1 \cdots i_m \alpha \begin{cases} \mapsto u_{i_1} \cdots u_{i_m} \beta & \text{if } \alpha \text{ contains } \infty \text{ many } a \\ \nleftrightarrow v_{i_1} \cdots v_{i_m} \beta & \text{otherwise} \end{cases}$$

with $i_1 \cdots i_m \in \{1, \dots, n\}^*$ and $\alpha, \beta \in \{a, b\}^{\omega}$.

PCP instance has no solution

- ightharpoonup always $u_{i_1} \cdots u_{i_m} \neq v_{i_1} \cdots v_{i_m}$

PCP instance has a solution

- ▶ no implementation exists
- \triangleright never known whether the input sequence has ∞ many a

Class between synchronous and rational relations.

Class between synchronous and rational relations.

Recognized by special kind of transducers

▶ state set is partitioned into input and output states

Class between synchronous and rational relations.

Recognized by special kind of transducers

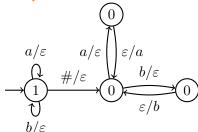
- ▶ state set is partitioned into input and output states
- ▶ transition function: $Q_i \times \Sigma \to Q$ \cup $Q_o \times \Gamma \to Q$

Class between synchronous and rational relations.

Recognized by special kind of transducers

- ▶ state set is partitioned into input and output states
- ▶ transition function: $Q_i \times \Sigma \to Q$ \cup $Q_o \times \Gamma \to Q$

Example.

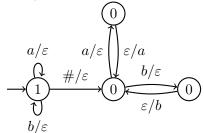


Class between synchronous and rational relations.

Recognized by special kind of transducers

- ▶ state set is partitioned into input and output states
- ▶ transition function: $Q_i \times \Sigma \to Q$ \cup $Q_o \times \Gamma \to Q$

Example.



- recognizes $f: u\#\alpha \mapsto \alpha, \quad u \in \{a,b\}^*, \alpha \in \{a,b\}^\omega$
- \triangleright f is not synchronous

Almost Sure Theorem. It is decidable whether a continuous function can be synthesized from a given deterministic rational relation.

Almost Sure Theorem. It is decidable whether a continuous function can be synthesized from a given deterministic rational relation.

Almost Sure Theorem. Such a synthesized function is computable by a deterministic two-way transducer.

Is it decidable whether a synchronous relation with **partial domain** is implementable using only finite memory?

Is it decidable whether a synchronous relation with **partial domain** is implementable using only finite memory?

Example.

▶ Specification: $(a^*b\cdots,b\cdots)$ $(a^*c\cdots,c\cdots)$

Is it decidable whether a synchronous relation with **partial domain** is implementable using only finite memory?

Example.

- ▶ Specification: $(a^*b\cdots,b\cdots)$ $(a^*c\cdots,c\cdots)$
- ➤ Specification is implementable, e.g., by a finite-memory machine (sequential transducer) that computes the function

$$a^*b\cdots \mapsto b^\omega \quad a^*c\cdots \mapsto c^\omega$$

Impl	Mealy	sequential	computable
Spec	machine	transducer	
synchronous	EXPTIME-c ¹	EXPTIME-c ²	EXPTIME-c ²
w/ total domain			
synchronous	EXPTIME-c ¹	open	EXPTIME-c ²
w/ partial domain			
det. rational	open	open	EXPTIME-c
rational	undecidable	undecidable	undecidable

¹ non-deterministic specification ² deterministic specification