Extension preservation in the finite and prefix classes of first order logic

Abhisekh Sankaran University of Cambridge

Joint work with Anuj Dawar

YR-OWLS Nov 11, 2020

Introduction

- Extension preservation is a well realized property in computer science. E.g. graphs containing a triangle, of chromatic number ≥ 6 , of clique-width ≥ 10 , etc.
- The Łoś-Tarski theorem (1954 55) characterizes FO definable extension preserved properties of arbitrary structures in terms of existential sentences.
- Historically significant: among the earliest applications of Gödel's Compactness theorem and opened the area of preservation theorems in model theory.
- Fails in the finite: there is an extension preserved FO sentence that is not equivalent to any existential sentence over all finite structures (Tait, 1959).

Main results

Let
$$\Sigma_n := \underbrace{\exists \bar{x}_1 \forall \bar{x}_2 \exists \bar{x}_3 \dots}_{n \text{ blocks}} \alpha(\bar{x}_1, \dots, \bar{x}_n)$$
 where α is quantifier-free.

Theorem

Tait's counterexample is a Σ_3 FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence. Further, the counterexample can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Theorem

For every n, there is a vocabulary σ_n and an $\mathsf{FO}(\sigma_n)$ Σ_{2n+1} sentence φ_n that is extension closed over all finite structures, but that is not equivalent over this class to any Π_{2n+1} sentence. Further, φ_n can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Main results

Let
$$\Sigma_n := \underbrace{\exists \bar{x}_1 \forall \bar{x}_2 \exists \bar{x}_3 \dots}_{n \text{ blocks}} \alpha(\bar{x}_1, \dots, \bar{x}_n)$$
 where α is quantifier-free.

Theorem

Tait's counterexample is a Σ_3 FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence. Further, the counterexample can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension closed FO properties in the finite
- FO \cap Datalog(\neq , \neg) queries in the finite

Part I: Analysing Tait's sentence

Overview

- The sentence SomeTotalR
- Datalog(\neq , \neg) definition
- Non-preservation under extensions in the infinite
- Inexpressibility in Π_3 via construction of a suitable model and non-model of SomeTotalR

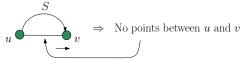
The sentence

Tait's sentence

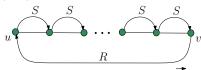
$$\begin{aligned} \text{SomeTotalR} &:= (\text{LO} \land \text{PartialSucc}) \rightarrow \exists u \exists v \; \text{RTotal}(u,v) \\ & (\in \text{FO}(\sigma) \; \text{where} \; \sigma = \{\leq, R, S\}) \end{aligned}$$

 $\mathrm{LO} := ``\leq \mathrm{is} \ \mathrm{a} \ \mathrm{linear} \ \mathrm{order}"$

PartialSucc := $\forall u \forall v$



RTotal(u, v) :=



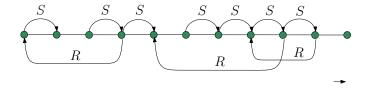
Tait's sentence

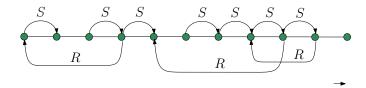
SomeTotalR := (LO
$$\land$$
 PartialSucc) $\rightarrow \exists u \exists v \text{ RTotal}(u, v)$
(\in FO(σ) where $\sigma = \{ \leq, R, S \}$)

LO := $\forall x \forall y \forall z \quad \begin{pmatrix} x \leq x & \land \\ (x \leq y & \land y \leq x) \rightarrow x = y & \land \\ (x \leq y & \land y \leq z) \rightarrow x \leq z \end{pmatrix}$

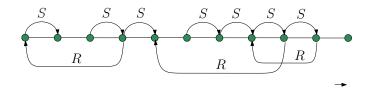
PartialSucc := $\forall u \forall v S(u, v) \rightarrow \forall z (z \leq u \lor v \leq z)$

RTotal(u, v) := $R(v, u) \land \quad (\forall z (u \leq z \land z < v) \rightarrow \exists w (z < w \land w \leq v \land S(z, w)))$

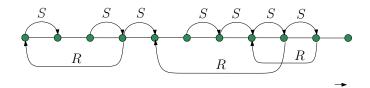


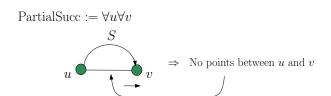


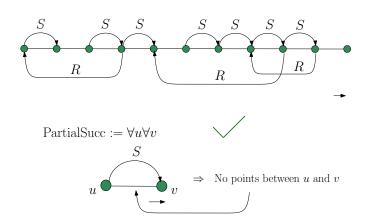
 $\label{eq:loss} \text{LO:=} ``\leq \text{is a linear order''}$

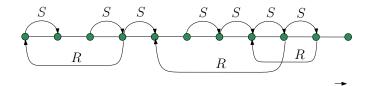


LO:= " \leq is a linear order"

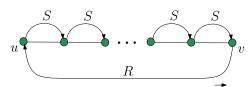


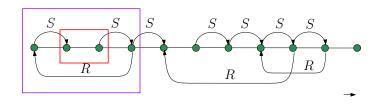


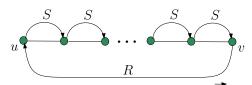


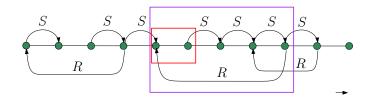


RTotal(u, v) :=

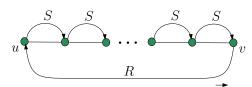


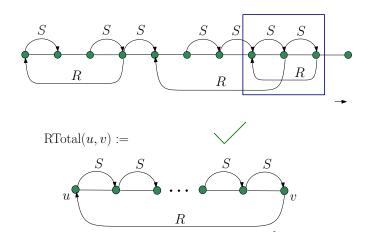


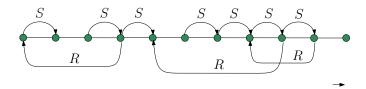




RTotal(u, v) :=







Some
Total := (LO
$$\land$$
 Partial
Succ) $\rightarrow \exists u \exists v \ \mathsf{RTotal}(u,v)$

 $\mathsf{Datalog}(\neq, \neg)$ definition of Tait's sentence

$\mathsf{Datalog}(\neq, \neg) \mathsf{syntax}$

• A Datalog(\neq , \neg) rule is of one of the foll. forms:

$$R(\bar{x}) \leftarrow A(\bar{x}_1)$$

 $R(\bar{x}) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$

- In the first rule above, $A(\bar{x}_1)$ is an atom that can appear negated. Also A can be equality or its negation.
- In the second rule above, all predicates R_i that are not atoms appear un-negated. Also, R can be one of the R_i s.
- In both rules, the variables appearing in the LHS are a subset of the variables appearing in the RHS.
- A $\mathsf{Datalog}(\neq, \neg)$ program is a finite set of $\mathsf{Datalog}(\neq, \neg)$ rules.

$\mathsf{Datalog}(\neq, \neg)$ semantics

• Consider the following Datalog(\neq , \neg) program:

$$R(x,y) \leftarrow A(x,z), B(z,y)$$

 $R(x,y) \leftarrow \neg A(x,z), R(x,y)$

The first rule as a program by itself corresponds to

$$\alpha(x, y) := \exists z (A(x, z) \land B(z, y))$$

• With both rules, the program corresponds to the existential least fixpoint logic sentence $\beta(x,y)$ given as below:

$$\begin{array}{lll} \beta(x,y) &:= & \mathsf{LFP}_{R,u,v} \varphi(R,u,v)](x,y) \\ \varphi(R,u,v) &:= & \alpha(u,v) \vee \exists z (\neg A(u,z) \wedge R(u,v)) \end{array}$$

• Datalog(\neq , \neg) corresponds exactly to existential least fixpoint logic, and thus any Datalog(\neq , \neg) program is extension closed.

• Express $\neg LO$, $\neg PartialSucc$, $\exists u \exists v RTotal(u, v)$ as $Datalog(\neq, \neg)$ programs with "start symbols" NotLO, NotPartialSucc, RTotal(u, v) resp. Then the $Datalog(\neq, \neg)$ program for SomeTotalR is

SomeTotalR \leftarrow NotLO | NotPartialSucc | RTotal(u, v)

LO := "< is a linear order"

$$\mathrm{LO} := \forall x \forall y \forall z \qquad \left(\begin{matrix} x \leq x & \wedge \\ (x \leq y & \wedge & y \leq x) \to & x = y & \wedge \\ (x \leq y & \wedge & y \leq z) \to & x \leq z \end{matrix} \right)$$

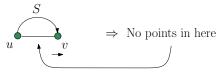
$$\neg \ \text{LO} := \exists x \exists y \exists z \qquad \left(\begin{matrix} \neg \ x \leq x & \lor \\ (x \leq y \land y \leq x \land x \neq y) & \lor \\ (x \leq y \land y \leq z \land \neg \ x \leq z) \end{matrix} \right)$$

 $Datalog(\neq, \neg)$ program for $\neg LO$:

NotLO
$$\longleftarrow \neg x \le x \mid$$

 $x \le y, \ y \le x, \ x \ne y \mid$
 $x \le y, \ y \le z, \ \neg x \le z$

PartialSucc := $\forall u \forall v$



PartialSucc :=
$$\forall u \forall v \ S(u, v) \rightarrow \neg \exists z \ \begin{pmatrix} u \leq z \land z \leq v \land \\ u \neq z \land z \neq v \end{pmatrix}$$

$$\neg \text{PartialSucc} := \exists u \exists v \ S(u, v) \land \exists z \quad \left(\begin{array}{c} u \leq z \land z \leq v \ \land \\ u \neq z \land z \neq v \end{array} \right)$$

 $Datalog(\neq, \neg)$ program for $\neg PartialSucc$:

NotPartialSucc
$$\leftarrow S(u, v), X(u, v)$$

 $X(u, v) \leftarrow u \le z, z \le v, u \ne z, z \ne v$

A. Sankaran



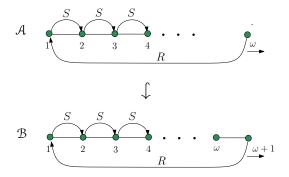
$$\begin{aligned} \operatorname{RTotal}(u,v) &:= R(v,u) \land \forall z (u \leq z \land z < v) \rightarrow \\ \exists w (z < w \land w \leq v \land S(z,w)) \end{aligned}$$

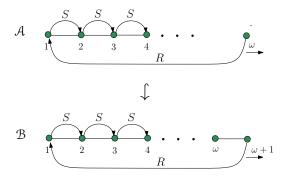
 $\mathrm{Datalog}(\neq, \neg)$ program for $\mathrm{RTotal}(u, v)$:

$$RTotal(u, v) \leftarrow R(v, u), S$$
-reach (u, v)

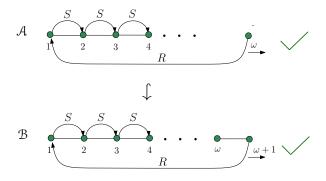
$$S$$
-reach $(u, v) \leftarrow S(u, v) \mid S(u, z), S$ -reach (z, v)

Non extension preservation of Tait's sentence in the infinite

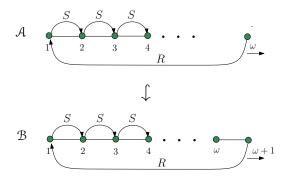




LO :=" \leq is a linear order"

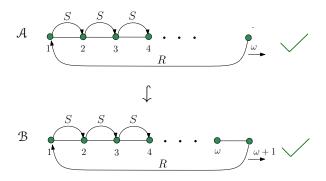


 $LO := " \le is a linear order"$



PartialSucc :=

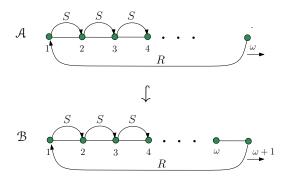
$$\forall u \forall v S(u,v) \rightarrow \forall z (z \leq u \vee v \leq z)$$



PartialSucc :=

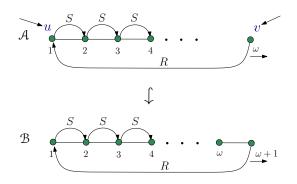
$$\forall u \forall v S(u,v) \rightarrow \forall z (z \leq u \vee v \leq z)$$

A. Sankaran



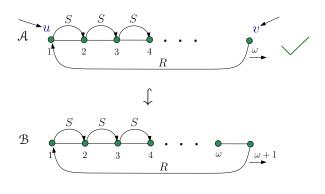
$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge z < v) \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

YR-OWLS, Nov 11, 2020



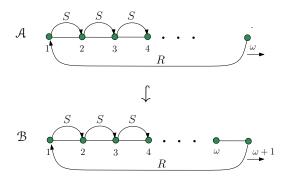
$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge \boxed{z < v} \Big) \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

A. Sankaran YR-OWLS, Nov 11, 2020



$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge \boxed{z < v)} \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

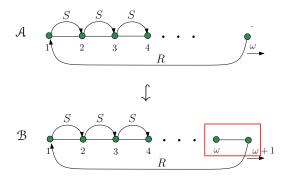
A. Sankaran YR-OWLS, Nov 11, 2020



$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge z < v) \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

YR-OWLS, Nov 11, 2020

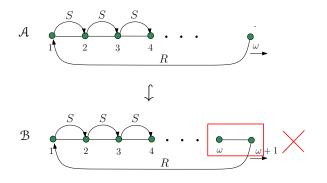
SomeTotalR is not extension preserved in the infinite



$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge z < v) \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

YR-OWLS, Nov 11, 2020

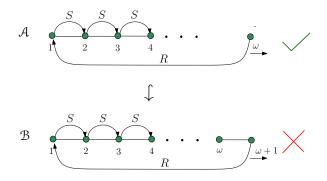
SomeTotalR is not extension preserved in the infinite



$$\begin{split} \text{RTotal}(u,v) &:= \\ R(v,u) \wedge \ \Big(\forall z (u \leq z \wedge z < v) \rightarrow \\ \exists w (z < w \wedge w \leq v \wedge S(z,w)) \Big) \end{split}$$

A. Sankaran YR-OWLS, Nov 11, 2020

SomeTotalR is not extension preserved in the infinite



SomeTotalR := (LO \land PartialSucc) $\rightarrow \exists u \exists v \ \text{RTotal}(u, v)$

Stronger failure of Łoś-Tarski theorem in the finite

Theorem

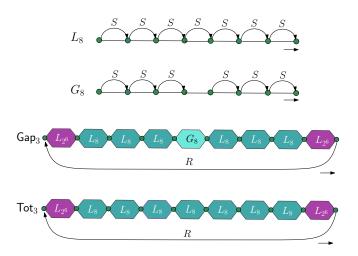
The Σ_3 sentence SomeTotalR is not equivalent over all finite σ -structures to any Π_3 sentence.

- Let $\Pi_{n,k}=$ class of all Π_n sentences in which each block of quantifiers has size k. So $\Pi_n=\bigcup_{k>0}\Pi_{n,k}$.
- Let $\mathcal{A} \Rightarrow_{n,k} \mathcal{B} = \text{for each } \Sigma_{n,k} \text{ sentence } \theta$, it holds that $\mathcal{A} \models \theta \to \mathcal{B} \models \theta$.
- $\mathcal{A} \Rrightarrow_{n,k} \mathcal{B}$ is equivalent to: for each $\Pi_{n,k}$ sentence γ , it holds that $\mathcal{B} \models \gamma \to \mathcal{A} \models \gamma$.
- For each k, we construct a model \mathcal{M}_k and a non-model \mathcal{N}_k of SomeTotalR such that $\mathcal{N}_k \Rightarrow_{3,k} \mathcal{M}_k$.
- We illustrate our constructions for k=3.

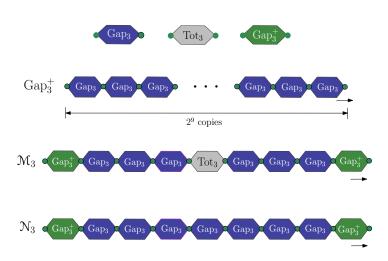
A. Sankaran

Construction of \mathfrak{M}_k and \mathfrak{N}_k

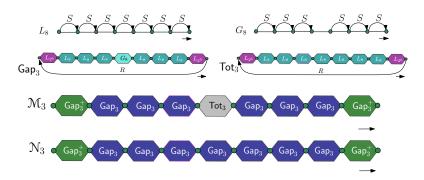
Construction of M_3 and N_3

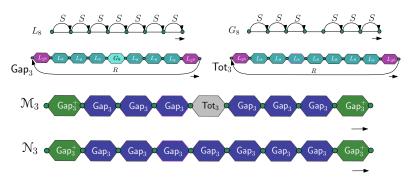


Construction of M_3 and N_3

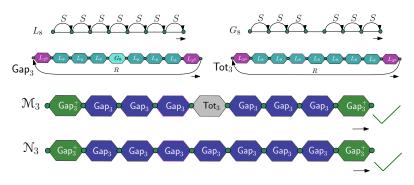


A. Sankaran

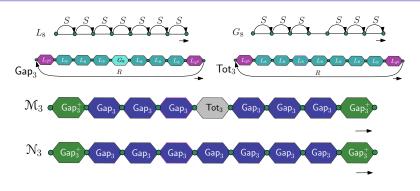


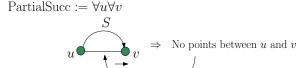


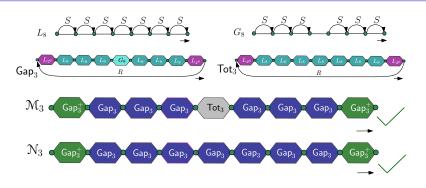
LO :=" \leq is a linear order"



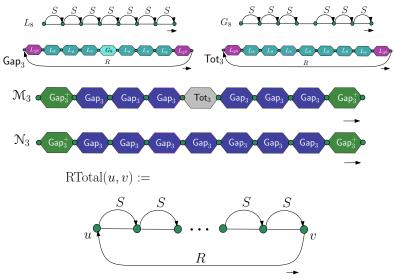
 $LO := `\le is a linear order"$





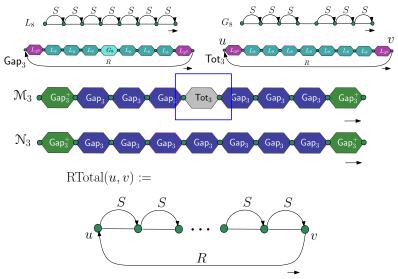


Partial Succ := $\forall u \forall v$ $v \Rightarrow \text{No points between } u \text{ and } v$



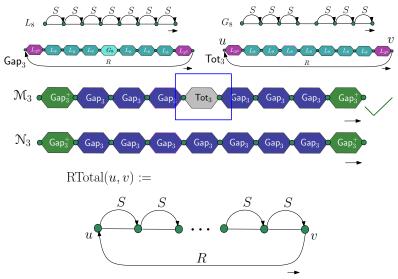
A. Sankaran

YR-OWLS, Nov 11, 2020

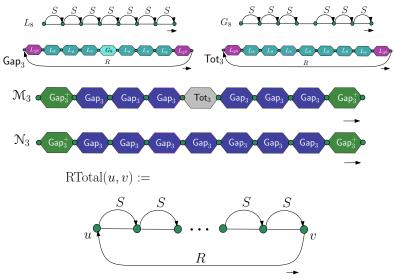


A. Sankaran

YR-OWLS, Nov 11, 2020

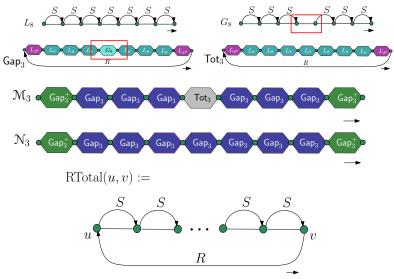


A. Sankaran

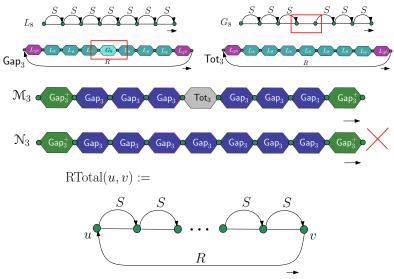


A. Sankaran

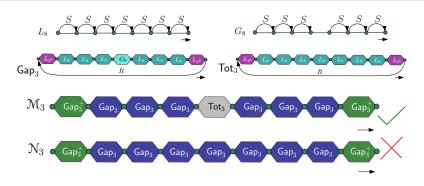
YR-OWLS, Nov 11, 2020



A. Sankaran



A. Sankaran



SomeTotalR := (LO \land PartialSucc) $\rightarrow \exists u \exists v \ \text{RTotal}(u, v)$

Inexpressibility of SomeTotalR in Π_3 via showing $\mathcal{N}_k \Rrightarrow_{3,k} \mathcal{M}_k$

Ehrenfeucht-Fraïssé (EF) game for $\Rightarrow_{n,k}$

- Two players: Spoiler and Duplicator; Game arena: a pair (A, B) of structures; Rounds: n.
- In odd rounds i, Spoiler chooses a k-tuple \bar{a}_i from \mathcal{A} and in even rounds i, he chooses a k-tuple \bar{b}_i from \mathcal{B} .
- Duplicator responds with k-tuples \bar{b}_i from \mathcal{B} in odd rounds and with k-tuples \bar{a}_i from \mathcal{A} in even rounds.
- Duplicator wins the play of the game if $(\bar{a}_i \mapsto \bar{b}_i)_{1 \leq i \leq n}$ is a partial isomorphism between \mathcal{A} and \mathcal{B} . She has a winning strategy if she wins every play of the game.

Theorem

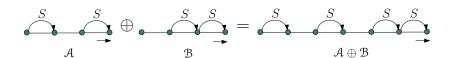
Duplicator has a winning strategy in the above game iff $A \Rightarrow_{n,k} B$.

Ordered Sum

Definition

For ordered structures \mathcal{A} and \mathcal{B} , the ordered sum $\mathcal{A} \oplus \mathcal{B}$ is the ordered structure that is the disjoint union of \mathcal{A} and \mathcal{B} with the additional constraints that:

- \bullet the elements of $\mathcal A$ appear "before" those of $\mathcal B$, and
- the last element of A is identified with the first element of B.

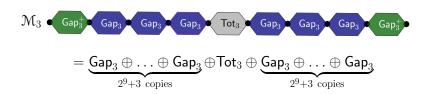


Ordered Sum

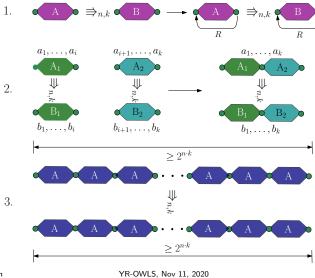
Definition

For ordered structures \mathcal{A} and \mathcal{B} , the ordered sum $\mathcal{A} \oplus \mathcal{B}$ is the ordered structure that is the disjoint union of \mathcal{A} and \mathcal{B} with the additional constraints that:

- ullet the elements of ${\mathcal A}$ appear "before" those of ${\mathcal B}$, and
- the last element of A is identified with the first element of B.

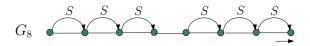


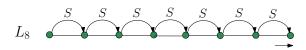
Composition properties



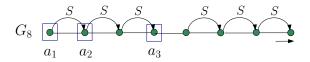
A. Sankaran

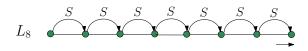
$G_8 \Longrightarrow_{1,3} L_8$

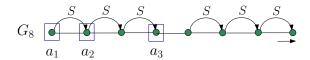


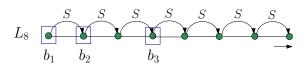


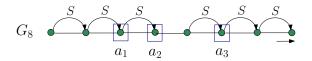
$G_8 \Rightarrow_{1,3} L_8$

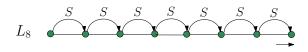


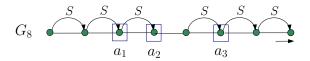


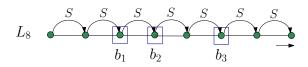




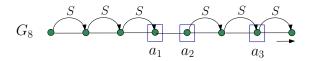


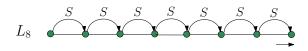


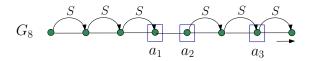


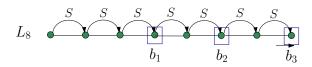


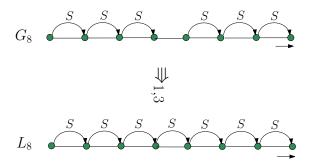
$G_8 \Longrightarrow_{1,3} L_8$

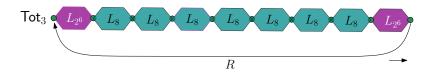


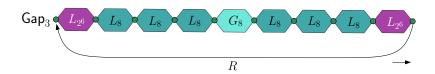


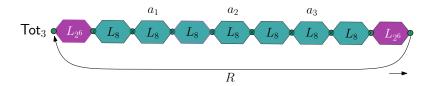


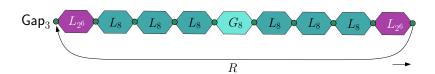


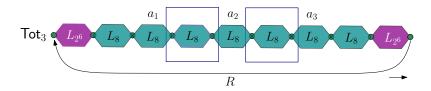


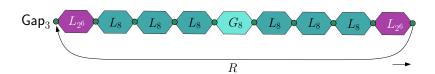


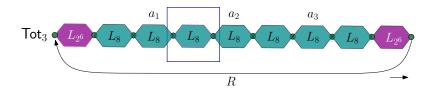


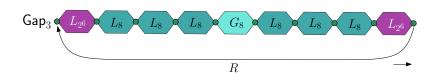


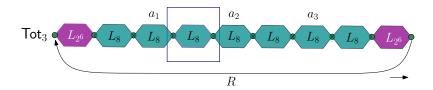


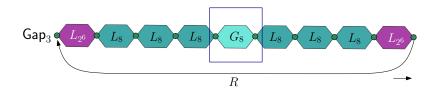


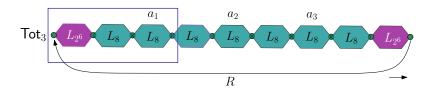


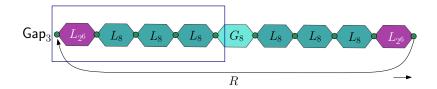


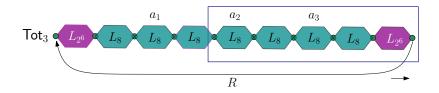


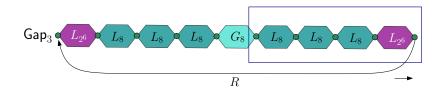


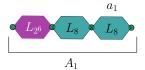


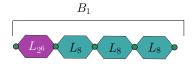


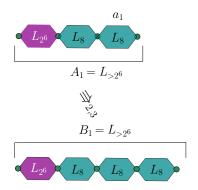


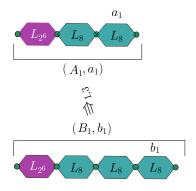


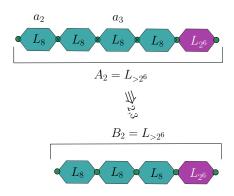


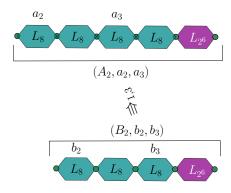


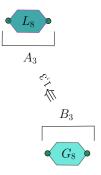


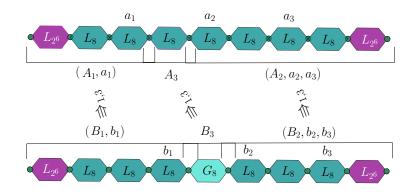


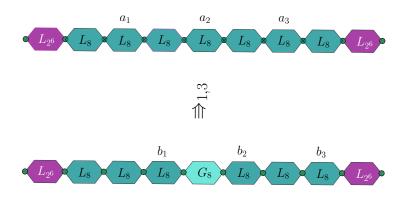


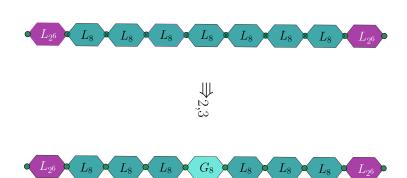


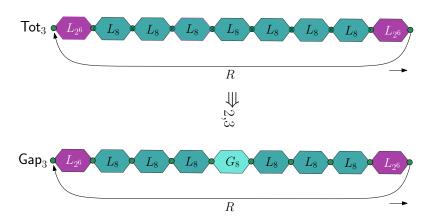




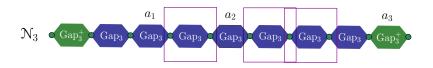


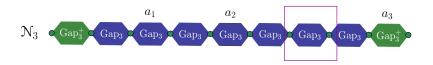


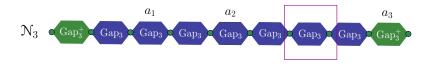


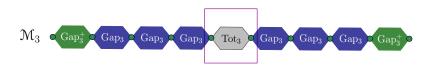


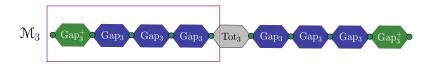
A. Sankaran YR-OWLS, Nov 11, 2020 20/30

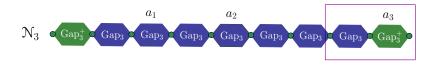


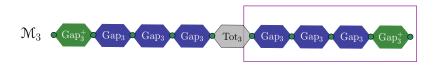


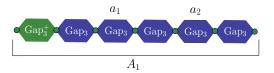


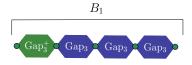




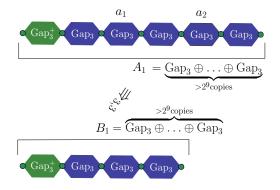




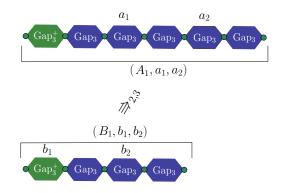




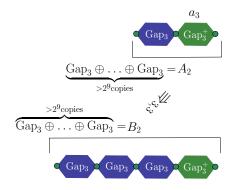
$\mathfrak{N}_3 \Rrightarrow_{3,3} \mathfrak{M}_3$

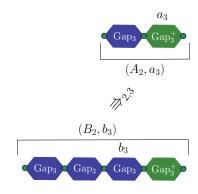


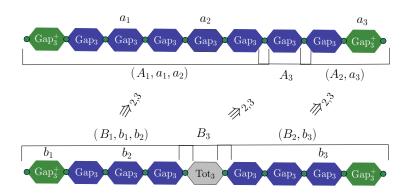
$\mathfrak{N}_3 \Rrightarrow_{3,3} \mathfrak{M}_3$

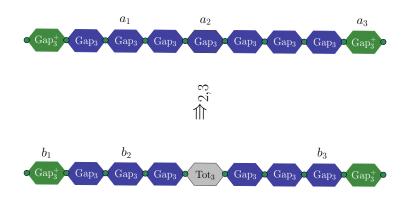


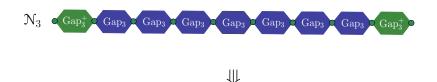
$\mathfrak{N}_3 \Rrightarrow_{3,3} \mathfrak{M}_3$











$$\mathcal{M}_3$$
 o Gap_3^+ o Gap_3 o Gap_3 o Gap_3 o Gap_3 o Gap_3 o Gap_3

Generalizing Tait's sentence

Overview

Theorem

For every n, there is a vocabulary σ_n and an FO (σ_n) Σ_{2n+1} sentence SomeTotalR $_n$ such that the following hold:

- SomeTotalR_n is extension closed over all finite σ_n -structures, but is not equivalent over this class to any Π_{2n+1} sentence.
- **②** SomeTotalR_n can be expressed in Datalog(\neq , \neg).

We will see the following:

- Construction of SomeTotalR_n
- Datalog(\neq , \neg) expressibility
- Construction of a suitable model $\mathcal{M}_{n,k}$ and non-model $\mathcal{N}_{n,k}$ such that $\mathcal{N}_{n,k} \Rrightarrow_{2n+1,k} \mathcal{M}_{n,k}$

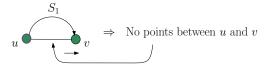
The generalized sentence SomeTotalR $_n$

Construction of SomeTotalR_n

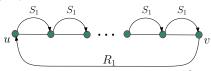
SomeTotalR₁ := (LO
$$\land$$
 PartialSucc₁) $\rightarrow \exists u \exists v \text{ RTotal}_1(u, v)$
($\in \text{FO}(\sigma_1) \text{ where } \sigma_1 = \{\leq, R_1, S_1\}$)

 $LO := " \le is a linear order"$

 $PartialSucc_1 := \forall u \forall v$



$$RTotal_1(u, v) :=$$



Construction of SomeTotalR_n

SomeTotalR_n := (LO
$$\land$$
 PartialSucc_n) $\rightarrow \exists u \exists v \text{ RTotal}_n(u, v)$
($\in \text{FO}(\sigma_n)$ where $\sigma_n = \sigma_{n-1} \cup \{P_n, R_n, S_n\}$)

 $LO := `` \leq is a linear order"$

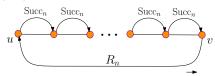
 $PartialSucc_n := \forall u \forall v$

$$Succ_n := P_n(u) \land P_n(v) \land S_n(u,v) \land Some Total R_{n-1}^{[u,v]}$$

$$u \Rightarrow \text{No } P_n \text{ points between } u \text{ and } v$$

$$\bullet - P_n$$

 $RTotal_n(u, v) :=$



Construction of SomeTotalR_n

SomeTotalR_n := (LO
$$\land$$
 PartialSucc_n) $\rightarrow \exists u \exists v \text{ RTotal}_n(u, v)$
(\in FO(σ_n) where $\sigma_n = \sigma_{n-1} \cup \{P_n, R_n, S_n\}$)
LO := " \leq is a linear order"
PartialSucc_n := $\forall u \forall v \text{Succ}_n(u, v) \rightarrow \forall z (P_n(z) \rightarrow (z \leq u \lor v \leq z))$
Succ_n(u, v) := $P_n(u) \land P_n(v) \land S_n(u, v) \land \text{SomeTotalR}_{n-1}^{[u,v]}$
RTotal_n(u, v) := $P_n(u) \land P_n(v) \land S_n(u, v) \land \text{SomeTotalR}_{n-1}^{[u,v]}$
RTotal_n(u, v) := $P_n(u) \land P_n(v) \land R_n(v, u) \land \forall z (P_n(z) \land u \leq z \land z < v) \rightarrow \exists w (P_n(w) \land z < w \land w \leq v \land \text{Succ}_n(z, w))$

SomeTotalR_n as a Datalog(\neq , \neg) program

- We construct $\mathsf{Datalog}(\neq, \neg)$ programs inductively for $\mathsf{SomeTotalR}_n^{[x,y]}$ with start symbol $\mathsf{STR}_n(x,y)$.
- Then the $\mathsf{Datalog}(\neq, \neg)$ program for $\mathsf{SomeTotalR}_n$ is simply

$$\mathsf{SomeTotalR}_n \longleftarrow \mathsf{STR}_n(x,y)$$

- The Datalog(\neq , \neg) program for SomeTotalR₁ is similar to that for Tait's sentence. (It also contains the program for \neg LO).
- Assume the program for SomeTotalR $_{n-1}^{[x,y]}$ has been constructed.

SomeTotalR_n as a Datalog(\neq , \neg) program

$$SomeTotalR_n := (LO \land PartialSucc_n) \rightarrow \exists u \exists v \ RTotal_n(u, v)$$

 $PartialSucc_n := \forall u \forall v$

$$Succ_n \ (:= P_n(u) \land P_n(v) \land S_n(u,v) \land \operatorname{SomeTotalR}_{n-1}^{[u,v]})$$

$$\Rightarrow \quad \operatorname{No} \ P_n \ \operatorname{points} \ \operatorname{between} \ u \ \operatorname{and} \ v$$

$$\neg \mathrm{PartialSucc}_n := \exists u \exists v \; \mathrm{Succ}_n(u,v) \wedge \exists z \; \begin{pmatrix} P_n(z) \wedge \\ u \leq z \wedge z \leq v & \wedge \\ u \neq z \wedge z \neq v \end{pmatrix}$$

 $Datalog(\neq, \neg)$ program for $\neg PartialSucc_n$:

$$Succ_n(u, v) \longleftarrow P_n(u), P_n(v), S_n(u, v), STR_{n-1}(u, v)$$

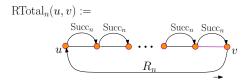
$$NotPartialSucc_n \longleftarrow Succ_n(u, v), X(u, v)$$

$$X(u, v) \longleftarrow P_n(z), u \le z, z \le v, u \ne z, z \ne v$$

A. Sankaran

SomeTotalR_n as a Datalog(\neq , \neg) program

 $SomeTotalR_n := (LO \land PartialSucc_n) \rightarrow \exists u \exists v \ RTotal_n(u, v)$



Datalog(\neq , \neg) programs for RTotal_n(u, v) and STR_n(x, y): RTotal_n(u, v) \longleftarrow R_n(v, u) Total_n(u, v) Total_n(u, v) \longleftarrow Succ_n(u, v) | Succ_n(u, z), Total_n(z, v) STR_n(x, y) \longleftarrow NotLO, NotPartialSucc_n, x < u, v < v.RTotal_n(u, v) Inexpressibility of SomeTotalR_n in Π_{2n+1} via showing $\mathcal{N}_{n,k} \Rrightarrow_{2n+1,k} \mathcal{M}_{n,k}$

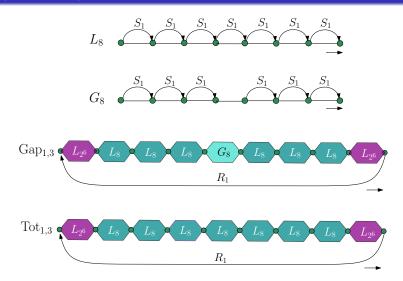
Proof approach

- For each k, we construct a model $\mathcal{N}_{n,k}$ and a non-model $\mathcal{N}_{n,k}$ of SomeTotalR_n such that $\mathcal{N}_{n,k} \Rightarrow_{2n+1,k} \mathcal{M}_{n,k}$ holds.
- Then for every $\Pi_{2n+1,k}$ sentence θ , we have $\mathfrak{M}_{n,k} \models \theta \to \mathfrak{N}_{n,k} \models \theta$; then $\theta \not\leftrightarrow \mathsf{SomeTotalR}_n$.

A. Sankaran YR-OWLS, Nov 11, 2020 25/30

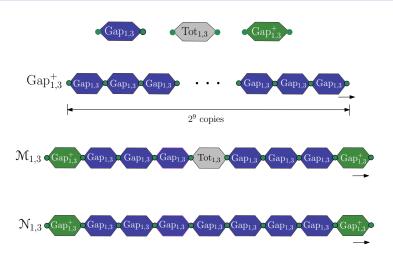
Construction of $\mathfrak{M}_{n,k}$ and $\mathfrak{N}_{n,k}$ (Illustrated for k=3)

$\mathcal{M}_{1,3}$ and $\mathcal{N}_{1,3}$

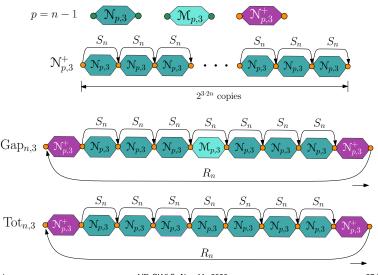


A. Sankaran

$\mathcal{M}_{1,3}$ and $\mathcal{N}_{1,3}$

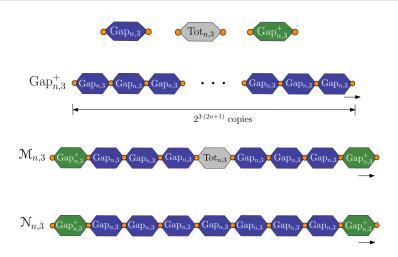


$\mathcal{M}_{n,3}$ and $\mathcal{N}_{n,3}$



A. Sankaran

$\mathcal{M}_{n,3}$ and $\mathcal{N}_{n,3}$



Inexpressibility of SomeTotalR_n in Π_{2n+1}

All of the following can be shown analogously to the corresponding statements for Tait's sentence.

- The sentence SomeTotalR_n is not extension closed in the infinite.
- $\mathcal{M}_{n,k} \models \mathsf{SomeTotalR}_n$ but $\mathcal{N}_{n,k} \not\models \mathsf{SomeTotalR}_n$.
- $\mathsf{Tot}_{n,k} \Rrightarrow_{2n,k} \mathsf{Gap}_{n,k}$ and $\mathfrak{N}_{n,k} \Rrightarrow_{2n+1,k} \mathfrak{M}_{n,k}$.
- Then every $\Pi_{2n+1,k}$ sentence true in $\mathcal{M}_{n,k}$ is also true in $\mathcal{N}_{n,k}$; whereby SomeTotalR_n cannot be equivalent to a $\Pi_{2n+1,k}$ sentence.

Conclusion

Main results revisited

Theorem

Tait's counterexample is a Σ_3 FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence. Further, the counterexample can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Theorem

For every n, there is a vocabulary σ_n and an $\mathsf{FO}(\sigma_n)$ Σ_{2n+1} sentence φ_n that is extension closed over all finite structures, but that is not equivalent over this class to any Π_{2n+1} sentence. Further, φ_n can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Main results revisited

Theorem

Tait's counterexample is a Σ_3 FO sentence that is extension preserved over all finite structures, but is not equivalent over this class to any Π_3 sentence. Further, the counterexample can be expressed in $\mathsf{Datalog}(\neq, \neg)$.

Theorem

No prefix class of FO is expressive enough to capture:

- Extension closed FO properties in the finite
- FO \cap Datalog(\neq , \neg) queries in the finite

Future directions

- The sentence SomeTotalR_n is over a vocabulary σ_n that grows with n.
- Further, σ_n can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1.

Is there a fixed (finite) vocabulary σ^* such that prefix classes fail to capture extension preserved FO properties of finite σ^* -structures?

Question 2.

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Future directions

- The sentence SomeTotalR_n is over a vocabulary σ_n that grows with n.
- Further, σ_n can be seen as the vocabulary of ordered vertex colored and edge colored graphs.

Question 1. (Resolved: Yes! $|\sigma^*| \leq 4$)

Is there a fixed (finite) vocabulary σ^* such that prefix classes fail to capture extension preserved FO properties of finite σ^* -structures?

Question 2. (Not resolved yet)

Do prefix classes fail to capture extension preserved FO properties of undirected graphs (possibly vertex colored)?

Thank you!