The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Distributive Laws in the Boom Hierarchy

Maaike Zwart

University of Oxford

2 December 2020

Too Many Constants Theorem

Conclusion O

Overview

- Introduction
 - Motivation: monads and monad compositions
 - Reminder: algebraic theories and composites
 - My strategy proving for no-go theorems
- Boom hierarchy: examples and intuition
- Spotlight theorem: too many constants theorem
- Conclusion

Motivation: monads and monad compositions

A monad is a categorical structure used for:

• Modelling of data structures (lists, trees, etc)

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

COMPUTER SCIENCE

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

- Computational effects such as probability or non-determinism can be modelled as monads
- Haskell programs are structured using monads
- Algebraic theories such as those of monoids, groups, semilattices and pointed sets correspond to monads
- In topology and order theory, closure operators are monads
- Every monoid is monad
- Preorders and metric spaces are monads
- Enriched categories are monads
- Internal categories are monads
- Operads and multicategories are monads
- Lawvere theories, PROs and PROPs are monads
- Distributive laws between monads are monads (!)
- ► ...

01 (01 (21 (2) (2) 2 OLO

SCIENCE

Motivation: monads and monad compositions

A monad is a categorical structure used for:

- Modelling of data structures (lists, trees, etc)
- Modelling of computation (exception, reader, writer, etc)

Monads, monads everywhere

- Computational effects such as probability or non-determinism can be modelled as monads
- Haskell programs are structured using monads
- Algebraic theories such as those of monoids, groups, semilattices and pointed sets correspond to monads
- In topology and order theory, closure operators are monads
- Every monoid is monad
- Preorders and metric spaces are monads
- Enriched categories are monads
- Internal categories are monads
- Operads and multicategories are monads
- Lawvere theories, PROs and PROPs are monads
- Distributive laws between monads are monads (!)
- ►

Compositions of monads allow simultaneous modelling of multiple computational aspects.

The Boom Hierarch

Too Many Constants Theorem

Conclusion O

Monads: What are they?

A monad is a triple $\langle T, \eta, \mu \rangle$, with *T* an endofunctor and $\eta : 1 \Rightarrow T$, $\mu : TT \Rightarrow T$ natural transformations, such that:

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Monads: What are they?

A monad is a triple $\langle T, \eta, \mu \rangle$, with *T* an endofunctor and $\eta : 1 \Rightarrow T$, $\mu : TT \Rightarrow T$ natural transformations, such that:

Examples:

- List
- Multiset/Bag
- Powerset
- Distribution

- Exception
- Writer
- Reader

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

• Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : \mathbf{1} \Rightarrow TS$$

• Same for μ^{TS} ?

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

- Same for μ^{TS} ?
 - Need:

 μ^{TS} : TSTS \Rightarrow TS

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

- Same for μ^{TS} ?
 - Need:

 $\mu^{TS}:TSTS \Rightarrow TS$

• Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

- Same for μ^{TS} ?
 - Need:

 $\mu^{TS}: TSTS \Rightarrow TS$

• Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

Solution:

 $\lambda: ST \Rightarrow TS$

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Composing Monads

- Find η^{TS}, μ^{TS} such that $\langle TS, \eta^{TS}, \mu^{TS} \rangle$ is a monad.
- Good candidate for η^{TS} :

$$\eta^T \eta^S : 1 \Rightarrow TS$$

- Same for μ^{TS} ?
 - Need:

 $\mu^{TS}: TSTS \Rightarrow TS$

• Have:

 $\mu^T \mu^S : TTSS \Rightarrow TS$

Solution:

 $\lambda:ST \Rightarrow TS$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

э

• If λ is a *distributive law*, then the above choices form a monad.

Problem:

• Distributive laws are hard to find. (time consuming)

Problem:

- Distributive laws are hard to find. (time consuming)
- Axioms are hard to check. (resulting in mistakes in the literature!)

Problem:

- Distributive laws are hard to find. (time consuming)
- Axioms are hard to check. (resulting in mistakes in the literature!)
- Distributive laws might not even exist.

Problem:

- Distributive laws are hard to find. (time consuming)
- Axioms are hard to check. (resulting in mistakes in the literature!)
- Distributive laws might not even exist.

Problem:

- Distributive laws are hard to find. (time consuming)
- Axioms are hard to check. (resulting in mistakes in the literature!)
- Distributive laws might not even exist.

What I do:

• Find no-go theorems for distributive laws.

Problem:

- Distributive laws are hard to find. (time consuming)
- Axioms are hard to check. (resulting in mistakes in the literature!)
- Distributive laws might not even exist.

What I do:

• Find no-go theorems for distributive laws.

My weapon of choice:

• Algebra.

A quick reminder: algebraic theories

Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Reflexivity:	t = t	Axiom:	$\frac{(s,t) \in E}{s=t}$
Symmetry:	$\frac{t = t'}{t' = t}$	Substitution:	$\frac{t = t'}{t[f] = t'[f]}$
Transitivity:	$\frac{t=t',t'=t''}{t'=t''}$	For any σ :	$\frac{t_1 = t'_1, \dots, t_n = t'_n}{\sigma(t_1, \dots, t_n) = \sigma(t'_1, \dots, t'_n)}$

A quick reminder: algebraic theories

Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Monoids:

Abelian groups:

$$\Sigma = \{1^{(0)}, *^{(2)}\}$$

$$E = \{1 * x = x = x * 1, (x * y) * z = x * (y * z)\}$$

$$\Sigma = \{0^{(0)}, -^{(1)}, +^{(2)}\}$$

$$E = \{0 + x = x = x + 0, (x + y) + z = x + (y + z), x + y = y + x, (x + (-x)) = 0 = (-x) + x\}$$

A quick reminder: algebraic theories

Algebraic theory:

- Signature Σ and a set of variables give *terms*.
- Axioms *E* and equational logic give equivalence of terms.

Monoids:

Abelian groups:

$$\begin{split} \Sigma &= \{1^{(0)}, *^{(2)}\} \\ E &= \{1 * x = x = x * 1, \\ (x * y) * z = x * (y * z)\} \end{split} \qquad \begin{split} \Sigma &= \{0^{(0)}, -^{(1)}, +^{(2)}\} \\ E &= \{0 + x = x = x + 0, \\ (x + y) + z = x + (y + z), \\ x + y = y + x, \\ x + (-x) = 0 = (-x) + x\} \end{split}$$

Monads arise from free/forgetful adjunction between Set and category of (Σ, E) -algebras.

Composite theories: the equivalent of distributive laws

Example: Rings are a *composite theory*¹ of Abelian groups after Monoids.

Rings:

$$\begin{split} \Sigma &= \Sigma^{A} \oplus \Sigma^{M} \\ &= \{0^{(0)}, 1^{(0)}, -^{(1)}, +^{(2)}, *^{(2)}\} \\ E &= E^{A} \cup E^{M} \cup \\ &\{a * (b + c) = (a * b) + (a * c) \\ &(a + b) * c = (a * c) + (b * c)\} \end{split}$$

¹Piróg and Staton 2017.

Using composite theories:

• Choose two theories to compose.

- Choose two theories to compose.
- Assume composite theory exists.

- Choose two theories to compose.
- Assume composite theory exists.
- Manipulate terms.

- Choose two theories to compose.
- Assume composite theory exists.
- Manipulate terms.
- Derive contradiction of form x = y.

Too Many Constants Theorem

My strategy: no-go theorems for distributive laws

- Choose two theories to compose.
- Assume composite theory exists.
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.

Image based on an image from Valter Bispo Used under the creative commons licence

Too Many Constants Theorem

My strategy: no-go theorems for distributive laws

- Choose two theories to compose.
- Assume composite theory exists.
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.
- List equations in the proof.

Image based on an image from Valter Bispo Used under the creative commons licence

Too Many Constants Theorem

My strategy: no-go theorems for distributive laws

- Choose two theories to compose.
- Assume composite theory exists.
- Manipulate terms.
- Derive contradiction of form x = y.
- Conclusion: no such theory possible.
- List equations in the proof.
- \Rightarrow No-go theorem.

Image based on an image from Valter Bispo Used under the creative commons licence

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy is a set of data structures:

The Boom Hierarchy •0000000 Too Many Constants Theorem

Conclusion O

The Boom Hierarchy

The Boom Hierarchy is a set of data structures:

Why this hierarchy?

- Practical Monads
- Simple Theories
- Interesting Properties

・ロト ・ 同ト ・ ヨト ・ ヨト

COMPUTER

SCIENCE

э

OXFORT

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

A first look

The Boom Hierarchy

Possibility of compositions Column ° Row.

	Trees	Lists	Bags	Sets
Trees	N	N	Y	Y
Lists	N	N	Y	У
Bags	N	N	Y	Y
Sets	N	N	N	N

- Manes and Mulry 2007, 2008
- Klin and Salamanca 2018
- Zwart and Marsden 2019, 2020 (under review)

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

A first look

The Boom Hierarchy

Possibility of compositions Column ° Row.

	Trees	Lists	Bags	Sets
Trees	N	N	Y	Y
Lists	N	N	Y	У
Bags	N	N	Y	Y
Sets	N	N	N	N

The Non-Empty Boom Hierarchy

Possibility of compositions Column ° Row.

	Trees	Lists	Bags	Sets
Trees	Y	Y	Y	Y
Lists	Y	Y	Y	Y
Bags	Y	?	Y	Y
Sets	?	?	N	N

- Manes and Mulry 2007, 2008
- Klin and Salamanca 2018
- Zwart and Marsden 2019, 2020 (under review)

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Extending the Boom hierarchy

• Boom Hierachy: 4 structures (8 if non-empty are considered)

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.
 - Unit (U): Y/N

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.
 - Unit (U): Y/N
 - Associativity (A): Y/N

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.
 - Unit (U): Y/N
 - Associativity (A): Y/N
 - Commutativity (C): Y/N

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.
 - Unit (U): Y/N
 - Associativity (A): Y/N
 - Commutativity (C): Y/N
 - Idempotence (I): Y/N

- Boom Hierachy: 4 structures (8 if non-empty are considered)
- Extension: all combinations of axioms gives 16 structures.
 - Unit (U): Y/N
 - Associativity (A): Y/N
 - Commutativity (C): Y/N
 - Idempotence (I): Y/N
- UAC stands for a structure with signature $\Sigma = \{0^{(0)}, +^{(2)}\}$ and the equations Unit, Associativity, Commutativity: bags.

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

A dramatic result

Combinations where both structures have units:

resistancy of compositions column new.													
	U	UI	UC	UCI	UA	UAI	UAC	UACI					
U	N	N	N	N	N	N	Y	Y					
UI	N	N	N	N	N	N	N	N					
UC	N	N	N	N	N	N	Y	Y					
UCI	N	N	N	N	N	N	N	N					
UA	N	N	N	N	N	N	Y	Y					
UAI	N	N	N	N	N	N	N	N					
UAC	N	N	N	N	N	N	Y	Y					
UACI	N	N	N	N	N	N	N	N					

The Extended Boom Hierarchy (1/4) Possibility of compositions Column • Row.

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Venturing into unknown territory

The non-empty equivalents are more promising:

The Extended Boom Hierarchy (2/4)

	ø	1	С	CI	Α	AI	AC	ACI					
ø	Y		Y		Y		Y	Y					
I		N	N	N		N	N	N					
С	Y		Y				Y	Y					
CI		N	N	N		N	N	N					
Α	Y				Y		Y	Y					
AI		N	N	N		N	N	N					
AC	Y						Y	Y					
ACI		N	N	N		N	N	N					

Possibility of compositions Column . Row

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

The full picture

Extended Boom Hierarchy, showing which compositions of form Column ° Row are possible.

Theories all consist of one binary operator, that is possibly idempotent (I), commutative (C), and/or associative (A), with possibly a constant that satisfies the unit equations. (U) Y indicates a successfull composition, N indicates that the composition is impossible, empty cells represent unknowns. My own contributions have been highlighted in green.

	ø	1	С	CI	A	AI	AC	ACI	U	UI	UC	UCI	UA	UAI	UAC	UACI
ø	Y		Y		Y		Y	Y							Y	Y
I.		N	N	N		N	N	N		N	N	N		N	N	N
С	Y		Y				Y	Y							Y	Y
CI		N	N	N		N	N	N		N	N	N		N	N	N
A	Y				Y		Ŷ	Ŷ							Y	Y
AI		N	N	N		N	N	N		N	N	N		N	N	N
AC	Y						Y	Y							Y	Y
ACI			N			N	N	N		N						N
U	Y						Y	Y	N	N	N	N	N	N	Y	Y
UI		N	N	N		N	N									
UC	Y						Y	Y	N	N	N	N	N	N	Y	Y
UCI		N	N	N		N	N	N	N	N	N	N	N	N	N	N
UA	Y						Y	Y	N	N	N	N	N	N	Y	Y
UAI		N	N	N		N	N	N	N	N	N	N	N	N	N	N
UAC	Y						Y	Y							Y	Y
UACI			N			N	N		N							

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

• Idempotence/Units are bad.

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

 Idempotence/Units are bad. (but not always)

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

• Idempotence/Units are bad. (but not always)

$$x \ast x = x \qquad x \ast 1 = x$$

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

• Idempotence/Units are bad. (but not always)

$$x * x = x$$
 $x * 1 = x$ $x \lor (x \land y) = x$

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

• Idempotence/Units are bad. (but not always)

x * x = x x * 1 = x $x \lor (x \land y) = x$

• Key property: reducing a term to a variable.

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Lessons from the Boom hierarchy

• Idempotence/Units are bad.

(but not always)

x * x = x x * 1 = x $x \lor (x \land y) = x$

• Key property: reducing a term to a variable.

• Conjecture:

Equations that reduce a term to a variable are necessary for distributive laws to fail.

(but not sufficient)

The Boom Hierarchy

Too Many Constants Theorem

Conclusion O

Predictions

Extended Boom Hierarchy, showing which compositions of form Column ° Row are possible.

Theories all consist of one binary operator, that is possibly idempotent (I), commutative (C), and/or associative (A), with possibly a constant that satisfies the unit equations. (U) Y indicates a successfull composition, N indicates that the composition is impossible, empty cells represent unknowns. My own contributions have been highlighted in green.

	ø	1	С	CI	Α	AI	AC	ACI	U	UI	UC	UCI	UA	UAI	UAC	UACI
ø	Y		Y		Y		Y	Y							Y	Y
I			N			N	N	N		N	N	N		N	N	N
С	Y		Y				Y	Y							Y	Y
CI		N	N	N		N	N	N		N	N	N		N	N	N
А	Y				Y		Y	Y							Y	Y
AI		N	N	N			N			N	N	N		N	N	N
AC	Y						Y	Y							Y	Y
ACI		N	N				N	N			N	N		N	N	N
U	Y						Y	Y	N	N	N	N	N	N	Y	Y
UI		N	N	N		N	N	N	N	N	N	N	N	N	N	N
UC	Y						Y	Y	N	N	N	N	N	N	Y	Y
UCI			N				N		N	N	N	N	N	N	N	N
UA	Y						Y	Y			N	N	N	N	Y	Y
UAI			N				N								N	N
UAC	Y						Y	Y			N	N	N	N	Y	Y
UACI			N	N		N	N		N							

The Boom Hierarch 00000000 Too Many Constants Theorem

Conclusion O

When it's just too much

Too Many Constants Theorem

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

When it's just too much

Too Many Constants Theorem

But first, a proposition.

The Boom Hierarch 00000000 Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term *s* such that:

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:

• *s* can be reduced to a variable via a substitution.

The Boom Hierarch 00000000 Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:

- *s* can be reduced to a variable via a substitution.
 - e.g. x * y with * idempotent, $x \lor (y \land z)$ with absorption, etc.

The Boom Hierarch

Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:

- *s* can be reduced to a variable via a substitution.
 - e.g. x * y with * idempotent, $x \lor (y \land z)$ with absorption, etc.

And let \mathbb{T} be an algebraic theory with a constant 0 such that:

The Boom Hierarch 00000000 Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:

• *s* can be reduced to a variable via a substitution.

e.g. x * y with * idempotent, $x \lor (y \land z)$ with absorption, etc.

And let \mathbb{T} be an algebraic theory with a constant 0 such that:

 $t[f] =_{\mathbb{T}} 0 \Rightarrow t =_{\mathbb{T}} 0$

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

An important proposition

We need an interaction law:

Proposition (Multiplicative Zeroes)

Let S be an algebraic theory with a term s such that:

- *s* can be reduced to a variable via a substitution.
 - e.g. x * y with * idempotent, $x \lor (y \land z)$ with absorption, etc.

And let ${\mathbb T}$ be an algebraic theory with a constant 0 such that:

 $t[f] =_{\mathbb{T}} 0 \Rightarrow t =_{\mathbb{T}} 0$

Any composite theory \mathbb{U} of \mathbb{T} after \mathbb{S} has the following interaction: For any $x \in var(s)$:

 $s[0/x] =_{\mathbb{U}} 0.$

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Theorem (No-Go Theorem: Too Many Constants)

Let \mathbb{S} be an algebraic theory with a term s such that:

- s can be reduced to a variable via a substitution.
- s has two or more free variables.

And let \mathbb{T} be an algebraic theory with at least two constants 0,1 such that for both constants:

$$t[f] =_{\mathbb{T}} 0 \Rightarrow t =_{\mathbb{T}} 0 \qquad t[f] =_{\mathbb{T}} 1 \Rightarrow t =_{\mathbb{T}} 1$$

Then there exists no composite theory of \mathbb{T} after \mathbb{S} .

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that $\mathbb U$ is a composite theory of $\mathbb T$ after $\mathbb S$

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that \mathbb{U} is a composite theory of \mathbb{T} after \mathbb{S} Then by Proposition 1 we have:

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that $\mathbb U$ is a composite theory of $\mathbb T$ after $\mathbb S$ Then by Proposition 1 we have:

s(x, y)

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that $\mathbb U$ is a composite theory of $\mathbb T$ after $\mathbb S$ Then by Proposition 1 we have:

s(x,y)[0/x,1/y]

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that $\mathbb U$ is a composite theory of $\mathbb T$ after $\mathbb S$ Then by Proposition 1 we have:

$$0 =_{\mathbb{U}} s(x, y) [0/x, 1/y] =_{\mathbb{U}} 1.$$

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Proof of the Too Many Constants Theorem

Proof.

Suppose that $\mathbb U$ is a composite theory of $\mathbb T$ after $\mathbb S$ Then by Proposition 1 we have:

$$0 =_{\mathbb{U}} s(x, y) [0/x, 1/y] =_{\mathbb{U}} 1.$$

Contradiction. So \mathbb{U} cannot be a composite of \mathbb{T} after \mathbb{S} .

The Boom Hierarchy 00000000 Too Many Constants Theorem

Another extension of the Boom hierarchy

Iterating Compositions in the Boom Hierarchy

Possibility of compositions Column ° Row.

	Trees	Lists	Bags	Sets	BT	BL	BB	ST	SL	SB
Trees	N	N	Y	Y						
Lists	N	N	Y	Y						
Bags	N	N	Y	Y						
Sets	N	N	N	N						
BT										
BL										
BB										
ST										
SL										
SB										

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Another extension of the Boom hierarchy

Iterating Compositions in the Boom Hierarchy

	Trees	Lists	Bags	Sets	BT	BL	BB	ST	SL	SB
Trees	N	N	Y	Y	N	N	N	N	N	N
Lists	N	N	Y	Y	N	N	N	N	N	N
Bags	N	N	Y	Y	N	N	N	N	N	N
Sets	N	N	N	N	N	N	N	N	N	N
BT					N	N	N	N	N	N
BL					N	N	N	N	N	N
BB					N	N	N	N	N	N
ST					N	N	N	N	N	N
SL					N	N	N	N	N	N
SB					N	N	N	N	N	N

Possibility of compositions Column ° Row.

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion O

Another extension of the Boom hierarchy

Iterating Compositions in the Boom Hierarchy

	Trees	Lists	Bags	Sets	BT	BL	BB	ST	SL	SB
Trees	N	N	Y	Y	N	N	N	N	N	N
Lists	N	N	Y	Y	N	N	N	N	N	N
Bags	N	N	Y	Y	N	N	N	N	N	N
Sets	N	N	N	N	N	N	N	N	N	N
BT	N	N	N	N	N	N	N	N	N	N
BL	N	N	N	N	N	N	N	N	N	N
BB	N	N	N	N	N	N	N	N	N	N
ST	N	N	N	N	N	N	N	N	N	N
SL	N	N	N	N	N	N	N	N	N	N
SB	N	N	N	N	N	N	N	N	N	N

Possibility of compositions Column ° Row.

The Boom Hierarchy 00000000 Too Many Constants Theorem

Conclusion

Conclusion

• Not all monads compose via a distributive law.

- https://www.cs.ox.ac.uk/people/maaike.zwart/
- maaike.annebeth@gmail.com

The Boom Hierarch

Too Many Constants Theorem

Conclusion

Conclusion

- Not all monads compose via a distributive law.
- Boom hierarchy provides some intuition.

- https://www.cs.ox.ac.uk/people/maaike.zwart/
- maaike.annebeth@gmail.com

The Boom Hierarch

Too Many Constants Theorem

Conclusion

э

人口 医子宫 医子宫 医子子口

Conclusion

- Not all monads compose via a distributive law.
- Boom hierarchy provides some intuition.
- Reducing a term to a variable key property for no-go theorems.

- https://www.cs.ox.ac.uk/people/maaike.zwart/
- maaike.annebeth@gmail.com

The Boom Hierarch

Too Many Constants Theorem

Conclusion

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusion

- Not all monads compose via a distributive law.
- Boom hierarchy provides some intuition.
- Reducing a term to a variable key property for no-go theorems.
- Too many constants / multiplicative zeroes prevent iterated distributive laws within the Boom hierarchy.
- https://www.cs.ox.ac.uk/people/maaike.zwart/
- maaike.annebeth@gmail.com