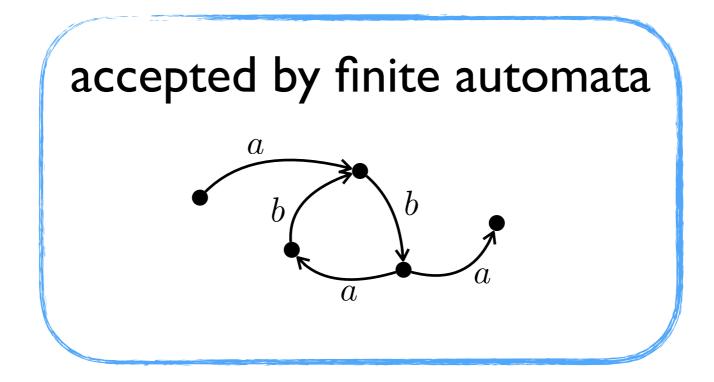


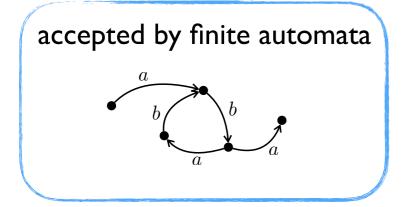
Monadic Monadic Second Order Logic

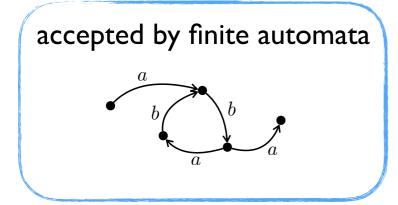
Mikołaj Bojańczyk, Bartek Klin, Julian Salamanca

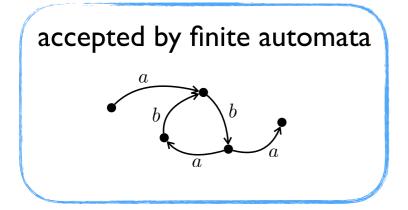
University of Warsaw

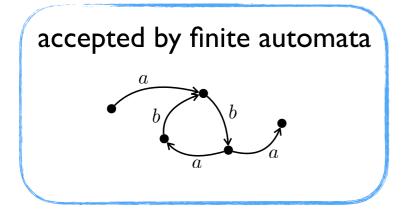
13 May 2020

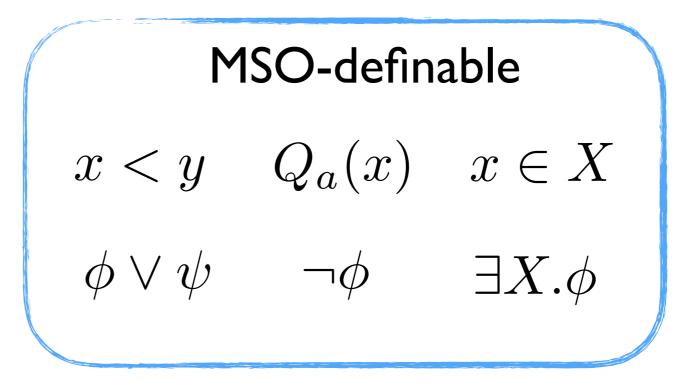




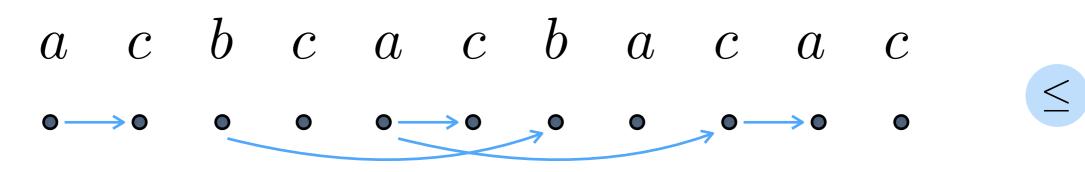


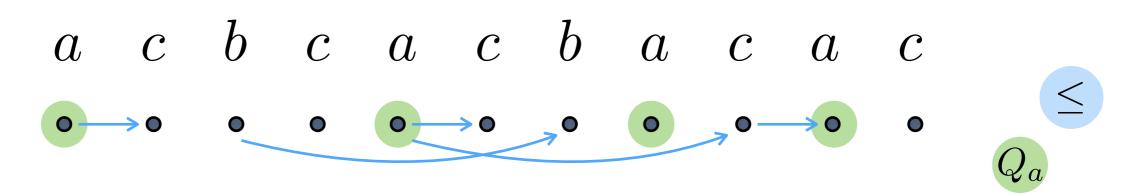


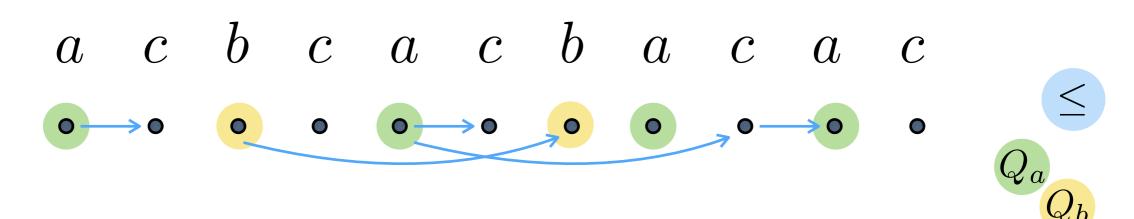


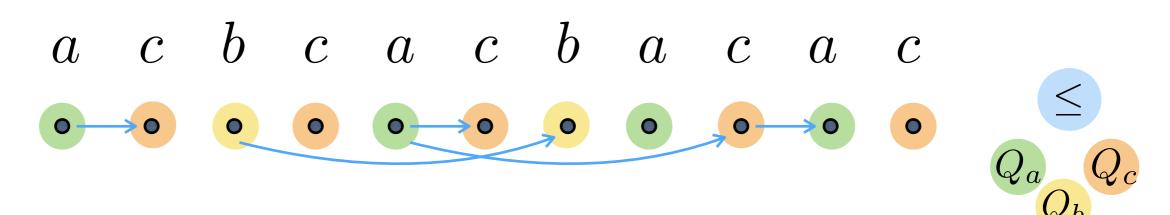


$$a \quad c \quad b \quad c \quad a \quad c \quad b \quad a \quad c \quad a \quad c$$

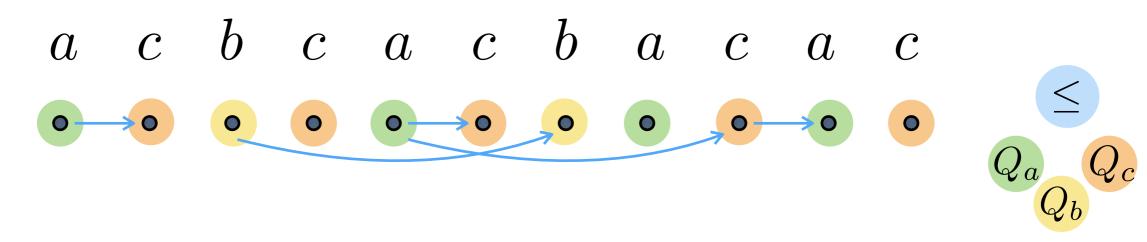








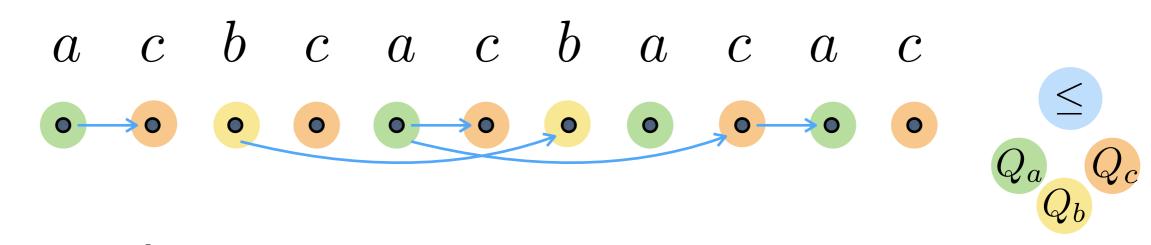
• words as relational structures:



• examples:

 $\forall x.Q_a(x) \Rightarrow \exists y.x < y \land Q_c(y)$

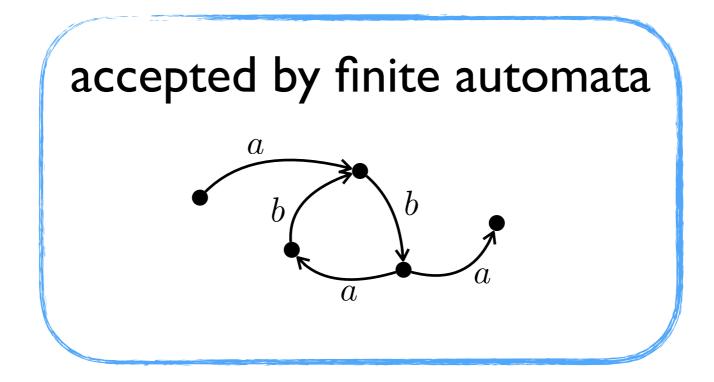
• words as relational structures:

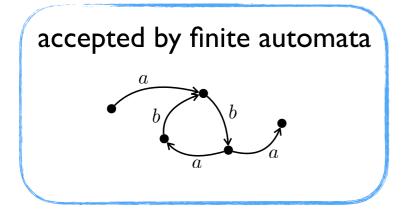


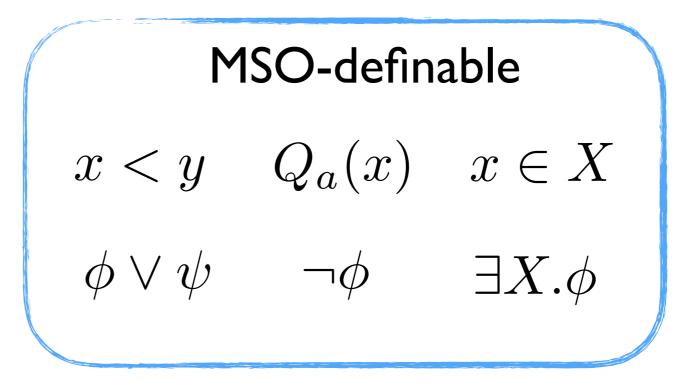
• examples:

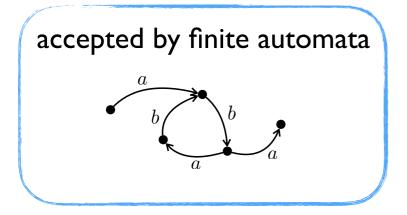
$$\forall x.Q_a(x) \Rightarrow \exists y.x < y \land Q_c(y)$$

$$\begin{aligned} \exists X. (\forall x \; \exists y \; y \leq x \land y \in X) \land \\ (\forall x \; \exists y \; y \geq x \land y \in X) \land \\ (\forall x \; \forall y \; (x < y \land \neg (\exists z \; x < z < y)) \Rightarrow (x \in X \Leftrightarrow y \notin X)). \end{aligned}$$

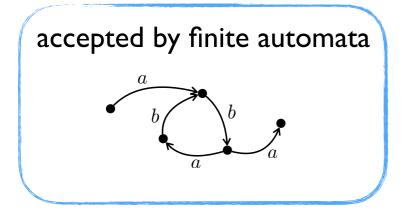


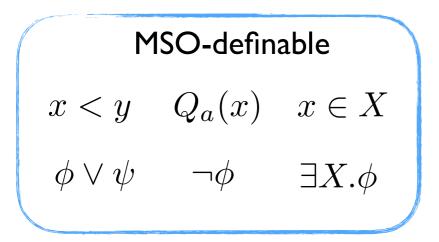


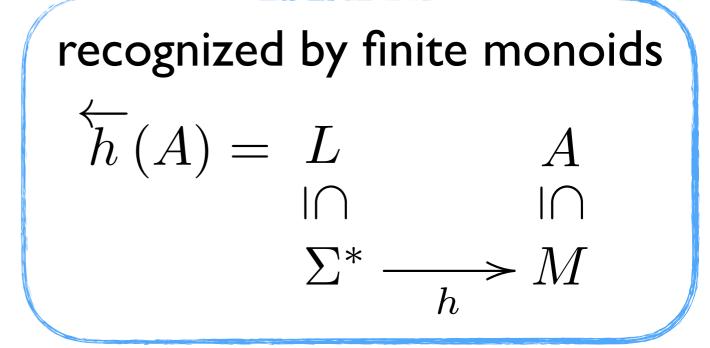


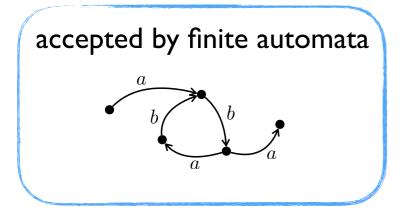


MSO-definable		
x < y	$Q_a(x)$	$x \in X$
$\phi \lor \psi$	$ eg \phi$	$\exists X.\phi$



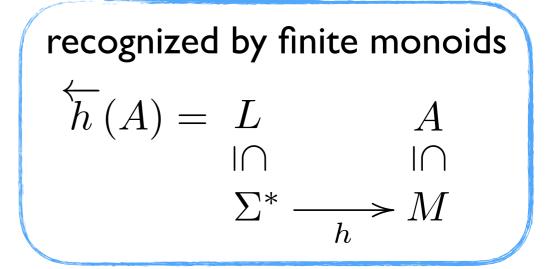




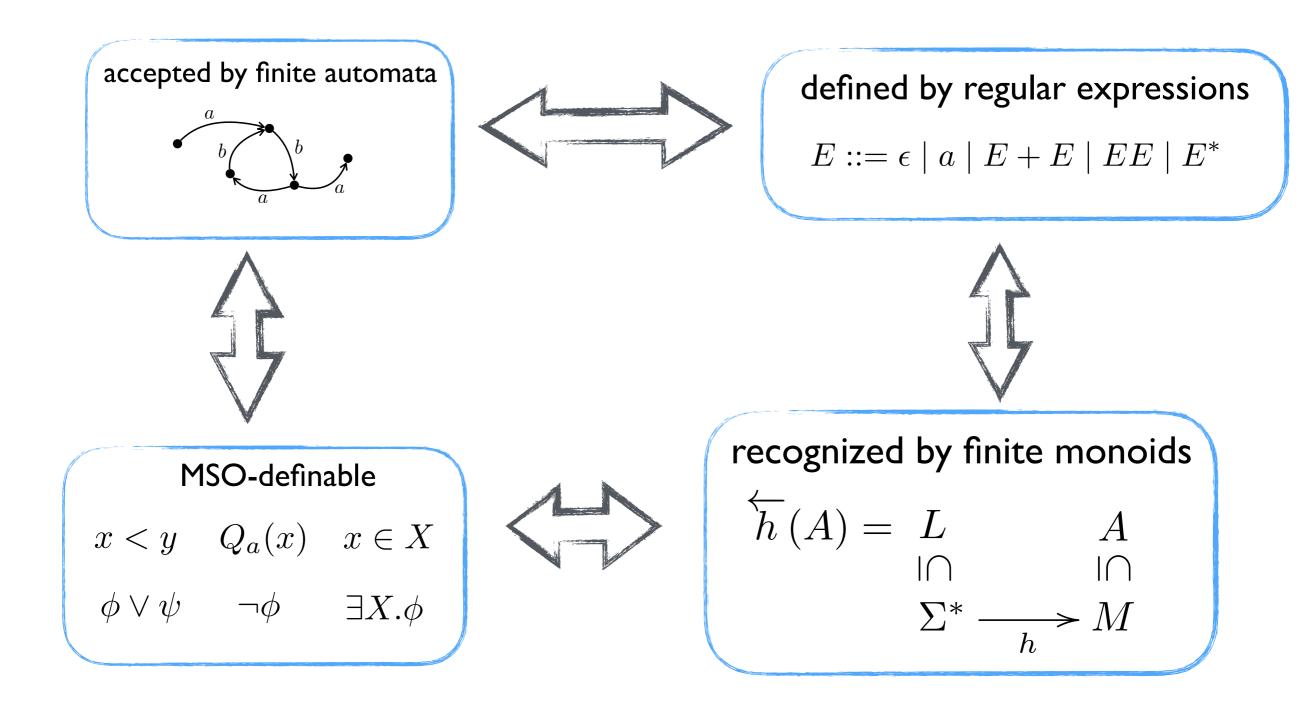


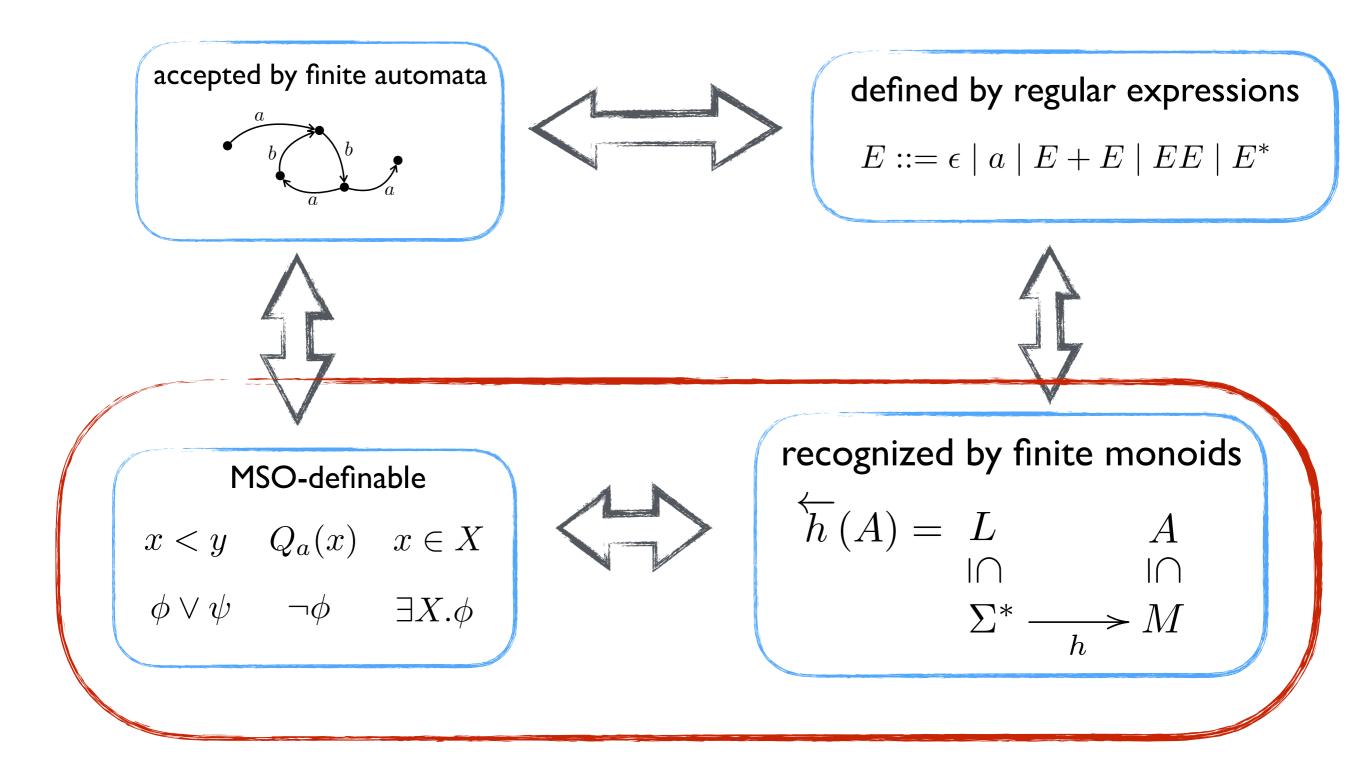
defined by regular expressions $E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$

MSO-definable		
$Q_a(x)$	$x \in X$	
$\neg \phi$	$\exists X.\phi$	
	MSO-defin $Q_a(x)$ $\neg \phi$	



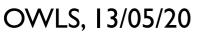
OWLS, 13/05/20

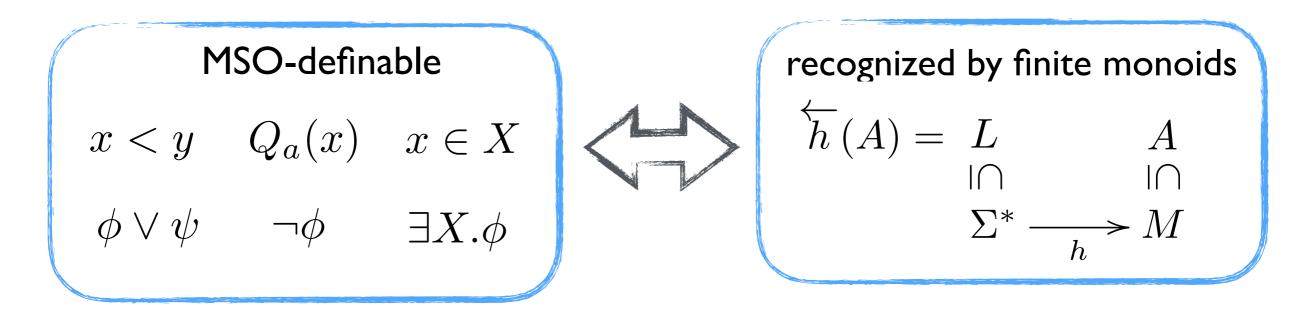


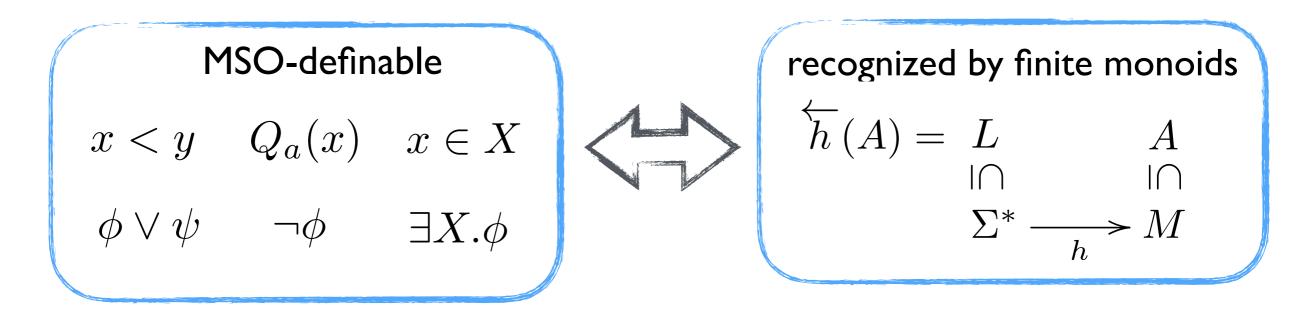


Things in this talk

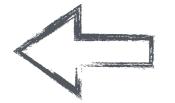
- finite words
- ω -words
- countable total orders
- scattered total orders
- total orders of size $\leq \mathfrak{c}$
- finite trees
- infinite trees
- graphs of bounded treewidth
- graphs of bounded cliquewidth



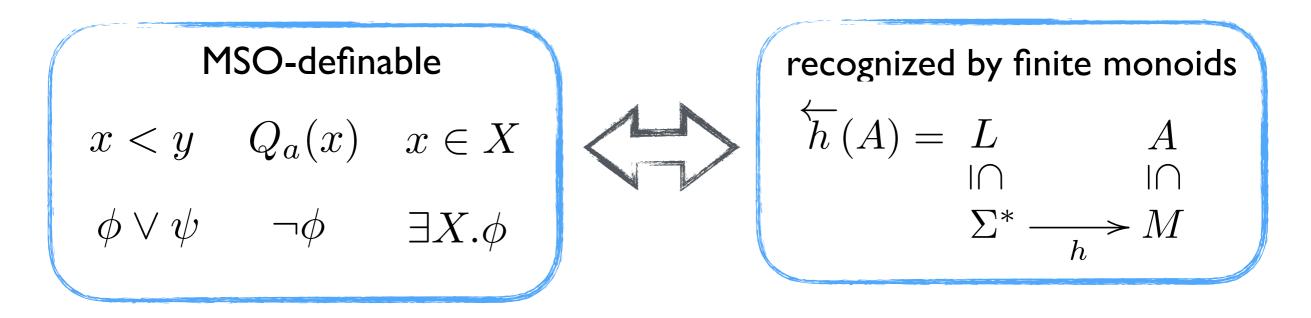




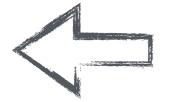
- quite easy for finite words or trees



- difficult (or open) for other structures
- structure-specific arguments

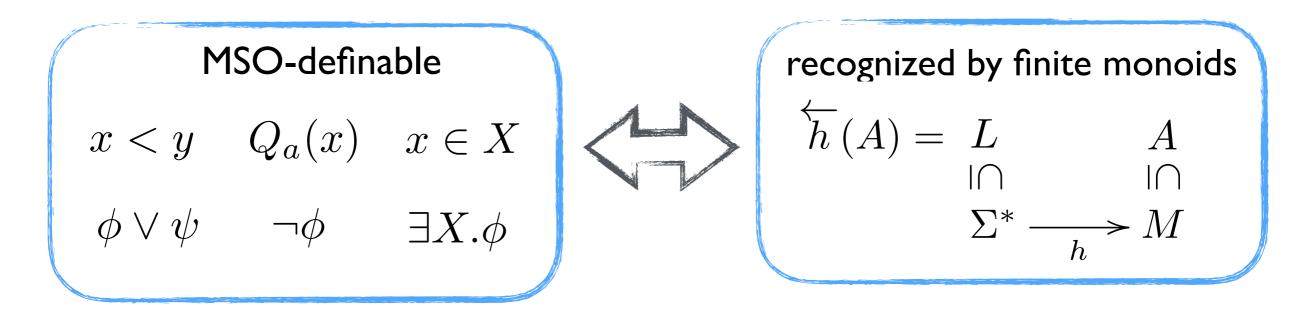


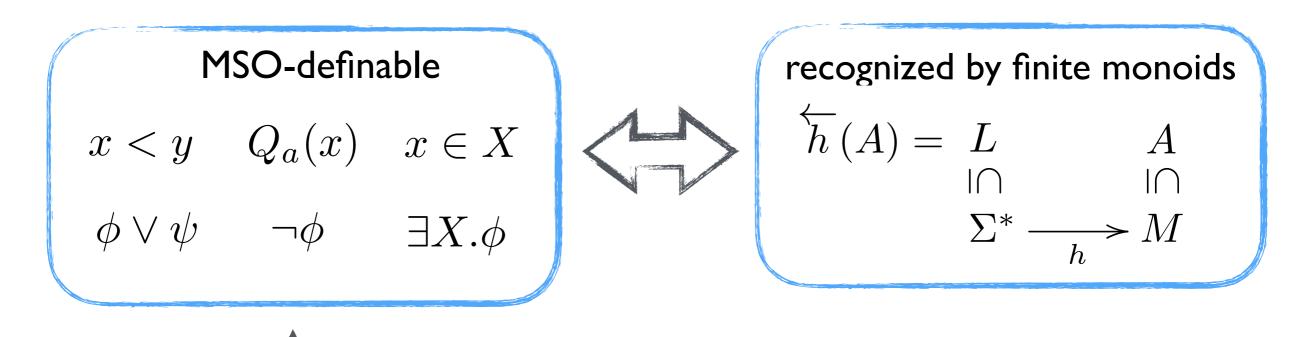
- quite easy for finite words or trees



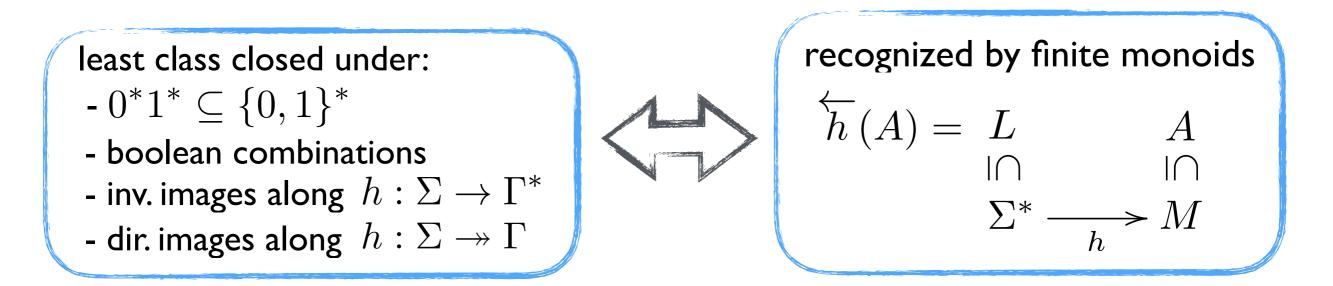
- difficult (or open) for other structures
 - structure-specific arguments

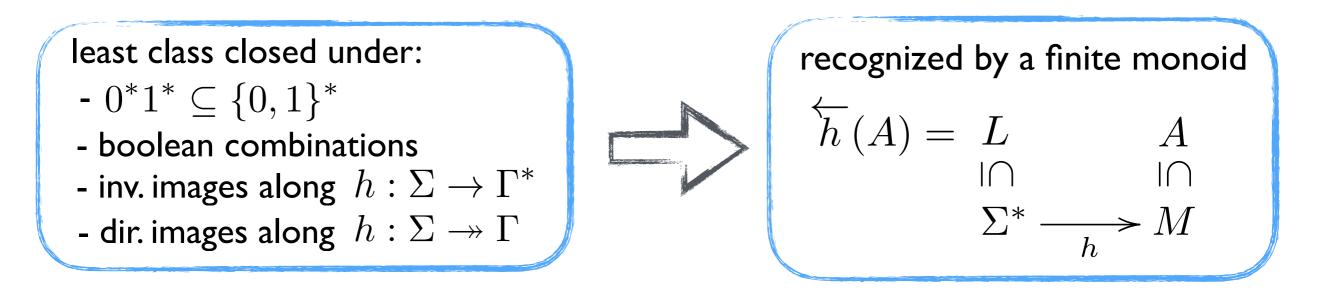
- relatively easy for all cases
- the arguments look generic



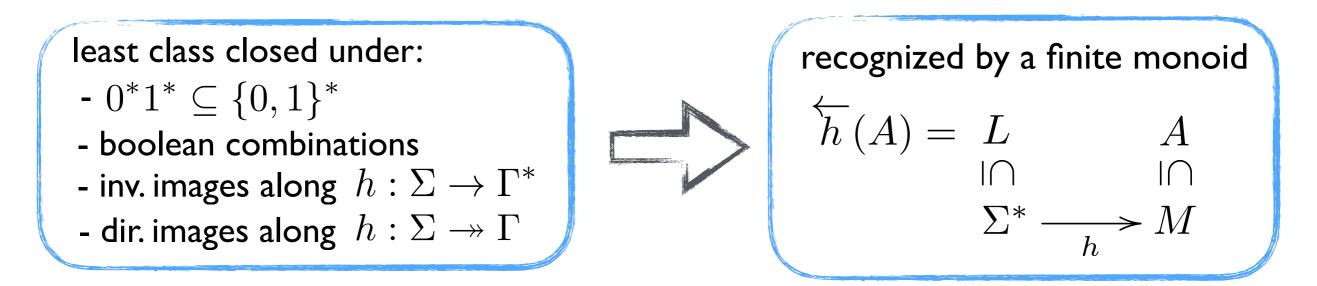


- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h: \Sigma \to \Gamma^*$
- dir. images along $h: \Sigma \twoheadrightarrow \Gamma$



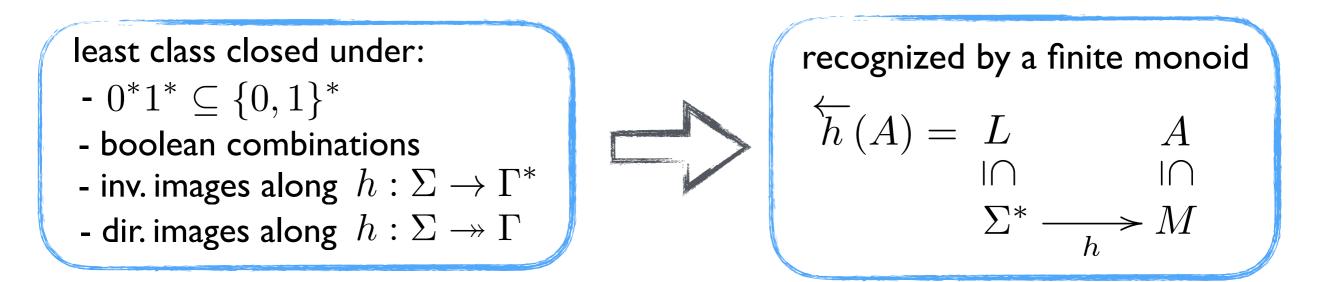


• $0^*1^* \subseteq \{0,1\}^*$ recognized



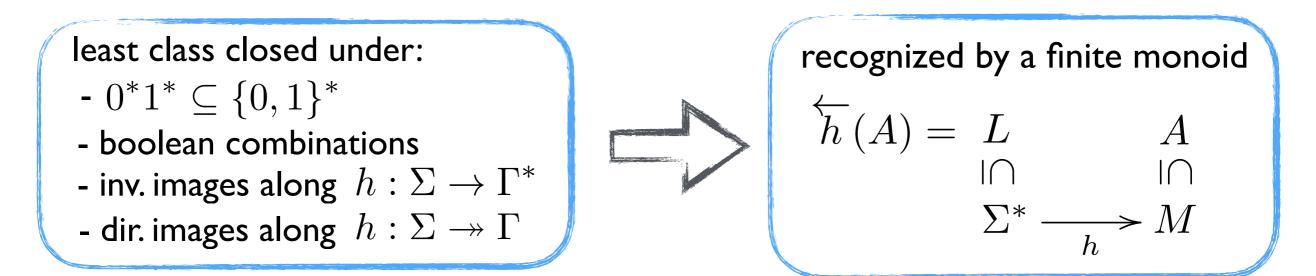
•
$$0^*1^* \subseteq \{0,1\}^*$$
 recognized

• L_i rec. by $h_i : \Sigma^* \to M_i$ (for i = 1, 2) implies $L_1 \cap L_2$ rec. by $\langle h_1, h_2 \rangle : \Sigma^* \to M_1 \times M_2$



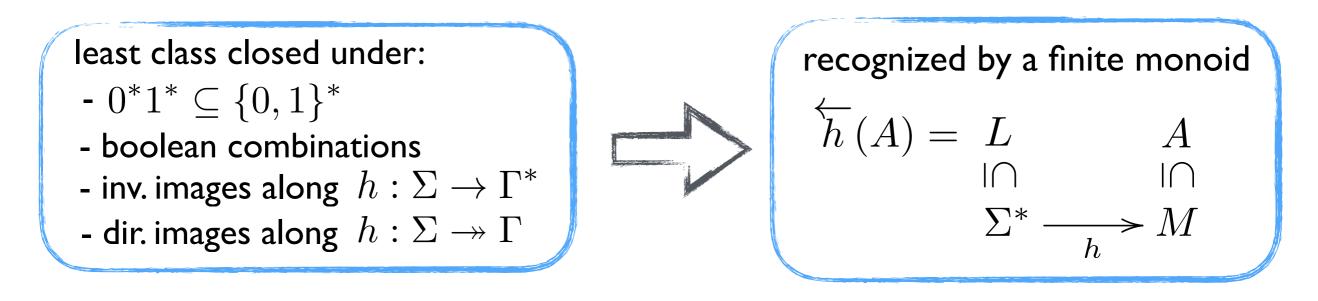
•
$$0^*1^* \subseteq \{0,1\}^*$$
 recognized

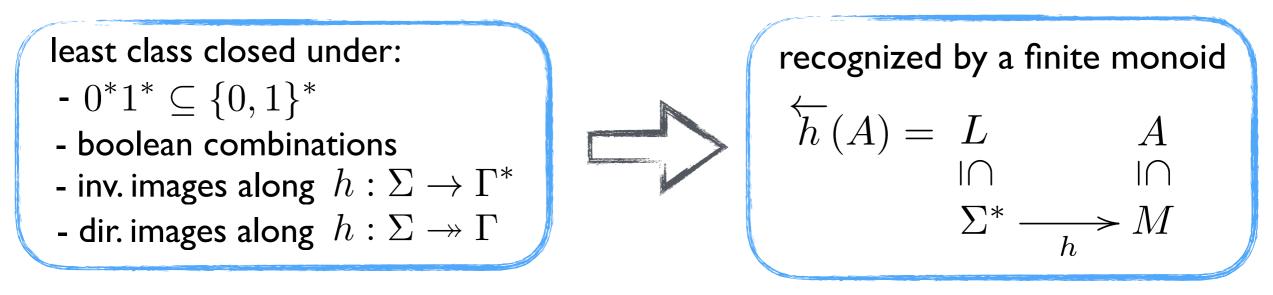
• $L_i \text{ rec. by } h_i : \Sigma^* \to M_i \text{ (for } i = 1, 2 \text{)}$ implies $L_1 \cap L_2 \text{ rec. by } \langle h_1, h_2 \rangle : \Sigma^* \to M_1 \times M_2$ $\Sigma^* \setminus L_i \text{ rec. by } h_i$



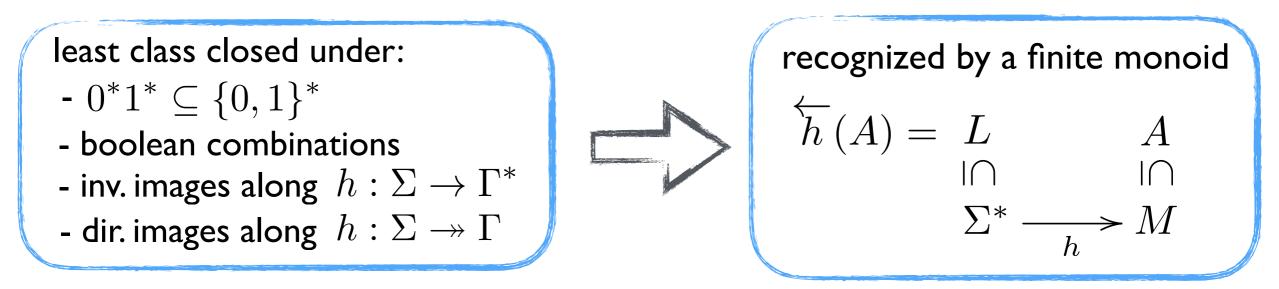
•
$$0^*1^* \subseteq \{0,1\}^*$$
 recognized

- $L_i \text{ rec. by } h_i : \Sigma^* \to M_i \text{ (for } i = 1, 2 \text{)}$ implies $L_1 \cap L_2 \text{ rec. by } \langle h_1, h_2 \rangle : \Sigma^* \to M_1 \times M_2$ $\Sigma^* \setminus L_i \text{ rec. by } h_i$
- $\begin{array}{ll} \bullet \ L \ {\rm rec.} \ {\rm by} \ h: \Gamma^* \to M \,, & g: \Sigma \to \Gamma^* \\ {\rm implies} \ \overleftarrow{g}(L) \ {\rm rec.} \ {\rm by} \ h \circ \widehat{g} & \widehat{g}: \Sigma^* \to \Gamma^* \end{array} \end{array}$

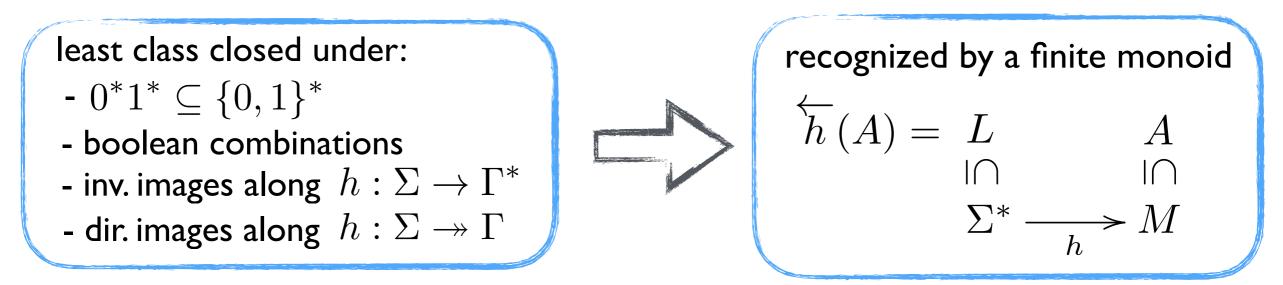




• let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$

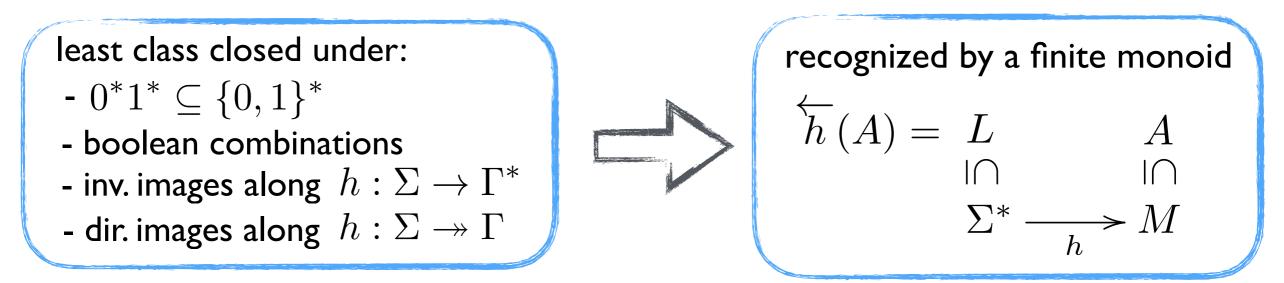


- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g: \Sigma \to \Gamma$



- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

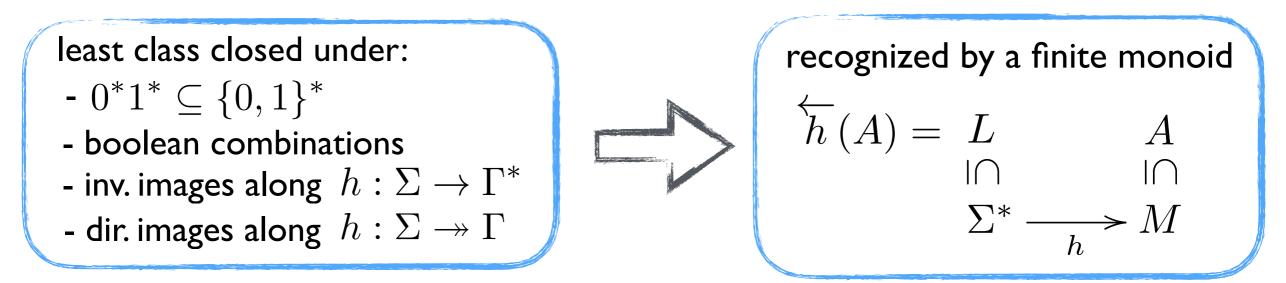


- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

• put $k: \Gamma^* \to \mathcal{P}M$ s.t. $k(c) = \{h(a) \mid g(a) = c\}$

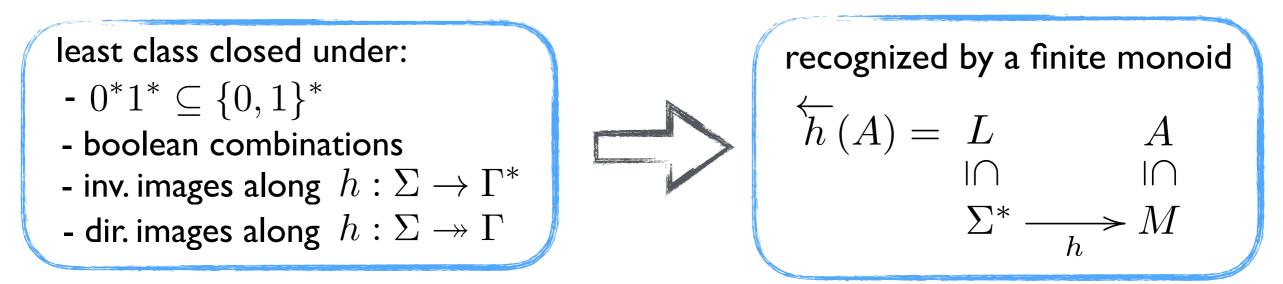
Closure under direct images, for finite words



- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$\begin{split} S \cdot T &= \{s \cdot t \mid s \in S, t \in T\}\\ \textbf{put } k: \Gamma^* \to \mathcal{P}M \text{ s.t. } k(c) &= \{h(a) \mid g(a) = c\}\\ B \subseteq \mathcal{P}M \text{ s.t. } B &= \{S \mid S \cap A \neq \emptyset\} \end{split}$$

Closure under direct images, for finite words



- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{s \cdot t \mid s \in S, t \in T\}$$

P put $k : \Gamma^* \to \mathcal{P}M$ s.t. $k(c) = \{h(a) \mid g(a) = c\}$
 $B \subseteq \mathcal{P}M$ s.t. $B = \{S \mid S \cap A \neq \emptyset\}$

• then k and B recognize $g^{\ast}(L)$

OWLS, 13/05/20

Definable implies recognizable, for finite words

We have just shown:

The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
 letter-to-letter homomorphisms.

Definable implies recognizable, for finite words

We have just shown:

The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
 letter-to-letter homomorphisms.

We want to generalize this to other things.

Monads

Monads are ways to collect stuff

Monads are ways to collect stuff

A monad T:

 ${\mbox{\circ}}$ given a set X, returns a set TX

Monads

A monad T:

Examples:
$$X^*$$
, X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

 ${\mbox{\circ}}$ given a set X, returns a set TX

Examples:
$$X^*$$
, X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

- ${\scriptstyle \bullet}$ given a set $X{\rm ,}$ returns a set TX
- given a function $f:X \to Y$, returns a function $\ Tf:TX \to TY$

Examples:
$$X^*$$
, X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

- ${\mbox{\circ}}$ given a set $X{\mbox{, returns}}$ a set TX
- given a function $f:X\to Y$, returns a function $\ Tf:TX\to TY$

so that:

- $T(\operatorname{id}_X) = \operatorname{id}_{TX}$, and
- $T(g \circ f) = Tg \circ Tf$

Examples:
$$X^*$$
, X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

- ${\mbox{\circ}}$ given a set $X{\mbox{, returns}}$ a set TX
- given a function $f:X\to Y$, returns a function $\ Tf:TX\to TY$

so that:

• $T(\operatorname{id}_X) = \operatorname{id}_{TX}$, and

•
$$T(g \circ f) = Tg \circ Tf$$

Examples:
$$X^*$$
, X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

- ${\mbox{\circ}}$ given a set $X{\mbox{, returns}}$ a set TX
- given a function $f:X\to Y$, returns a function $\ Tf:TX\to TY$

so that:

• $T(\operatorname{id}_X) = \operatorname{id}_{TX}$, and

•
$$T(g \circ f) = Tg \circ Tf$$

functor

Monads ctd. Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

A monad T comes with (for every set X):

• $\eta_X : X \to TX$

• $\eta_X : X \to TX$

Monads ctd.

unit

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

• $\eta_X : X \to TX$

Monads ctd.

unit

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

• $\mu_X : TTX \to TX$

• $\eta_X : X \to TX$

Monads ctd.

• $\mu_X : TTX \to TX$

multiplication

unit

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

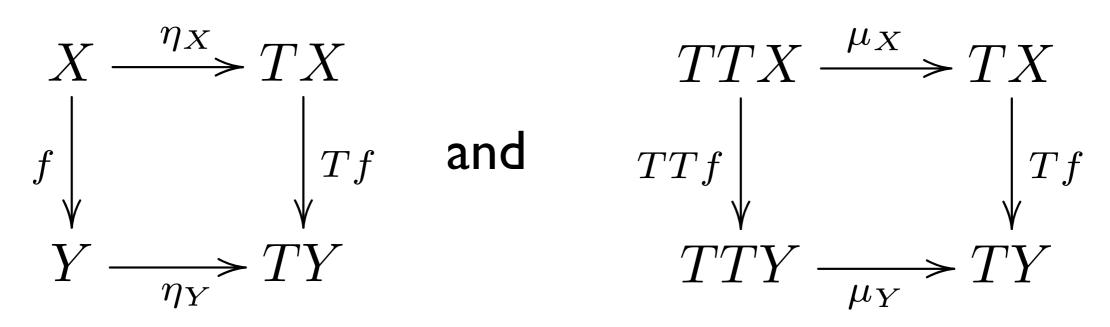
Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

• $\eta_X : X \to TX$

Monads ctd.

• $\mu_X : TTX \to TX$

such that (for every $f: X \to Y$):



unit

multiplication

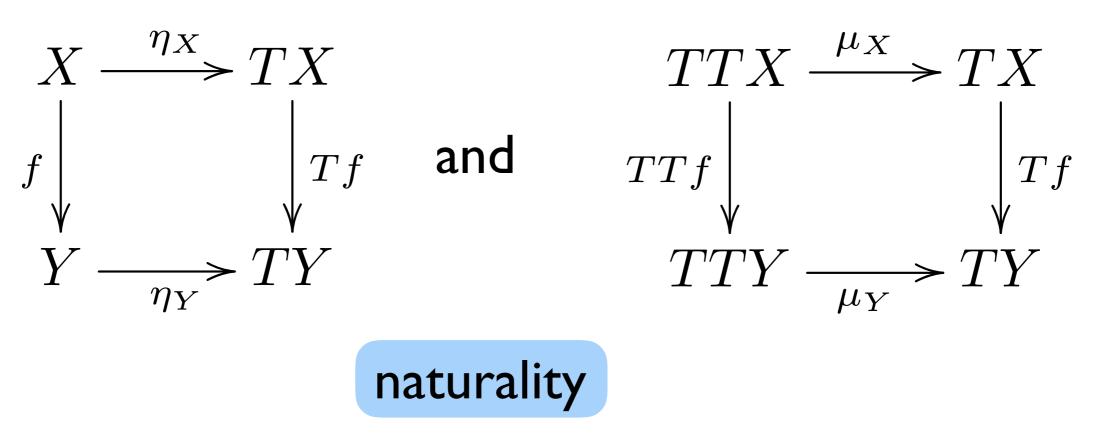
Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

• $\eta_X : X \to TX$

Monads ctd.

• $\mu_X : TTX \to TX$

such that (for every $f: X \to Y$):



unit

multiplication

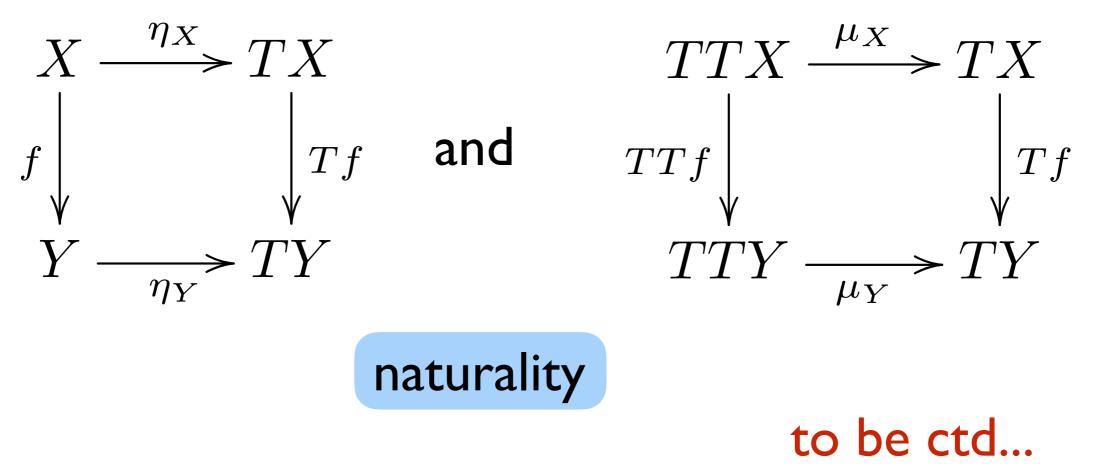
Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

• $\eta_X : X \to TX$

Monads ctd.

• $\mu_X : TTX \to TX$

such that (for every $f: X \to Y$):

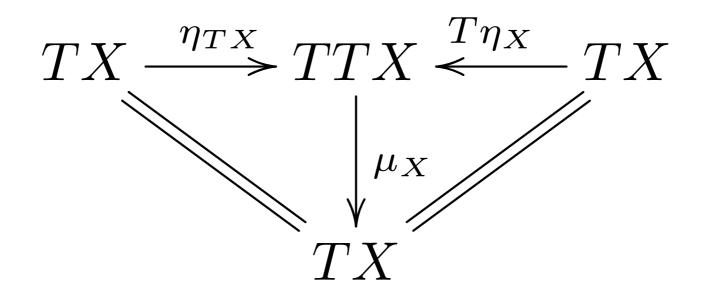


unit

multiplication

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

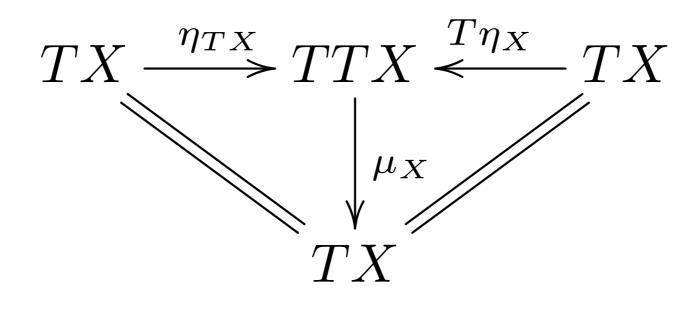
Further axioms on $\eta_X : X \to TX$ $\mu_X : TTX \to TX$:

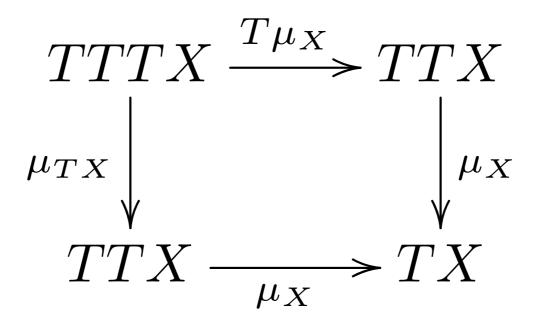


Monads ctd.

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

Further axioms on $\eta_X : X \to TX$ $\mu_X : TTX \to TX$:

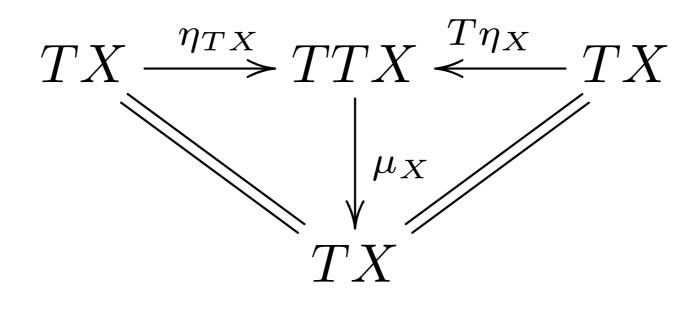


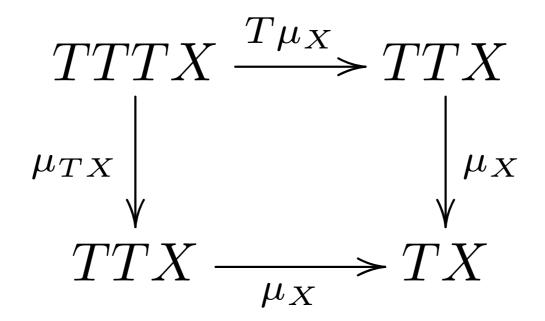


Monads ctd.

Examples: X^* , X^{ω} , X^{∞} , $\mathcal{P}X$, \mathbb{N}^X

Further axioms on $\eta_X : X \to TX$ $\mu_X : TTX \to TX$:





That's it!

Monads ctd.

I.The list monad

$$TX = X^*$$

$$Tf(x_1 \cdots x_n) = f(x_1) \cdots f(x_n)$$

$$\eta_X(x) = x$$

$$\mu_X(w_1 w_2 \cdots w_n) = w_1 \widehat{w_2} \cdots \widehat{w_n}$$

I.The list monad

$$TX = X^*$$

$$Tf(x_1 \cdots x_n) = f(x_1) \cdots f(x_n)$$

$$\eta_X(x) = x$$

$$\mu_X(w_1 w_2 \cdots w_n) = w_1 \widehat{w_2} \cdots \widehat{w_n}$$

2. The powerset monad

$$TX = \mathcal{P}X$$
$$Tf = \overrightarrow{f}$$
$$\eta_X(x) = \{x\}$$
$$\mu_X(\Phi) = \bigcup \Phi$$

OWLS, 13/05/20

3. The reader monad

$$TX = X^{\omega} \qquad Tf(x_1x_2\cdots) = f(x_1)f(x_2)\cdots$$
$$\eta_X(x) = xxx\cdots \quad \mu_X(w_1w_2\cdots) = w_{11}w_{22}w_{33}\cdots$$

3. The reader monad

$$TX = X^{\omega} \qquad Tf(x_1x_2\cdots) = f(x_1)f(x_2)\cdots$$
$$\eta_X(x) = xxx\cdots \quad \mu_X(w_1w_2\cdots) = w_{11}w_{22}w_{33}\cdots$$

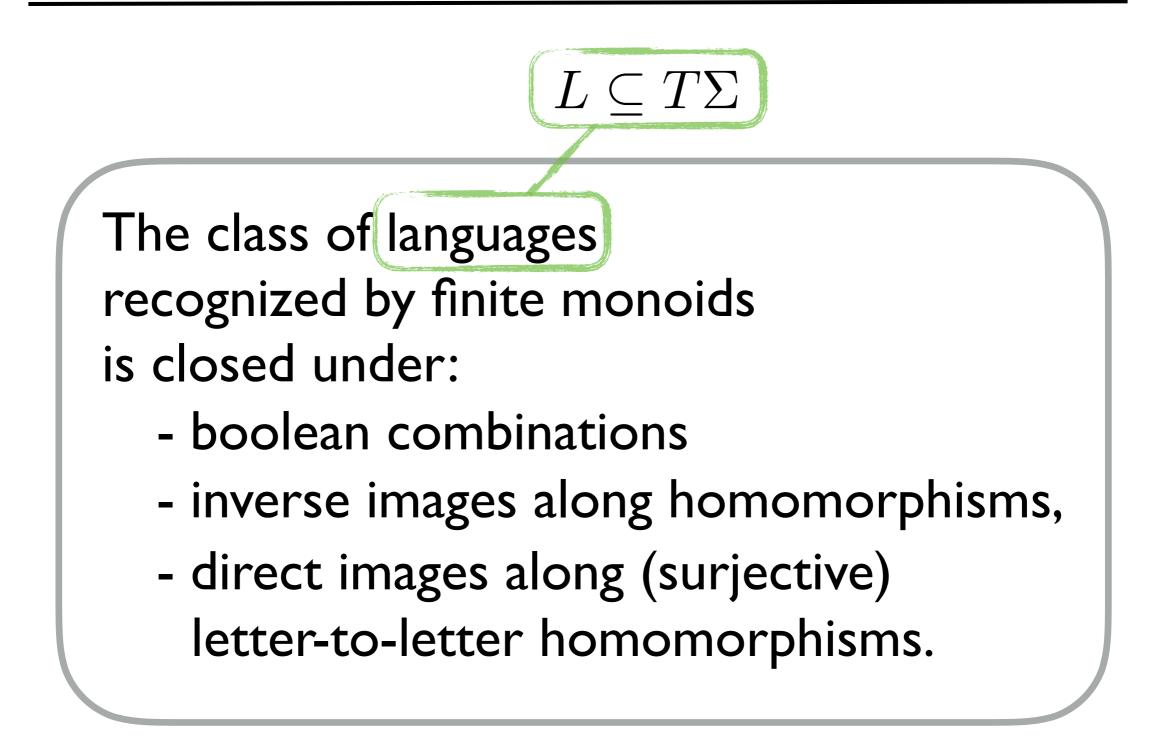
4,5,...: term monads

- For an equational presentation (Σ, E) , put:
- $TX = \Sigma$ -terms over X modulo the equations
- Tf variable substitution
 - variables as terms
 - μ term flattening

 η

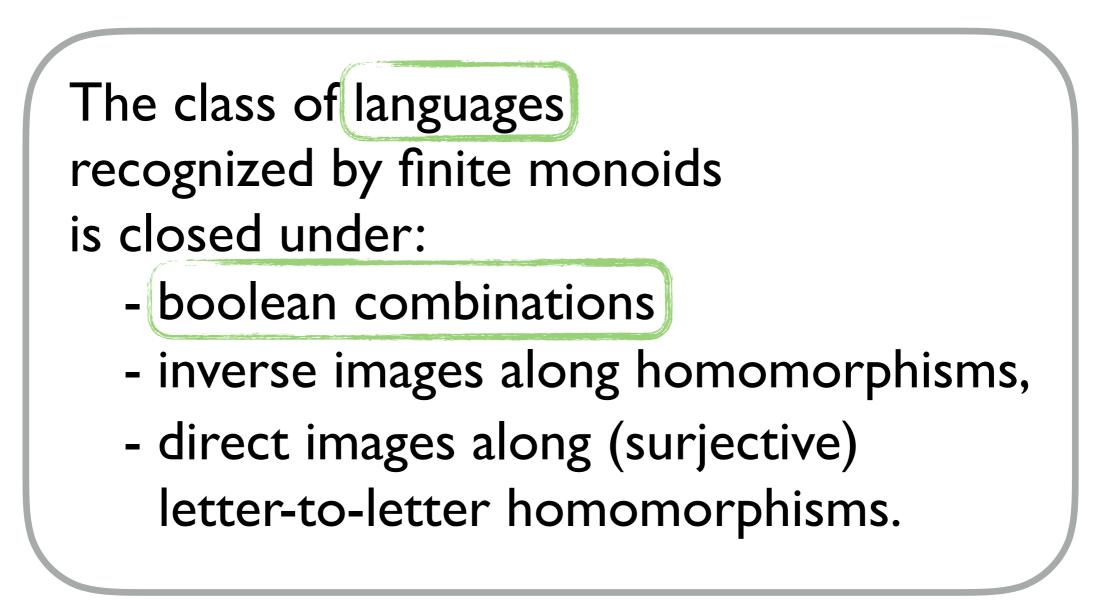
The class of languages recognized by finite monoids is closed under:

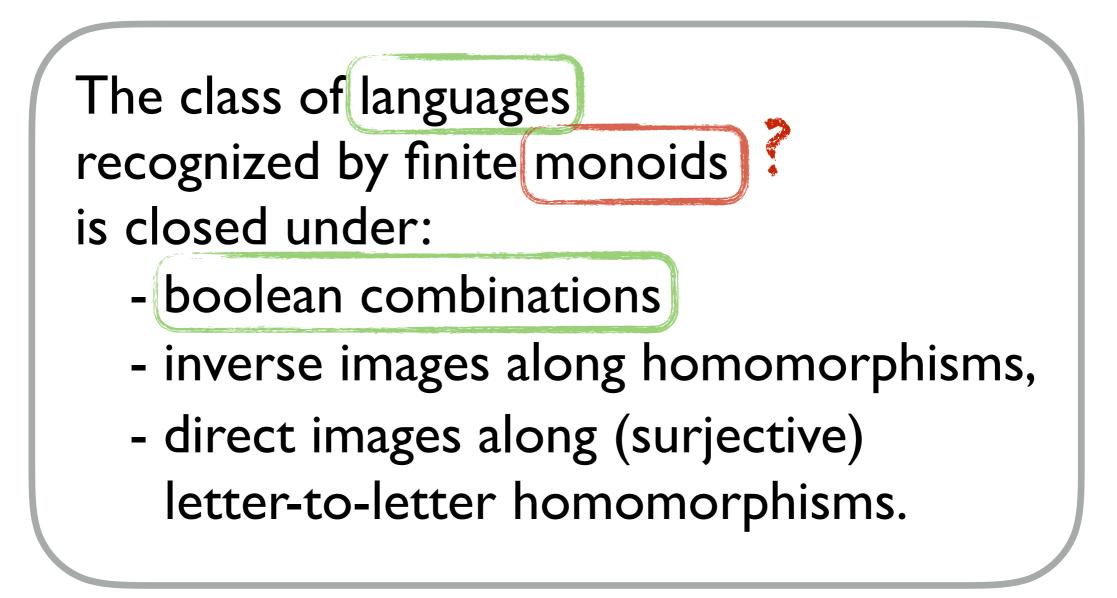
- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.



The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

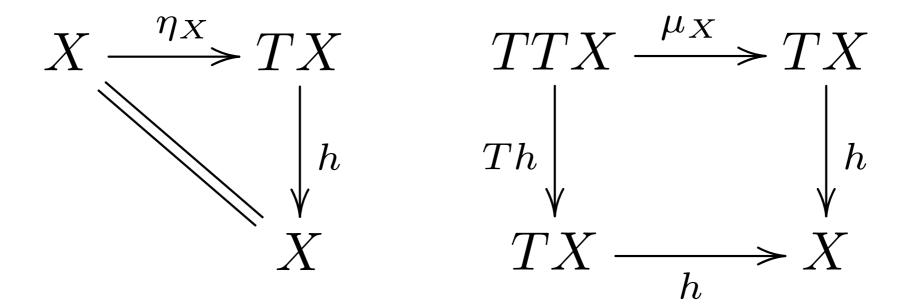




- a set X and a function $\,f:TX\to X\,$

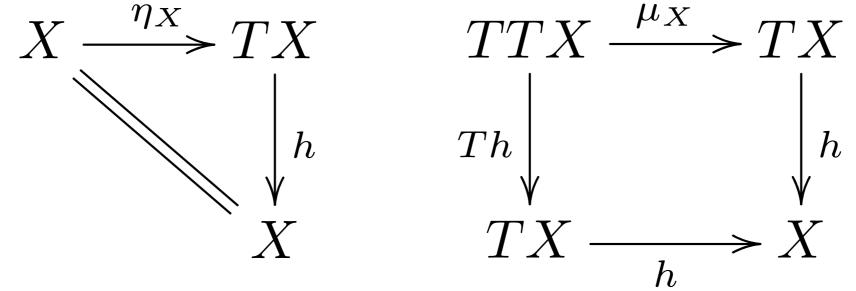
- a set X and a function $\,f:TX\to X\,$

such that:



- a set X and a function $\,f:TX\to X\,$

such that:

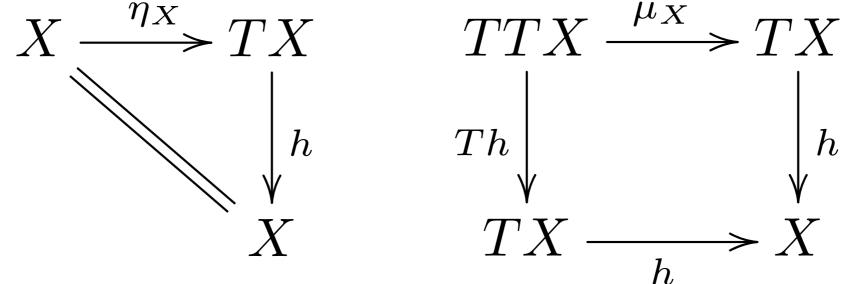


Examples:

 $(-)^*$ -algebras are monoids

- a set X and a function $\,f:TX\to X\,$

such that:

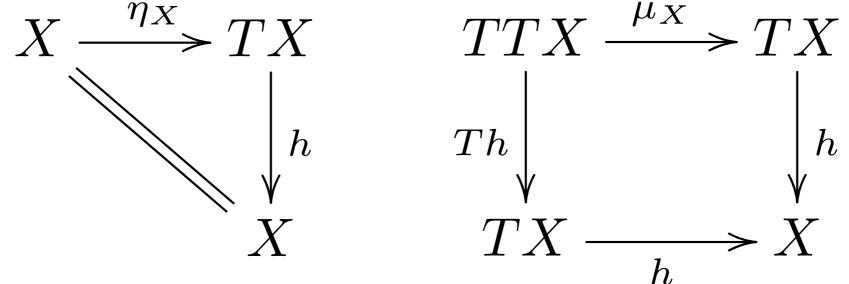


Examples:

 $(-)^*$ -algebras are monoids $\mathcal{P}_{\mathrm{fin}}$ -algebras are semilattices

- a set X and a function $\,f:TX\to X\,$

such that:



Examples:

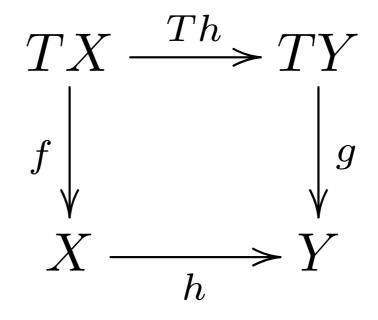
 $(-)^*$ -algebras are monoids

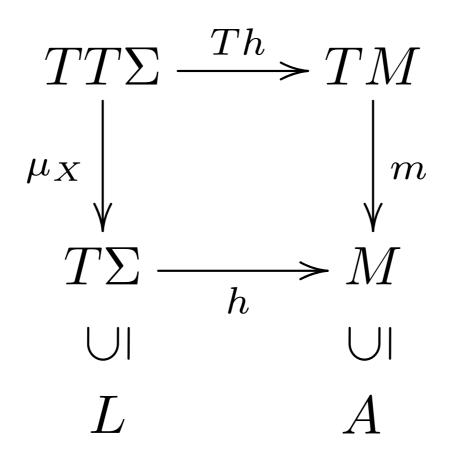
 $\mathcal{P}_{\mathrm{fin}}\text{-algebras}$ are semilattices

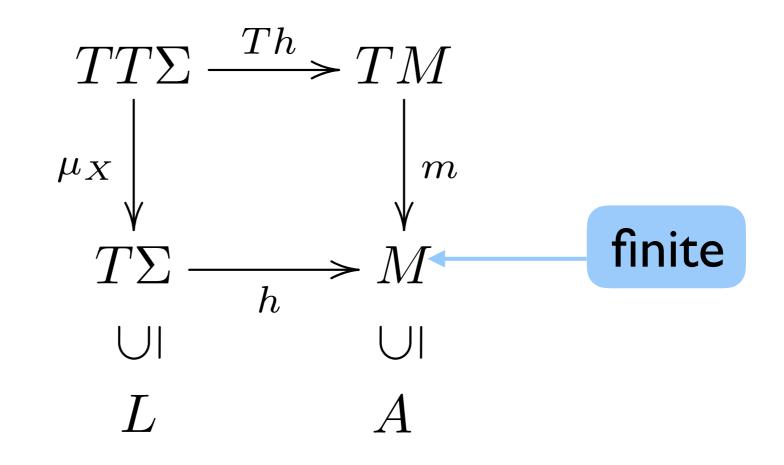
Term-monad algebras are what you expect

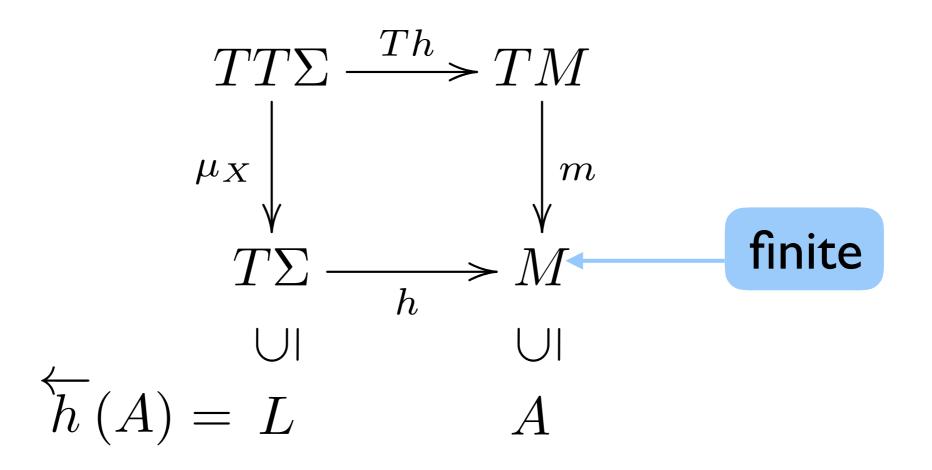
A homomorphism from $f: TX \to X$ to $g: TY \to Y$:

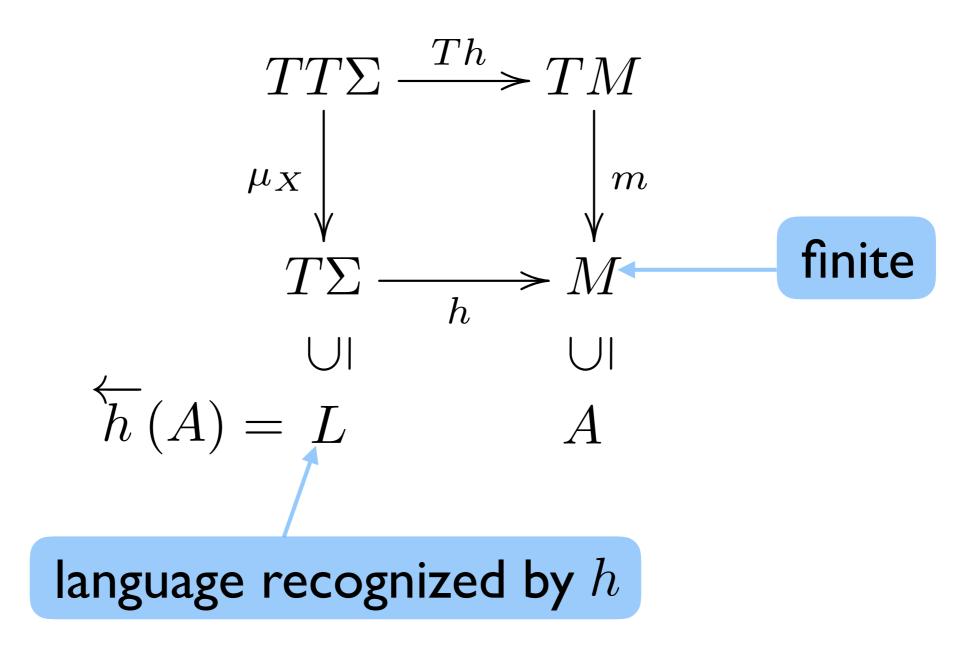
a function $h: X \to Y$ such that:

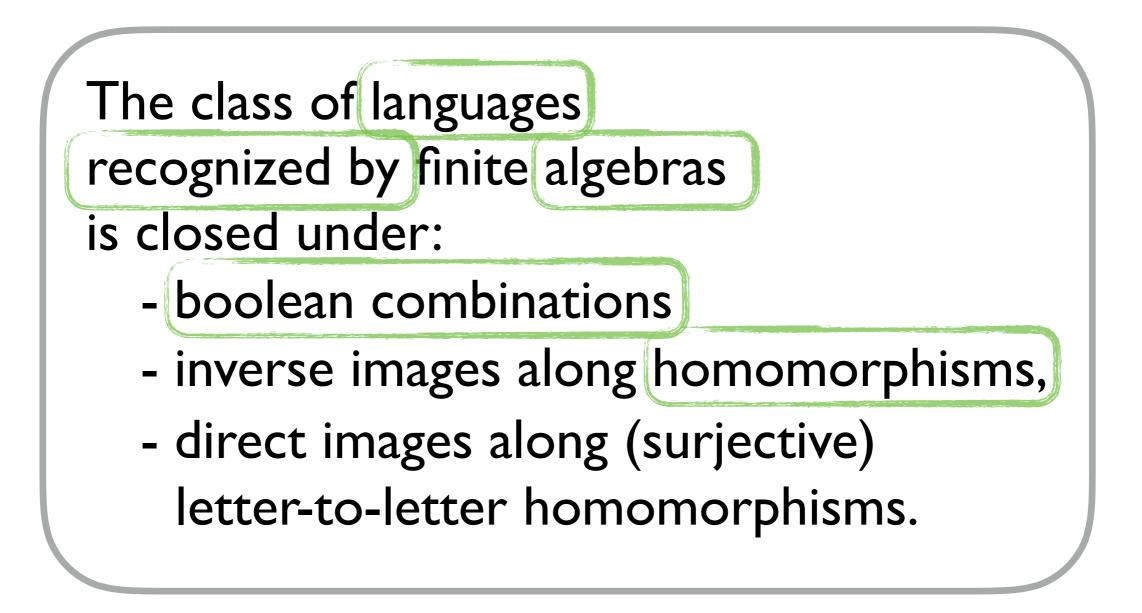


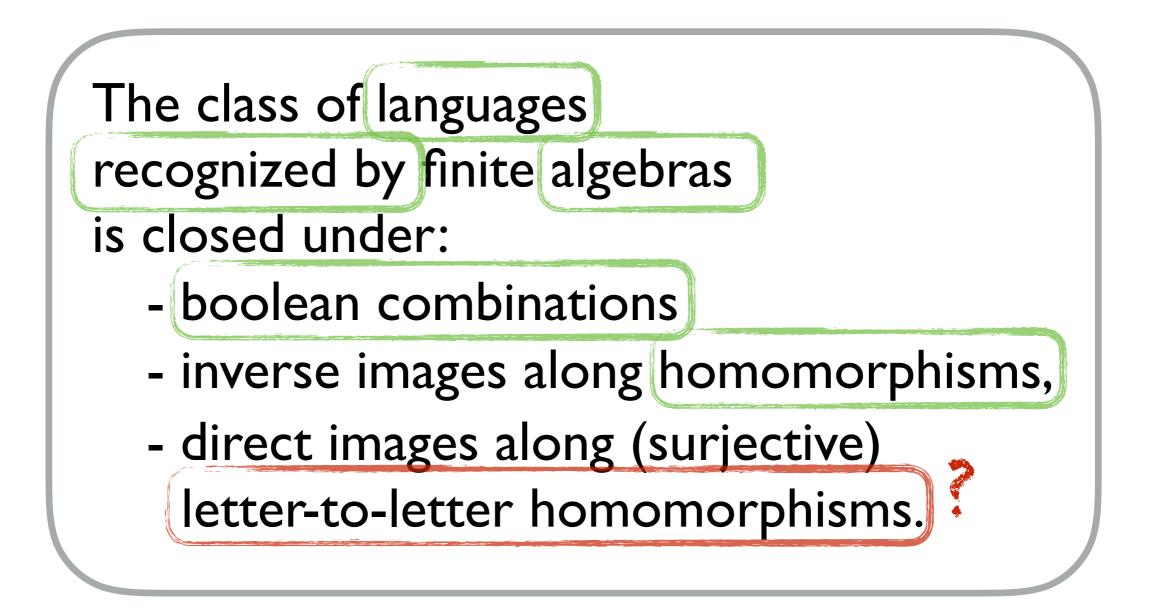


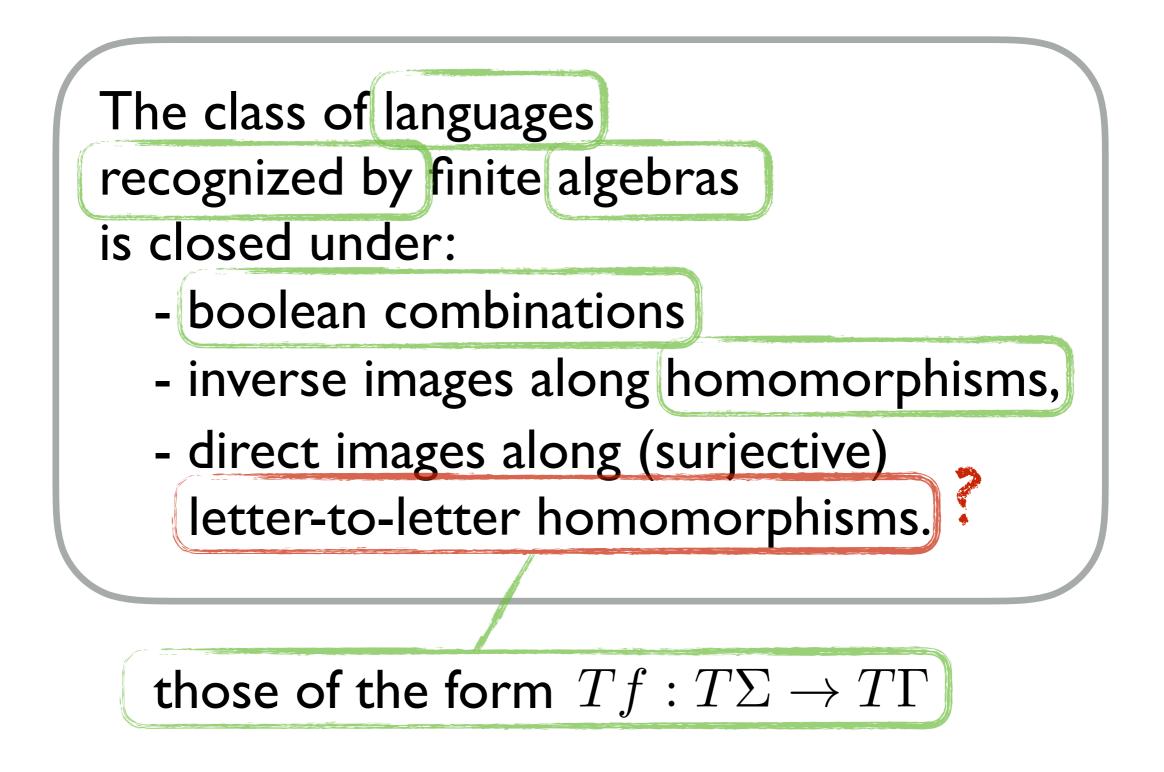


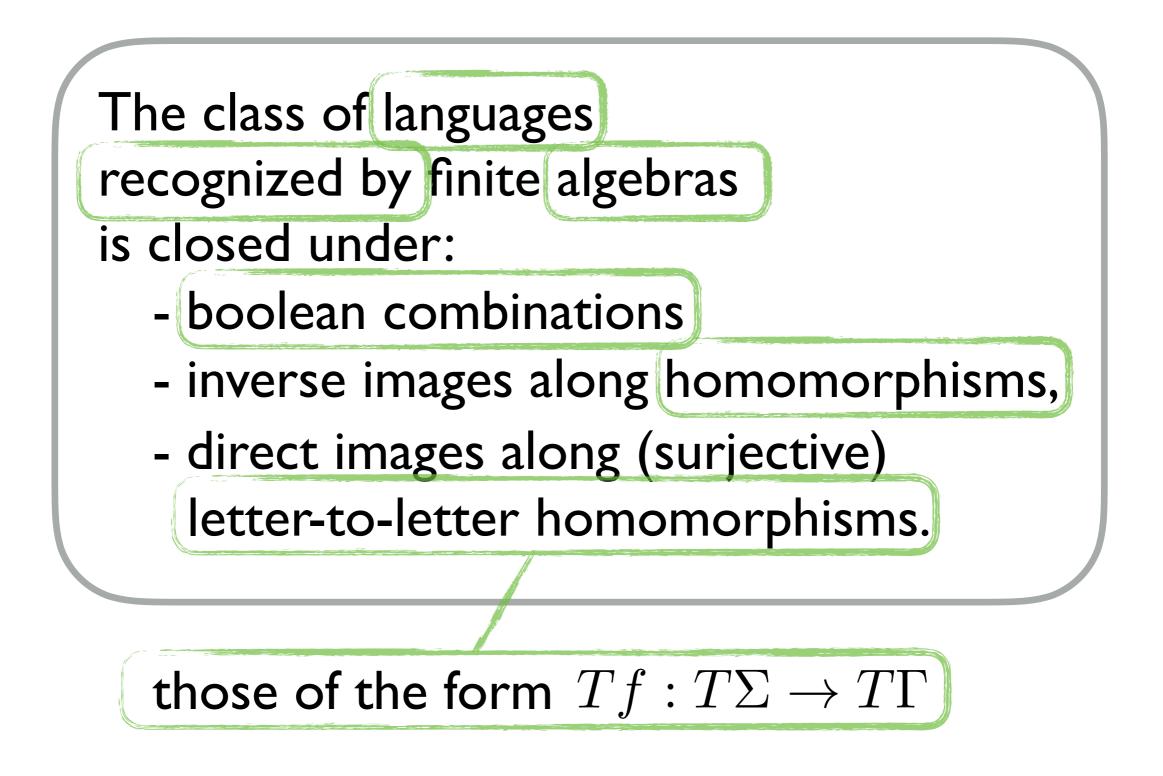


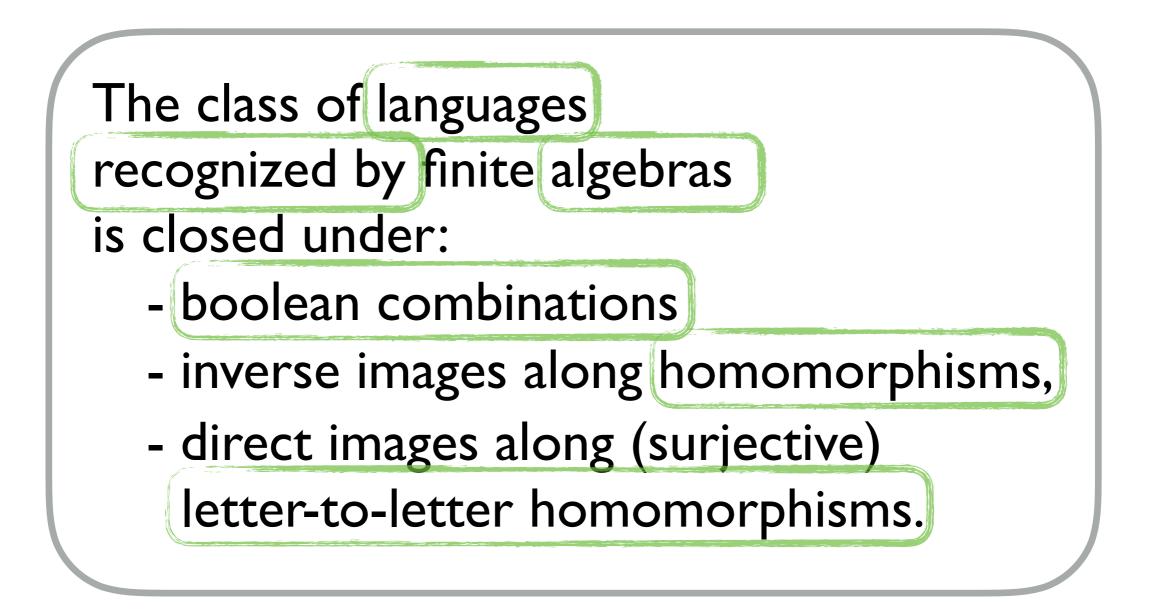












- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
 letter-to-letter homomorphisms.

- boolean combinations
 - inverse images along homomorphisms,
 - direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- 🖌 inverse images along homomorphisms,
 - direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- 🗸 inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

Counterexample

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

Counterexample

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x \quad \mathbf{B}$$

Let T be the list monad quotiented by:

 $x \cdot x \cdot x = x \cdot x \quad \mathbf{B}$

A language $L \subseteq T\Sigma$ corresponds to a language $L \subseteq \Sigma^*$ closed under B (in the sense of (sub)word rewriting) Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x \quad \mathbf{B}$$

A language $L \subseteq T\Sigma$ corresponds to a language $L \subseteq \Sigma^*$ closed under B (in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies ${f B}$

Let T be the list monad quotiented by:

 $x \cdot x \cdot x = x \cdot x \quad \mathbf{B}$

A language $L \subseteq T\Sigma$ corresponds to a language $L \subseteq \Sigma^*$ closed under B (in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies ${\bf B}$

Fact: $L \subseteq T\Sigma$ is recognizable iff (the corresponding) $L \subseteq \Sigma^*$ is regular and closed under \mathbb{P} .

For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

Fact: L is closed under \mathbf{B} .

For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

Fact: L is closed under ${\bf B}$.

So: L is T-recognizable.

For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

Fact: *L* is closed under \mathbb{B} . So: *L* is *T*-recognizable. Put $\Gamma = \Delta \cup \{0\}$ and $h : \Sigma \to \Gamma$ s.t. h(1) = 0.

For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

Fact: L is closed under \mathbf{B} .

So: L is T-recognizable.

Put $\Gamma = \Delta \cup \{0\}$ and $h: \Sigma \to \Gamma$ s.t. h(1) = 0.

Then $\overrightarrow{Th}(L)$ is the B-closure of $\Delta^* 0 \Delta^* 0 \subseteq \Gamma^*$

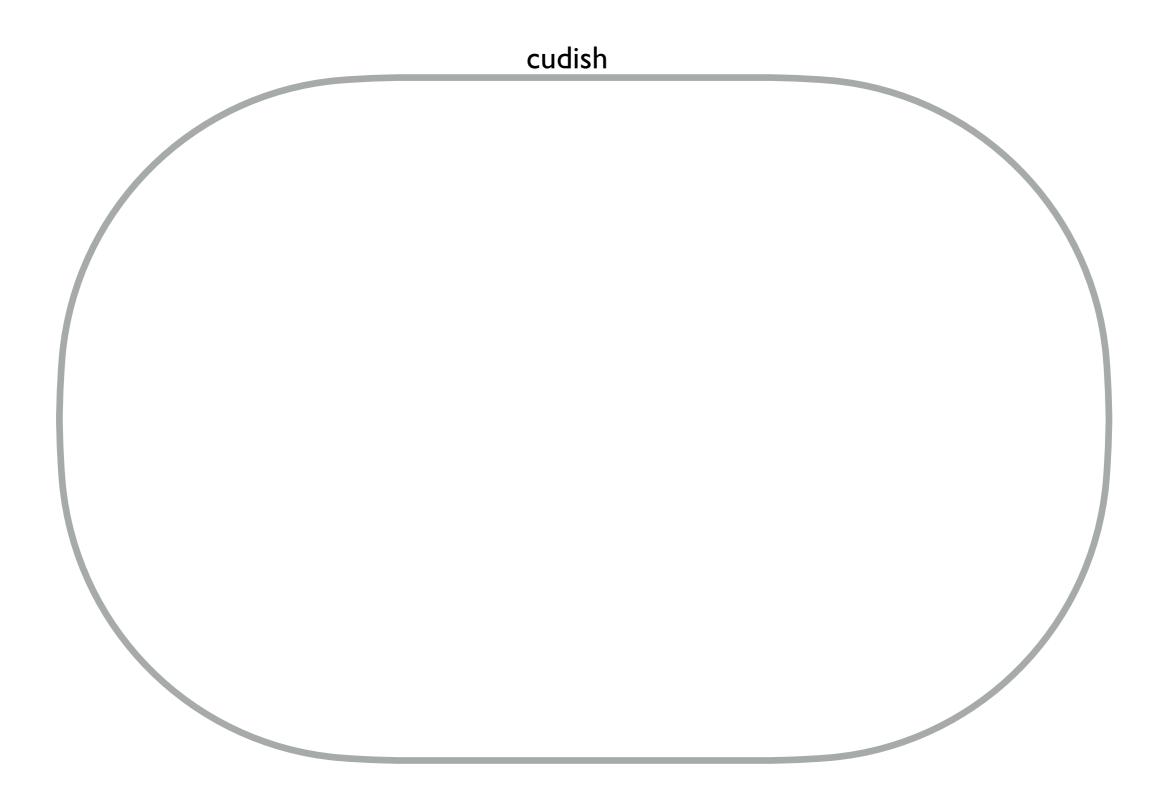
For
$$\Delta = \{a, b, c\}$$
 and $\Sigma = \Delta \cup \{0, 1\}$, let
$$L = \Delta^* 0 \Delta^* 1 \subseteq \Sigma^*$$

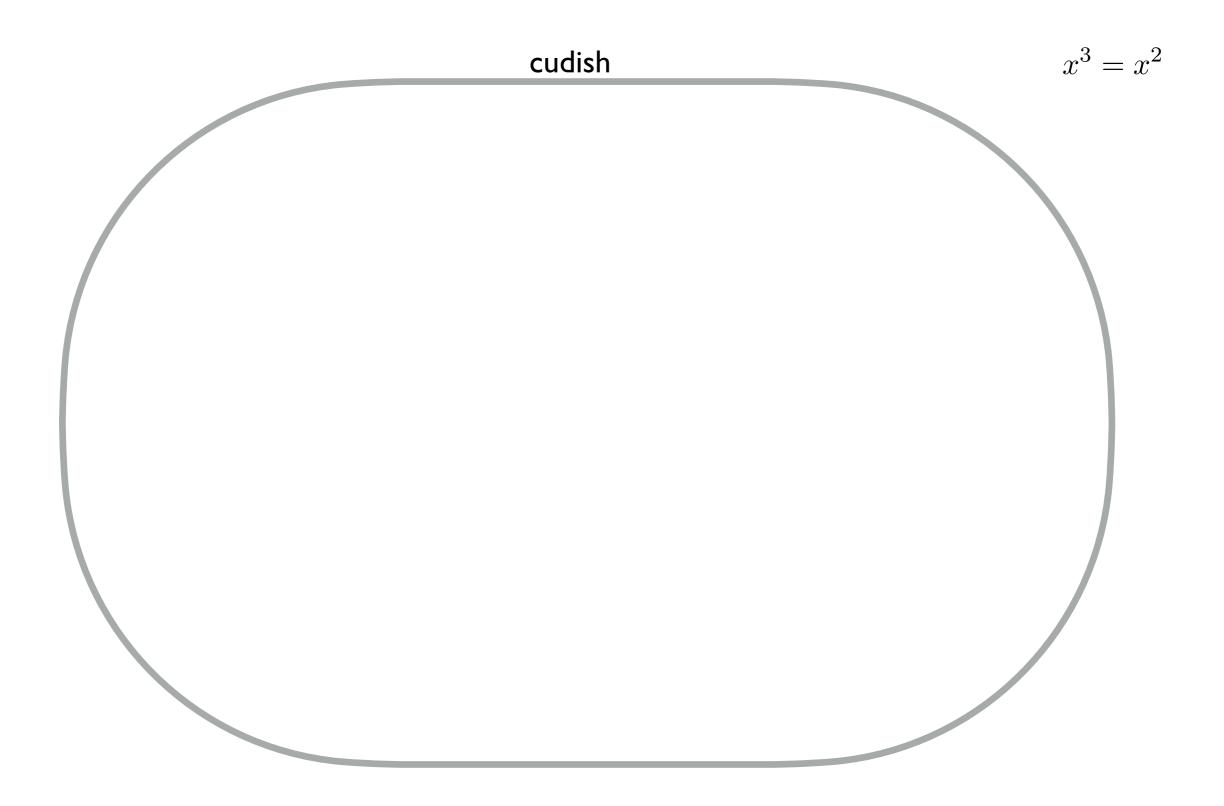
Fact: L is closed under \mathbf{B} . So: L is T -recognizable.

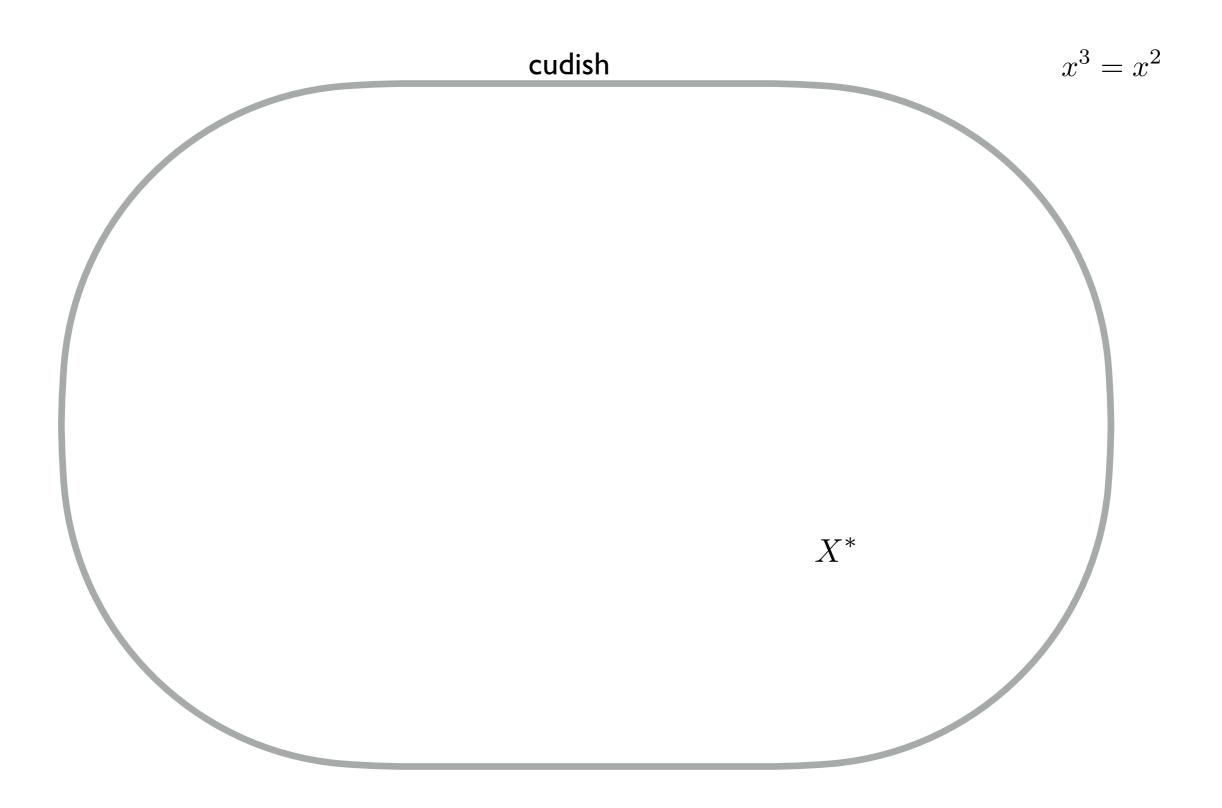
Put $\Gamma = \Delta \cup \{0\}$ and $h: \Sigma \to \Gamma$ s.t. h(1) = 0.

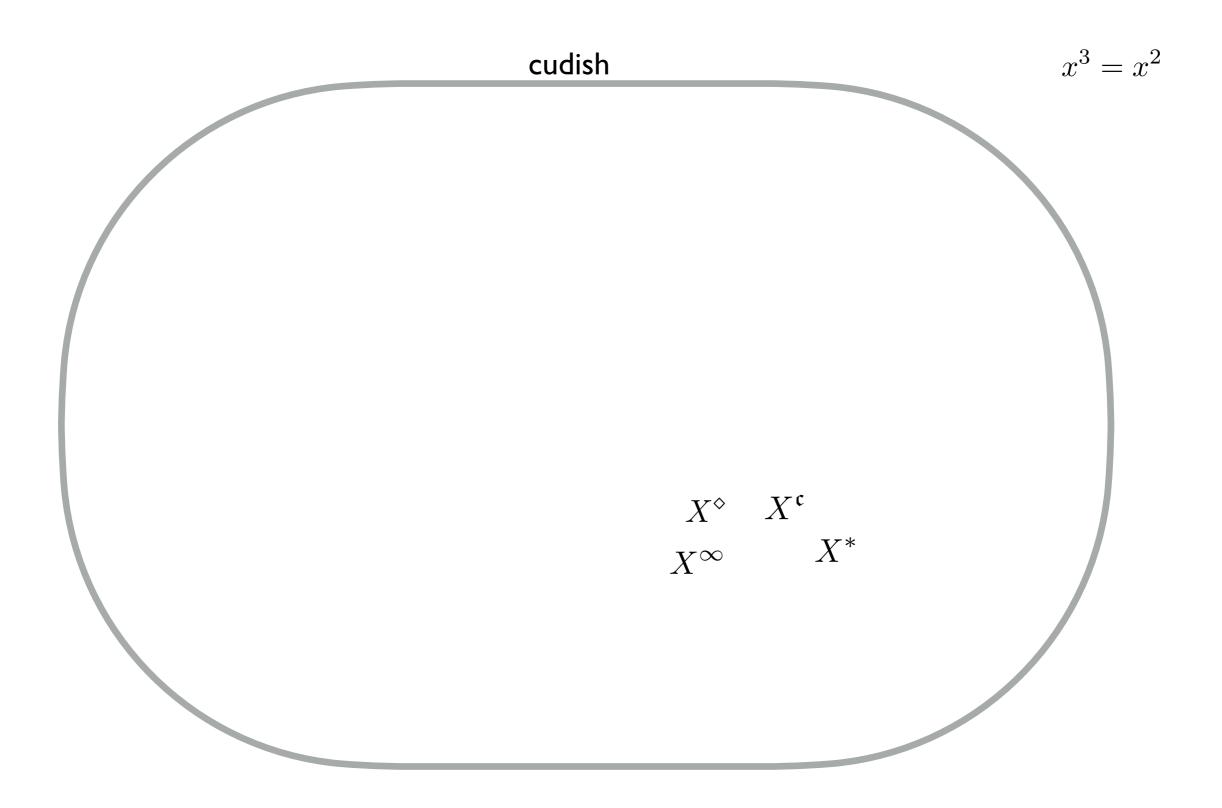
Then $\overrightarrow{Th}(L)$ is the B-closure of $\Delta^* 0 \Delta^* 0 \subseteq \Gamma^*$

Fact: $\overrightarrow{Th}(L)$ is not regular, so not T-recognizable.







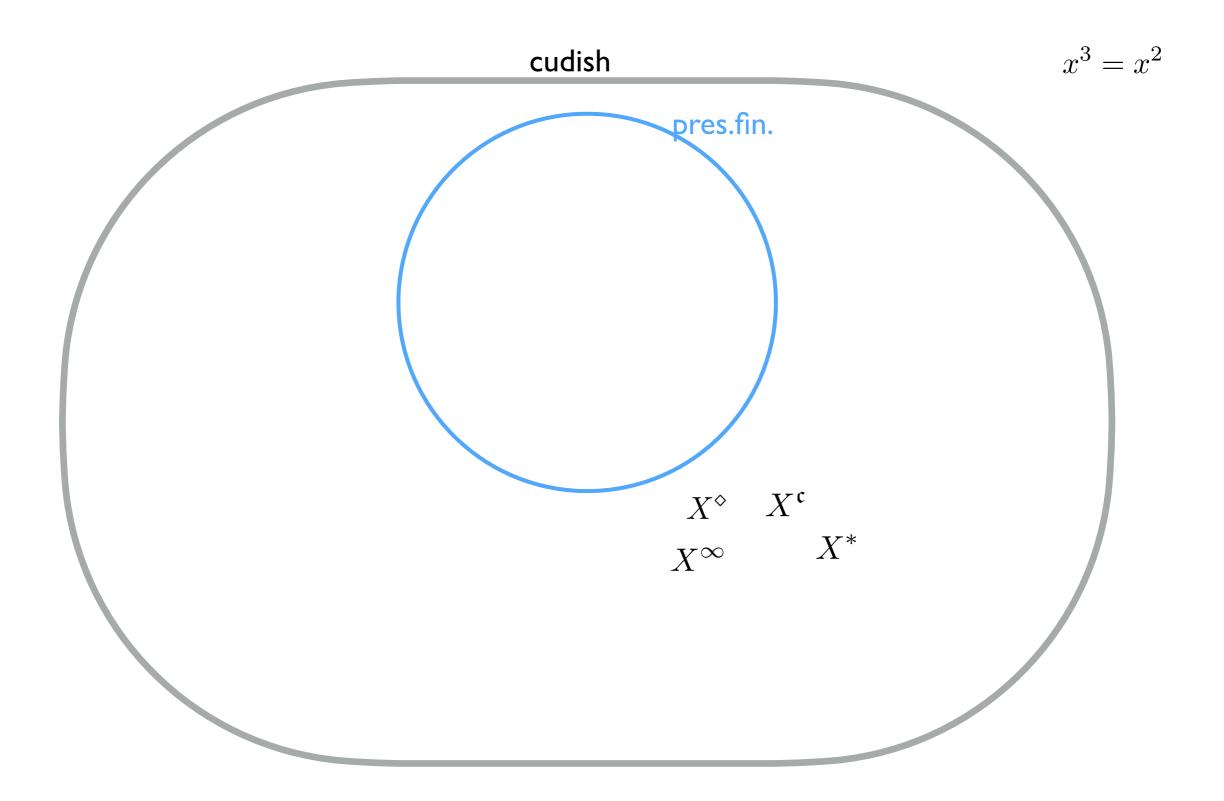


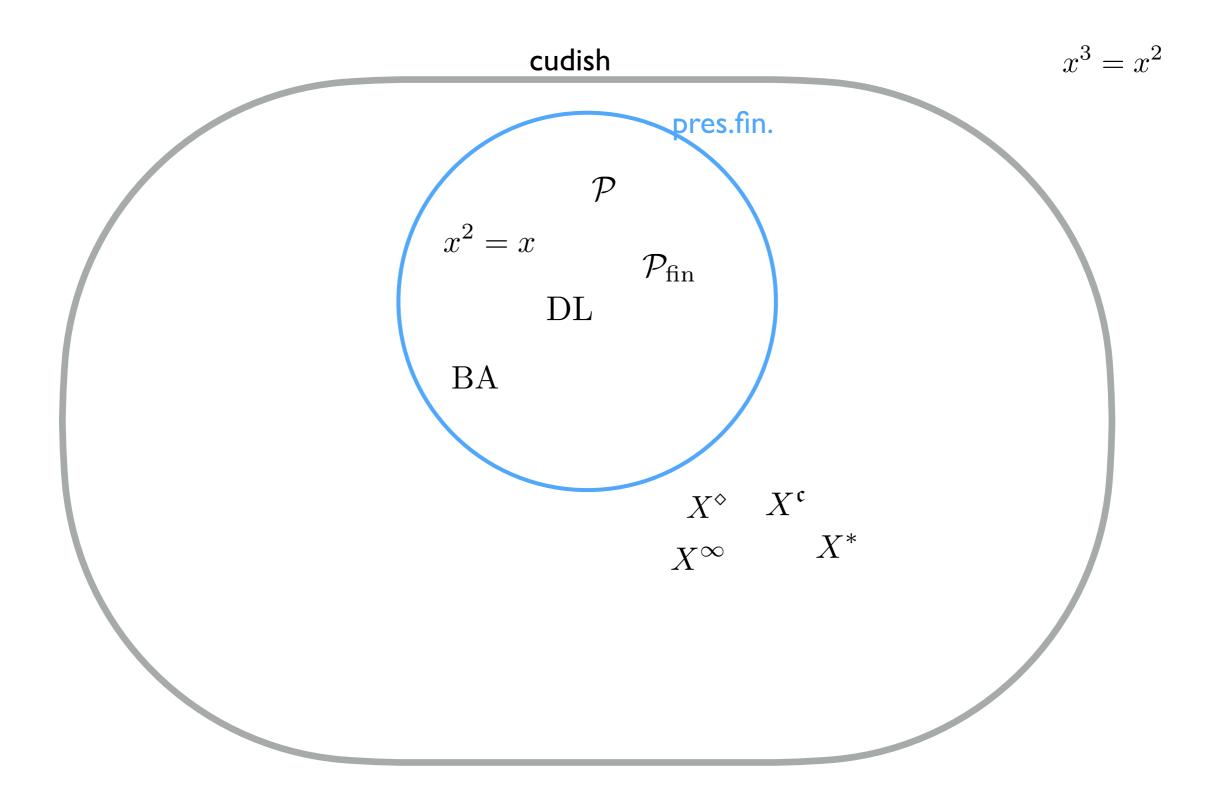
Fact: if T preserves finiteness then every language on a finite alphabet Σ is recognizable (by $T\Sigma$).

Fact: if T preserves finiteness

then every language on a finite alphabet Σ is recognizable (by $T\Sigma$).

- Examples:
 - \mathcal{P} , \mathcal{P}^+ , $\mathcal{P}_{\mathrm{fin}}$
 - idempotent monoids/semigroups
 - distributive lattices
 - Boolean algebras





Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x, y, z) such that t(x, x, y) = y = t(y, x, x)

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x, y, z) such that t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish.

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x, y, z) such that t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish. Examples:

- groups
$$t(x, y, z) = xy^{-1}z$$

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x, y, z) such that t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish. Examples:

- **groups** $t(x, y, z) = xy^{-1}z$
- Boolean algebras

 $t(x,y,z) = (x \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x, y, z) such that t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish. Examples:

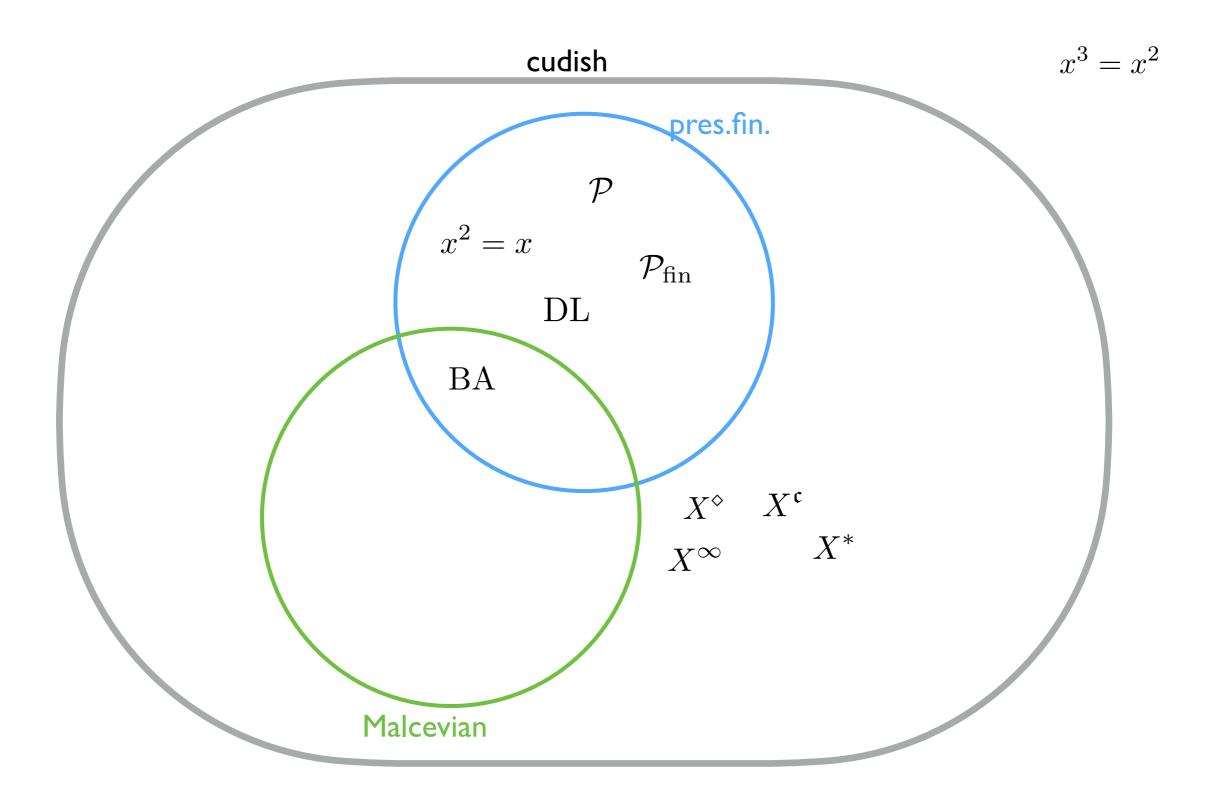
- **groups** $t(x, y, z) = xy^{-1}z$
- Boolean algebras

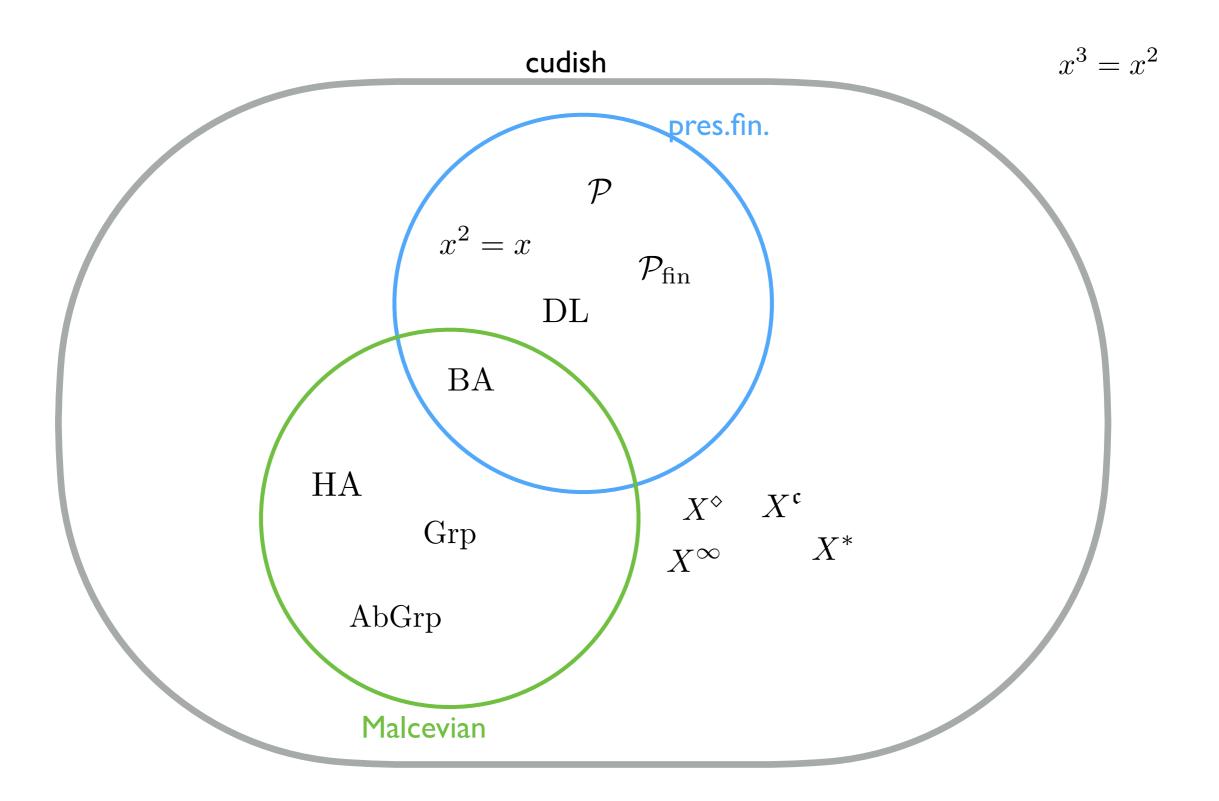
 $t(x, y, z) = (x \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$

- Heyting algebras

$$t(x, y, z) = ((x \to y) \to z) \land ((z \to y) \to z) \land (x \lor z)$$

OWLS, 13/05/20





Def.: a monad T is weakly Cartesian

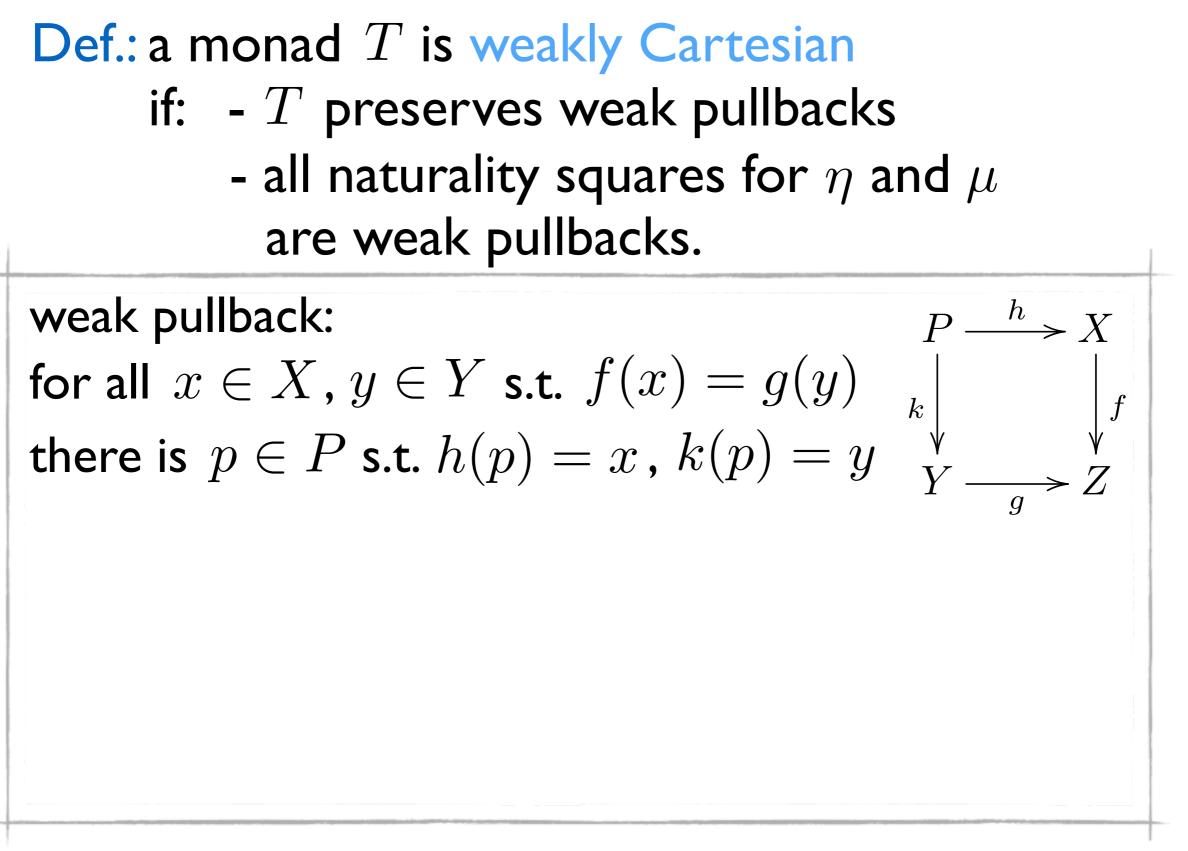
- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

Sufficient condition III

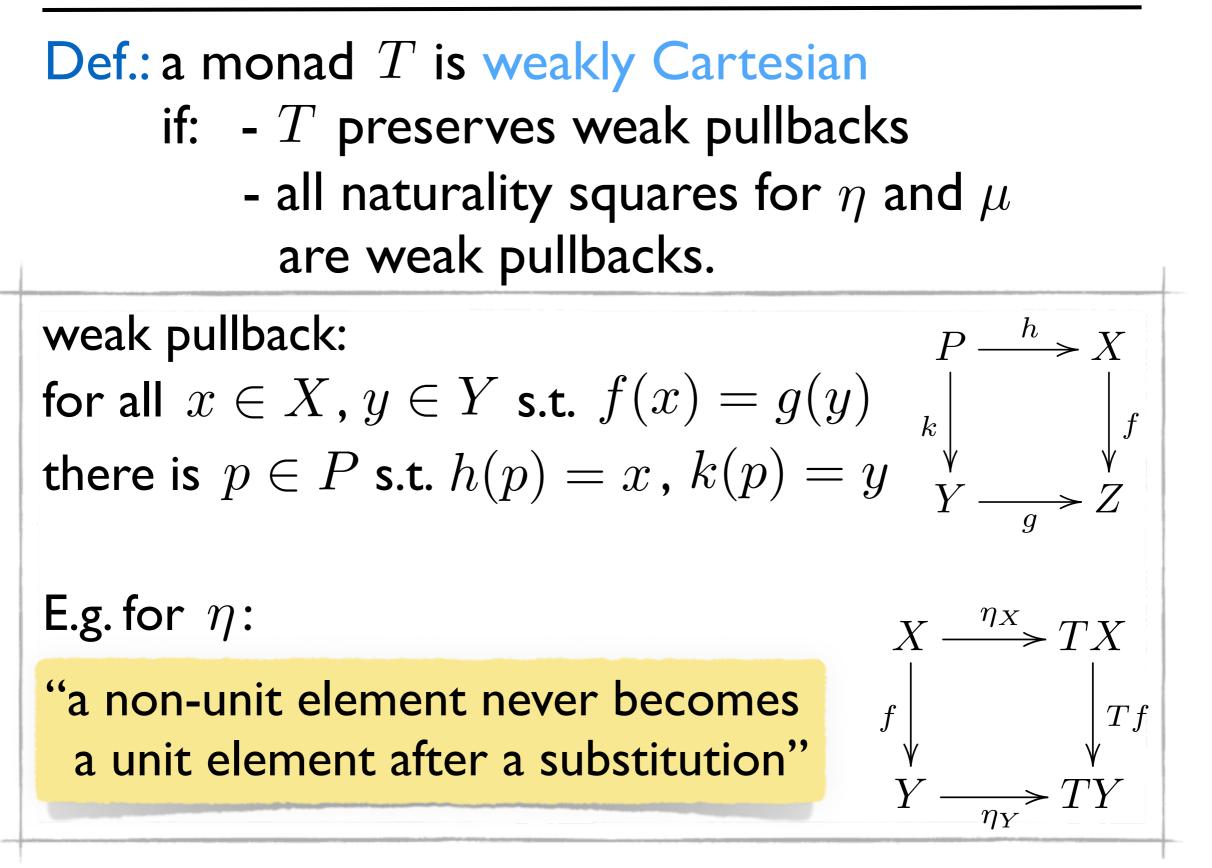
Def.: a monad T is weakly Cartesian

- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

Sufficient condition III



Sufficient condition III



Fact: weakly Cartesian monads are cudish. (the powerset construction works) Fact: weakly Cartesian monads are cudish. (the powerset construction works)

Examples:

- any monad presented by linear regular equations:

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \checkmark$$
$$x \cdot y = y \cdot x \quad \checkmark$$
$$x \cdot x = x \quad \bigstar$$
$$x \cdot x^{-1} = e \quad \bigstar$$

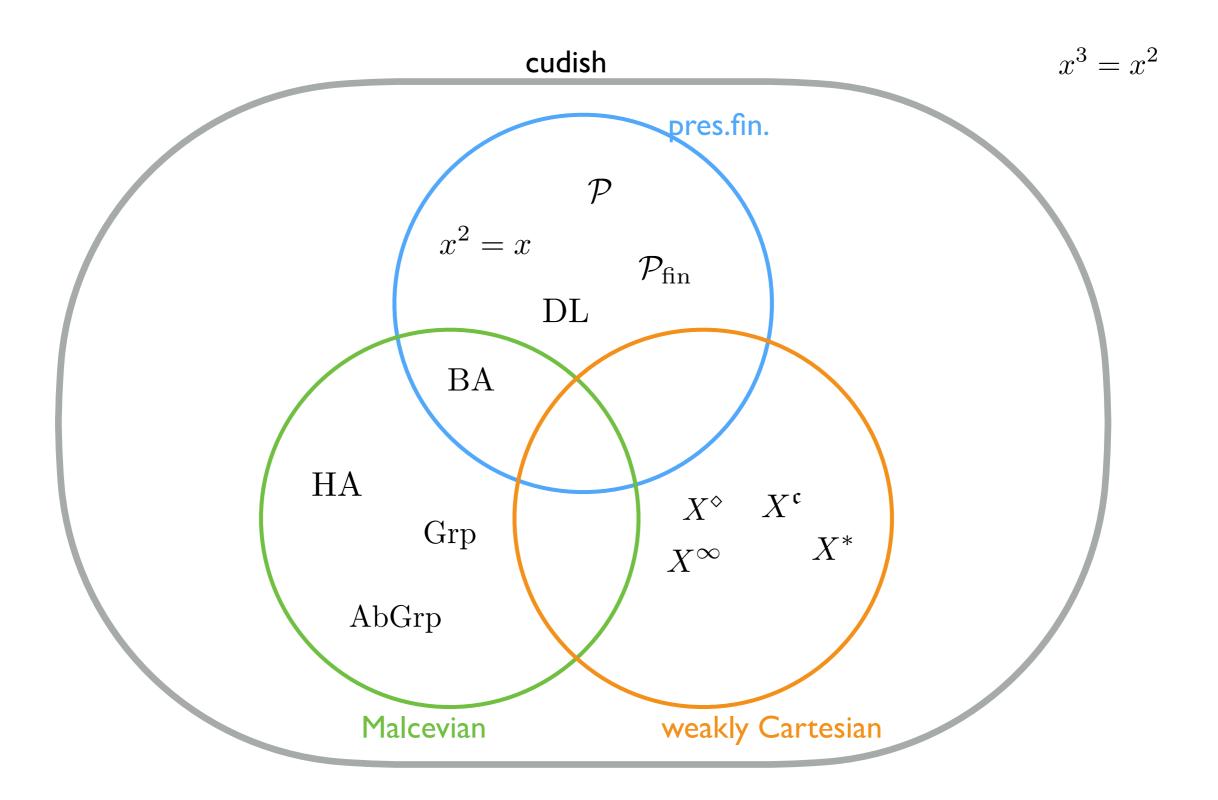
Fact: weakly Cartesian monads are cudish. (the powerset construction works)

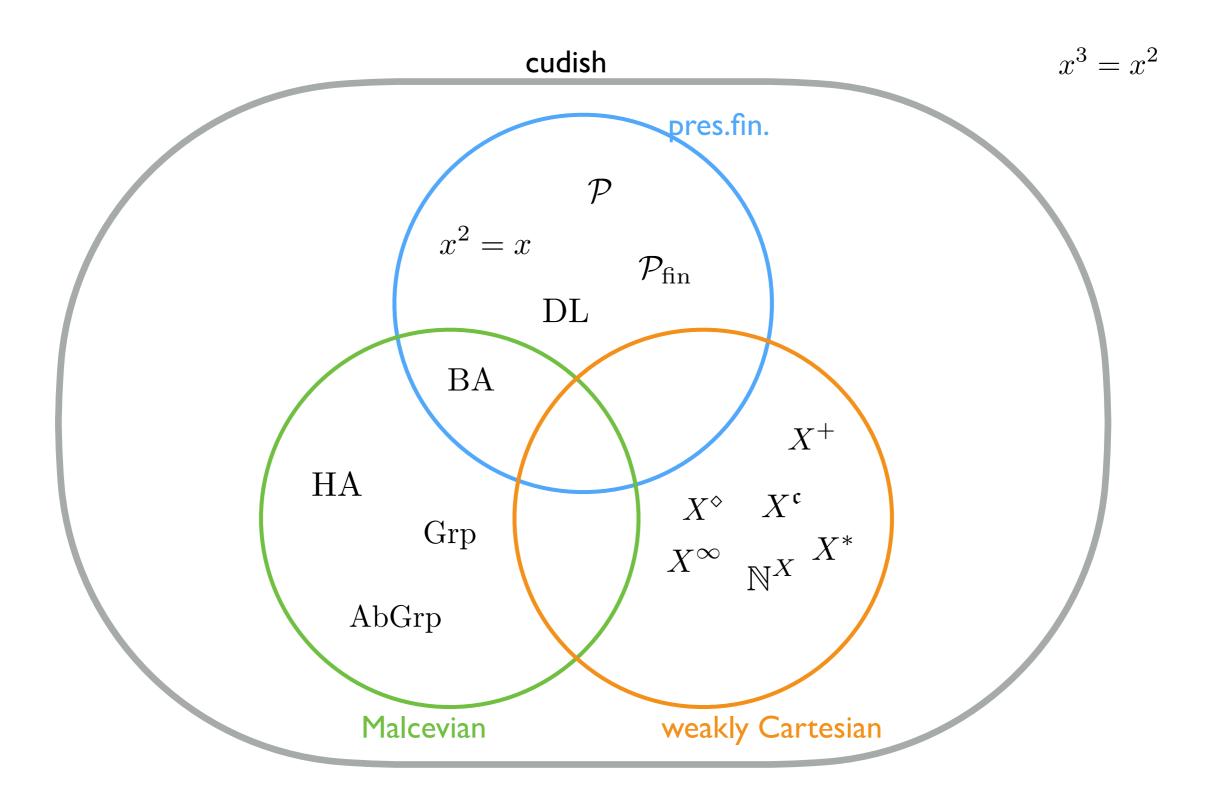
Examples:

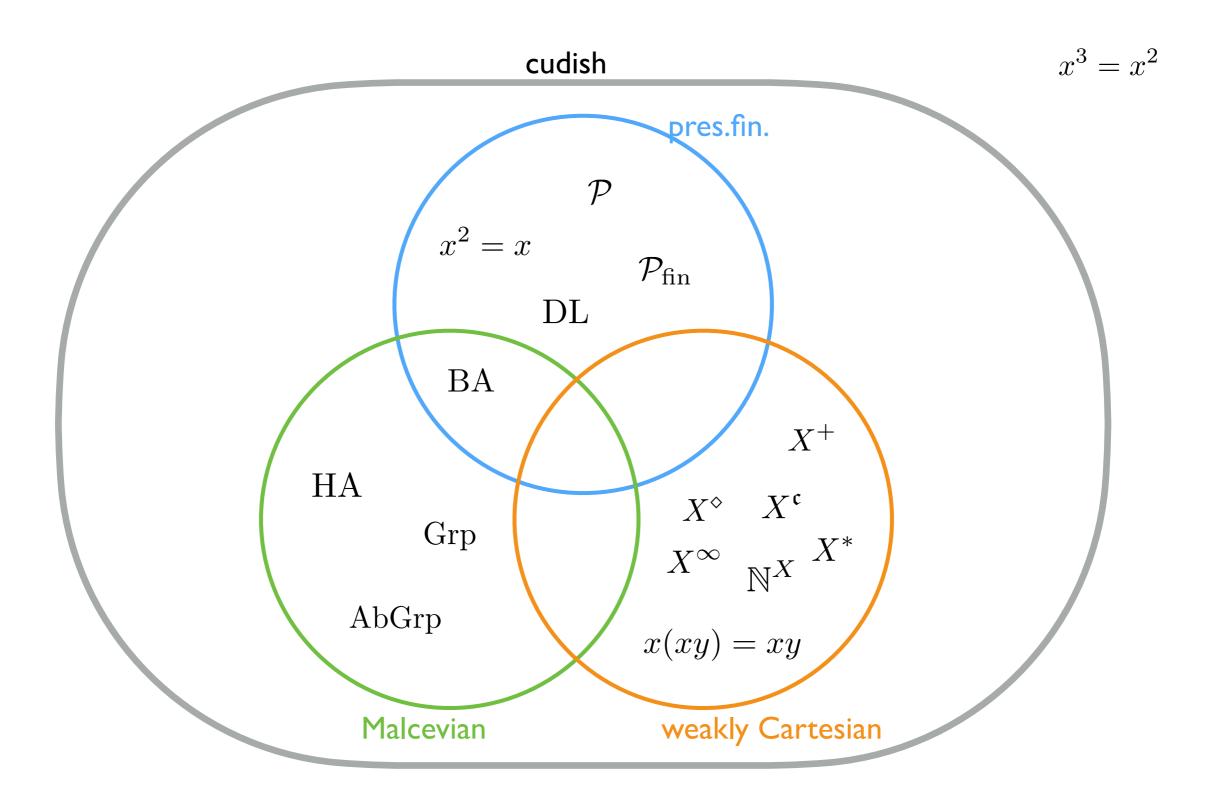
- any monad presented by linear regular equations:

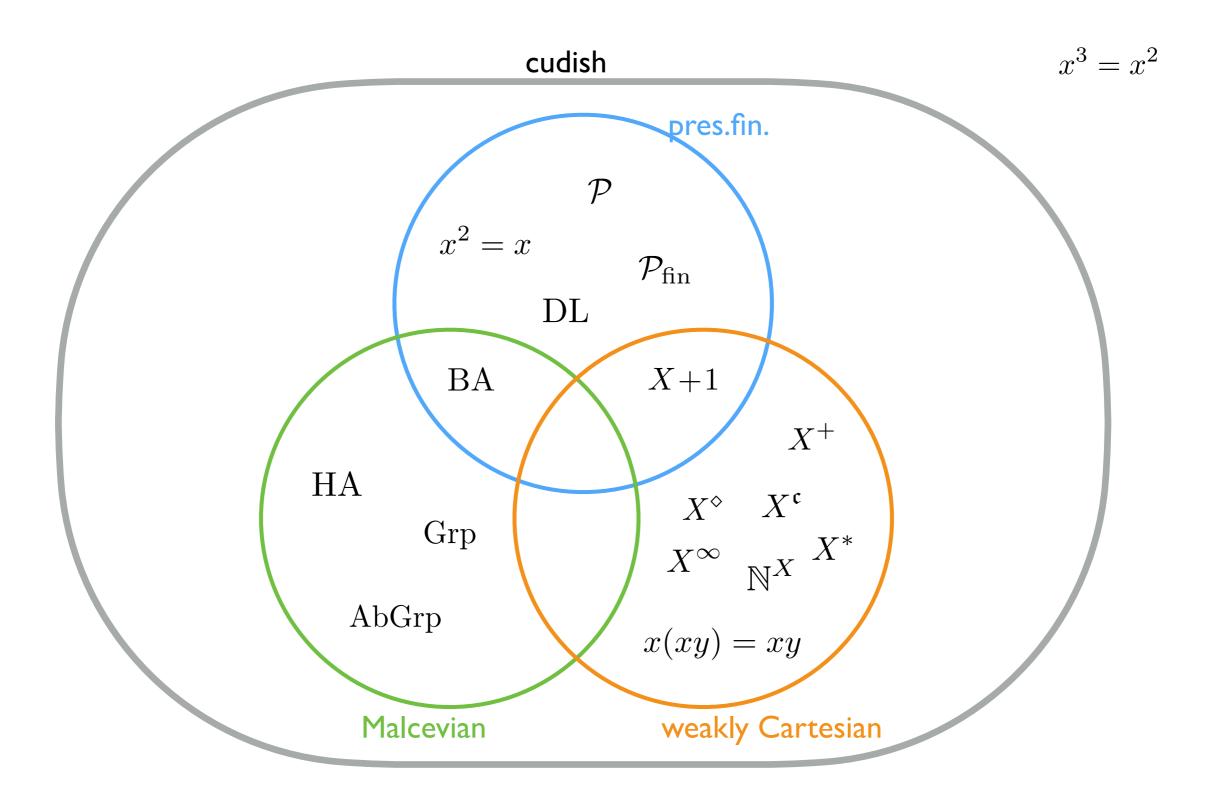
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \checkmark$$
$$x \cdot y = y \cdot x \quad \checkmark$$
$$x \cdot x = x \quad \bigstar$$
$$x \cdot x^{-1} = e \quad \bigstar$$

- T presented by a binary operation with: $x \cdot (x \cdot y) = x \cdot y$









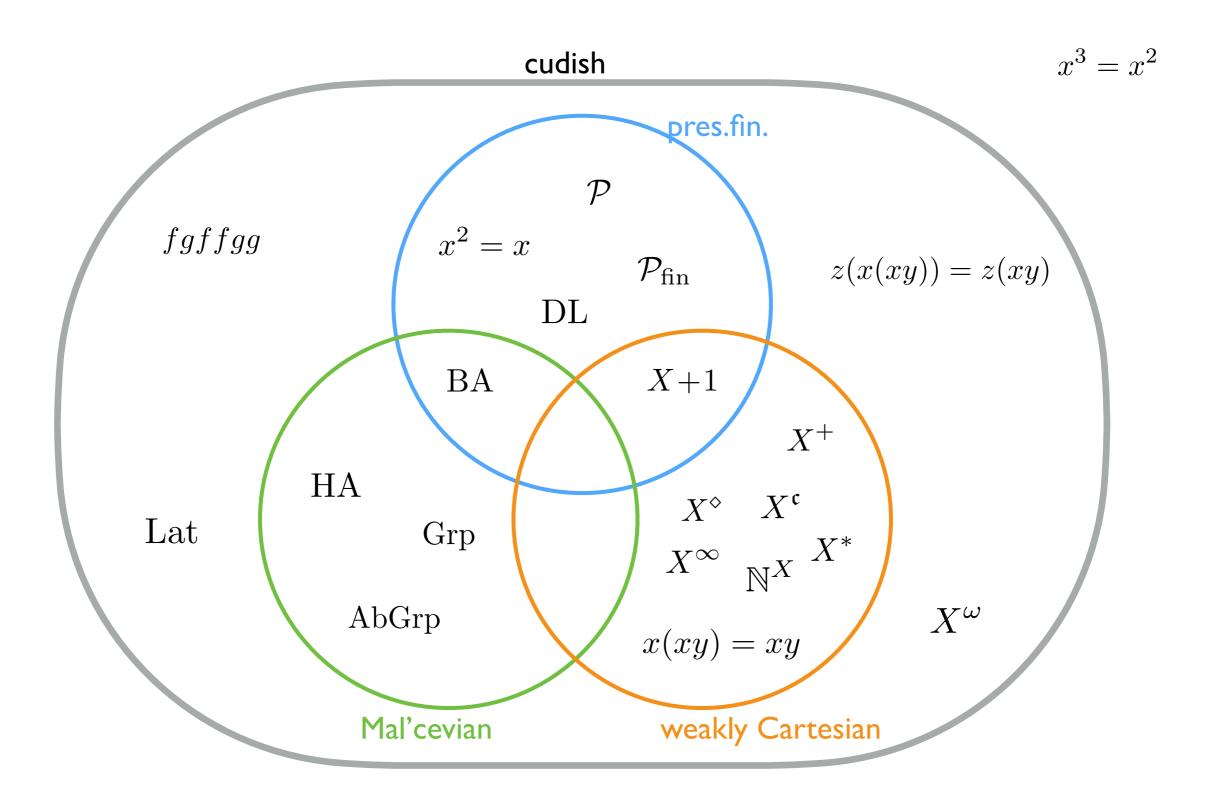
I. The reader monad X^{ω}

(a compactness argument)

I.The reader monad X^{ω} (a compactness argument) 2.The free lattice monad Lat (a convexity argument)

- I.The reader monad X^ω (a compactness argument)
 2.The free lattice monad Lat (a convexity argument)
 3. A binary operation with:
- 3. A binary operation with: $z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$ (a "powerset squared" construction works)

- I.The reader monad X^ω (a compactness argument)
 2.The free lattice monad Lat (a convexity argument)
- 3. A binary operation with: $z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$ (a "powerset squared" construction works)
- 4. Unary operations f, g with: fgfgg(x) = x fgffgg(x) = fgffgg(y)(has no nontrivial finite algebras)



I. Monoids with $x^3 = x^2$

I. Monoids with
$$x^3 = x^2$$

2. The "marked words" monad:

 $TX = \{ (\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w \}$

I. Monoids with
$$x^3 = x^2$$

2. The "marked words" monad:

 $TX = \{ (\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w \}$

3. The "balanced associativity" monad: a binary operation with

$$x \cdot (y \cdot x) = (x \cdot y) \cdot x$$

I. Monoids with
$$x^3 = x^2$$

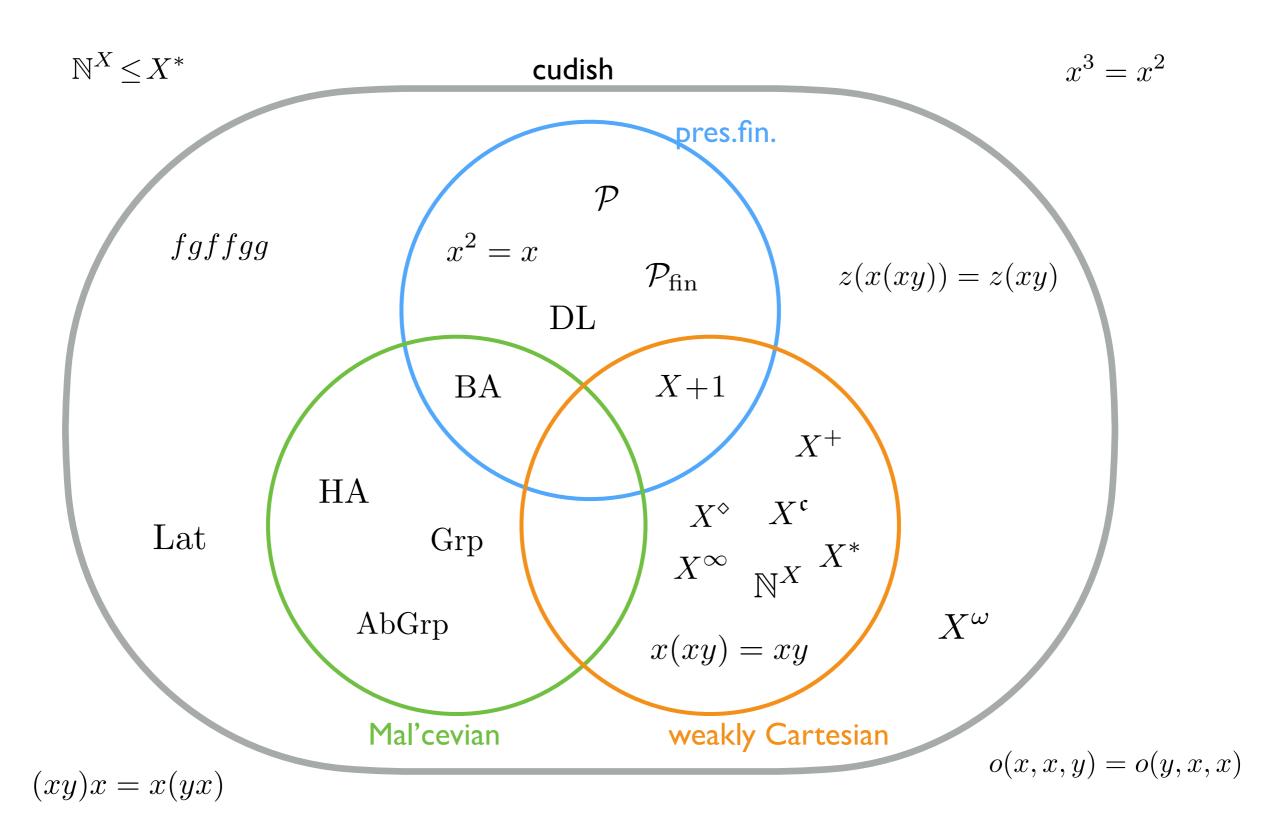
2. The "marked words" monad:

 $TX = \{ (\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w \}$

3. The "balanced associativity" monad: a binary operation with

$$x \cdot (y \cdot x) = (x \cdot y) \cdot x$$

4. The "almost Mal'cevian" monad: a ternary operation with o(x, x, y) = o(y, x, x)



OWLS, 13/05/20