Monadic

 Monadic Second Order Logic

 Monadic Second Order Logic}

Mikołaj Bojańczyk, Bartek Klin, Julian Salamanca
University of Warsaw

Languages of finite words

accepted by finite automata

Languages of finite words

```
accepted by finite automata
```


Languages of finite words

```
accepted by finite automata
```


defined by regular expressions

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

Languages of finite words

```
accepted by finite automata
```

defined by regular expressions

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

Languages of finite words

```
accepted by finite automata
```

defined by regular expressions
$E::=\epsilon|a| E+E|E E| E^{*}$

MSO-definable

$$
\begin{array}{ccc}
x<y & Q_{a}(x) & x \in X \\
\phi \vee \psi & \neg \phi & \exists X . \phi
\end{array}
$$

Monadic Second-Order Logic

- words as relational structures:

Monadic Second-Order Logic

- words as relational structures:

Monadic Second-Order Logic

- words as relational structures:

Q_{a}

Monadic Second-Order Logic

- words as relational structures:

Monadic Second-Order Logic

- words as relational structures:

Monadic Second-Order Logic

- words as relational structures:

- examples:
$\forall x . Q_{a}(x) \Rightarrow \exists y . x<y \wedge Q_{c}(y)$

Monadic Second-Order Logic

- words as relational structures:

- examples:
$\forall x \cdot Q_{a}(x) \Rightarrow \exists y \cdot x<y \wedge Q_{c}(y)$
$\exists X .(\forall x \exists y y \leq x \wedge y \in X) \wedge$
$(\forall x \exists y y \geq x \wedge y \in X) \wedge$
$(\forall x \forall y(x<y \wedge \neg(\exists z x<z<y)) \Rightarrow(x \in X \Leftrightarrow y \notin X))$.

Languages of finite words

accepted by finite automata

Languages of finite words

```
accepted by finite automata
```

defined by regular expressions
$E::=\epsilon|a| E+E|E E| E^{*}$

MSO-definable

$$
\begin{array}{ccc}
x<y & Q_{a}(x) & x \in X \\
\phi \vee \psi & \neg \phi & \exists X . \phi
\end{array}
$$

Languages of finite words

accepted by finite automata

defined by regular expressions
$E::=\epsilon|a| E+E|E E| E^{*}$

MSO-definable

$$
x<y \quad Q_{a}(x) \quad x \in X
$$

$$
\phi \vee \psi \quad \neg \phi \quad \exists X . \phi
$$

Languages of finite words

accepted by finite automata

defined by regular expressions

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

recognized by finite monoids

$$
\begin{array}{rrr}
\overleftarrow{h}(A)= & L & \\
\stackrel{\text { ® }}{ } & & A \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} & M
\end{array}
$$

Languages of finite words

accepted by finite automata

defined by regular expressions

$$
E::=\epsilon|a| E+E|E E| E^{*}
$$

$$
\begin{array}{ccc}
x<y & Q_{a}(x) & x \in X \\
\phi \vee \psi & \neg \phi & \exists X . \phi
\end{array}
$$

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} \\
& M \\
\hline
\end{array}
$$

recognized by finite monoids

Languages of finite words

Languages of finite words

Things in this talk

- finite words
- ω-words
- countable total orders
- scattered total orders
- total orders of size $\leq \mathfrak{c}$
- finite trees
- infinite trees
- graphs of bounded treewidth
- graphs of bounded cliquewidth
- ...
- ...

Our focus

\[

\]

recognized by finite monoids

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & A \\
\Sigma^{*} \xrightarrow[h]{\longrightarrow} & \text { ค }
\end{array}
$$

Our focus

\[

\]

recognized by finite monoids

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & \\
& \\
\Sigma^{*} \xrightarrow[h]{\longrightarrow} & A \\
& M
\end{array}
$$

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

Our focus

\[

\]

recognized by finite monoids

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & A \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} \\
& M
\end{array}
$$

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments
- relatively easy for all cases
- the arguments look generic

Our focus

\[

\]

recognized by finite monoids

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & A \\
\Sigma^{*} \xrightarrow[h]{\longrightarrow} & \text { ค }
\end{array}
$$

Our focus

\[

\]

$$
\begin{aligned}
& \text { recognized by finite monoids } \\
& \qquad \begin{array}{cc}
\overleftarrow{h}(A)= & A \\
& L \cap \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow}
\end{array}
\end{aligned}
$$

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$

Our focus

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by finite monoids

$$
\begin{aligned}
& \overleftarrow{h}(A)=L \\
& \stackrel{I^{\prime}}{\Sigma^{*} \xrightarrow[h]{\longrightarrow}} \stackrel{\text { in }}{M}
\end{aligned}
$$

Definable implies recognizable, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\overleftarrow{h}(A)=L
$$

$$
A
$$

in
$\Sigma^{*} \xrightarrow[h]{ } M$

- $0^{*} 1^{*} \subseteq\{0,1\}^{*}$ recognized

Definable implies recognizable, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{aligned}
& \overleftarrow{h}(A)= L \\
& \mid \cap \\
& \Sigma^{*} \xrightarrow[h]{ } \\
& A \\
& M
\end{aligned}
$$

- $0^{*} 1^{*} \subseteq\{0,1\}^{*}$ recognized
- L_{i} rec. by $h_{i}: \Sigma^{*} \rightarrow M_{i}$ (for $i=1,2$) implies $L_{1} \cap L_{2}$ rec. by $\left\langle h_{1}, h_{2}\right\rangle: \Sigma^{*} \rightarrow M_{1} \times M_{2}$

Definable implies recognizable, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & \\
& \\
\Sigma^{*} \xrightarrow[h]{\longrightarrow} & A \\
& M
\end{array}
$$

- $0^{*} 1^{*} \subseteq\{0,1\}^{*}$ recognized
- L_{i} rec. by $h_{i}: \Sigma^{*} \rightarrow M_{i}$ (for $i=1,2$) implies $L_{1} \cap L_{2}$ rec. by $\left\langle h_{1}, h_{2}\right\rangle: \Sigma^{*} \rightarrow M_{1} \times M_{2}$ $\Sigma^{*} \backslash L_{i}$ rec. by h_{i}

Definable implies recognizable, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$

recognized by a finite monoid

$$
\begin{array}{rr}
\overleftarrow{h}(A)= & L \\
\stackrel{\cap}{ } & \\
& \\
\Sigma^{*} \xrightarrow[h]{\longrightarrow} & A \\
\hline
\end{array}
$$

- $0^{*} 1^{*} \subseteq\{0,1\}^{*}$ recognized
- L_{i} rec. by $h_{i}: \Sigma^{*} \rightarrow M_{i}$ (for $i=1,2$) implies $L_{1} \cap L_{2}$ rec. by $\left\langle h_{1}, h_{2}\right\rangle: \Sigma^{*} \rightarrow M_{1} \times M_{2}$ $\Sigma^{*} \backslash L_{i}$ rec. by h_{i}
- L rec. by $h: \Gamma^{*} \rightarrow M$,
$g: \Sigma \rightarrow \Gamma^{*}$ implies $\overleftarrow{g}(L)$ rec. by $h \circ \hat{g}$ $\hat{g}: \Sigma^{*} \rightarrow \Gamma^{*}$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\overleftarrow{h}(A)=L
$$

$$
A
$$

in
$\Sigma^{*} \xrightarrow[h]{ } M$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$

Closure under direct images, for finite words

least class closed under:

- $0^{*} 1^{*} \subseteq\{0,1\}^{*}$
- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$
- take $g: \Sigma \rightarrow \Gamma$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{aligned}
& \overleftarrow{h}(A)= L \\
& \mid \cap \\
& \Sigma^{*} \xrightarrow[h]{ } \\
& A \\
& M
\end{aligned}
$$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$
- take $g: \Sigma \rightarrow \Gamma$
- define a monoid on $\mathcal{P} M$:

$$
S \cdot T=\{s \cdot t \mid s \in S, t \in T\}
$$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{aligned}
& \overleftarrow{h}(A)= L \\
& \mid \cap \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} \\
& A \\
& M
\end{aligned}
$$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$
- take $g: \Sigma \rightarrow \Gamma$
- define a monoid on $\mathcal{P} M$:

$$
S \cdot T=\{s \cdot t \mid s \in S, t \in T\}
$$

- put $k: \Gamma^{*} \rightarrow \mathcal{P} M$ s.t. $k(c)=\{h(a) \mid g(a)=c\}$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{aligned}
& \overleftarrow{h}(A)= L \\
& \mid \cap \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} \\
& A \\
& M
\end{aligned}
$$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$
- take $g: \Sigma \rightarrow \Gamma$
- define a monoid on $\mathcal{P} M$:

$$
S \cdot T=\{s \cdot t \mid s \in S, t \in T\}
$$

- put $k: \Gamma^{*} \rightarrow \mathcal{P} M$ s.t. $k(c)=\{h(a) \mid g(a)=c\}$

$$
B \subseteq \mathcal{P} M \text { s.t. } B=\{S \mid S \cap A \neq \emptyset\}
$$

Closure under direct images, for finite words

least class closed under:
$-0^{*} 1^{*} \subseteq\{0,1\}^{*}$

- boolean combinations
- inv. images along $h: \Sigma \rightarrow \Gamma^{*}$
- dir. images along $h: \Sigma \rightarrow \Gamma$
recognized by a finite monoid

$$
\begin{aligned}
& \overleftarrow{h}(A)= L \\
& \mid \cap \\
& \Sigma^{*} \xrightarrow[h]{\longrightarrow} \\
& A \\
& M
\end{aligned}
$$

- let $L \subseteq \Sigma^{*}$ be recognized by $h: \Sigma^{*} \rightarrow M$
- take $g: \Sigma \rightarrow \Gamma$
- define a monoid on $\mathcal{P} M$:

$$
S \cdot T=\{s \cdot t \mid s \in S, t \in T\}
$$

- put $k: \Gamma^{*} \rightarrow \mathcal{P} M$ s.t. $k(c)=\{h(a) \mid g(a)=c\}$

$$
B \subseteq \mathcal{P} M \text { s.t. } B=\{S \mid S \cap A \neq \emptyset\}
$$

- then k and B recognize $g^{*}(L)$

Definable implies recognizable, for finite words

We have just shown:

The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

Definable implies recognizable, for finite words

We have just shown:
The class of languages
recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

We want to generalize this to other Ghings.

Monads

Monads are ways to collect stuff

Monads

Monads are ways to collect stuff

A monad T :

- given a set X, returns a set $T X$

Monads

Monads are ways to collect stuff

A monad T : Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

- given a set X, returns a set $T X$

Monads

Monads are ways to collect stuff

A monad T : Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

- given a set X, returns a set $T X$
- given a function $f: X \rightarrow Y$, returns a function $T f: T X \rightarrow T Y$

Monads

Monads are ways to collect stuff

A monad T : Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

- given a set X, returns a set $T X$
- given a function $f: X \rightarrow Y$, returns a function $T f: T X \rightarrow T Y$ so that:
- $T\left(\mathrm{id}_{X}\right)=\mathrm{id}_{T X}$, and
- $T(g \circ f)=T g \circ T f$

Monads

Monads are ways to collect stuff

A monad T : Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

- given a set X, returns a set $T X$
- given a function $f: X \rightarrow Y$, returns a function $T f: T X \rightarrow T Y$
so that:
- $T\left(\mathrm{id}_{X}\right)=\mathrm{id}_{T X}$, and
functor
- $T(g \circ f)=T g \circ T f$

Monads

Monads are ways to collect stuff

A monad T : Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

- given a set X, returns a set $T X$
- given a function $f: X \rightarrow Y$, returns a function $T f: T X \rightarrow T Y$ so that:
- $T\left(\mathrm{id}_{X}\right)=\mathrm{id}_{T X}$, and
functor
- $T(g \circ f)=T g \circ T f$
to be ctd...

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit
- $\mu_{X}: T T X \rightarrow T X$

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit
- $\mu_{X}: T T X \rightarrow T X$
multiplication

Monads ctd.
 Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$

A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit
- $\mu_{X}: T T X \rightarrow T X$

multiplication

such that (for every $f: X \rightarrow Y$):

Monads ctd.

Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$
A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit
- $\mu_{X}: T T X \rightarrow T X$

multiplication

such that (for every $f: X \rightarrow Y$):

naturality

Monads ctd.

Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$
A monad T comes with (for every set X):

- $\eta_{X}: X \rightarrow T X$
unit
- $\mu_{X}: T T X \rightarrow T X$

multiplication

such that (for every $f: X \rightarrow Y$):

naturality
to be ctd...

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$
Further axioms on $\eta_{X}: X \rightarrow T X$

$$
\mu_{X}: T T X \rightarrow T X \quad:
$$

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$
Further axioms on $\eta_{X}: X \rightarrow T X$

$$
\mu_{X}: T T X \rightarrow T X \quad:
$$

Monads ctd. Examples: $X^{*}, X^{\omega}, X^{\infty}, \mathcal{P} X, \mathbb{N}^{X}$
Further axioms on $\eta_{X}: X \rightarrow T X$

$$
\mu_{X}: T T X \rightarrow T X \quad:
$$

Examples

I.The list monad

$$
\begin{aligned}
& T X=X^{*} \\
& T f\left(x_{1} \cdots x_{n}\right)=f\left(x_{1}\right) \cdots f\left(x_{n}\right) \\
& \eta_{X}(x)=x \\
& \mu_{X}\left(w_{1} w_{2} \cdots w_{n}\right)=w_{1}^{\frown} w_{2} \cdots \frown w_{n}
\end{aligned}
$$

Examples

I.The list monad

$$
\begin{aligned}
& T X=X^{*} \\
& T f\left(x_{1} \cdots x_{n}\right)=f\left(x_{1}\right) \cdots f\left(x_{n}\right) \\
& \eta_{X}(x)=x \\
& \mu_{X}\left(w_{1} w_{2} \cdots w_{n}\right)=w_{1} w_{2} \cdots \frown w_{n}
\end{aligned}
$$

2. The powerset monad

$$
\begin{aligned}
& T X=\mathcal{P} X \\
& T f=\vec{f} \\
& \eta_{X}(x)=\{x\} \\
& \mu_{X}(\Phi)=\bigcup \Phi
\end{aligned}
$$

Examples ctd.

3.The reader monad

$$
\begin{aligned}
& T X=X^{\omega} \quad T f\left(x_{1} x_{2} \cdots\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots \\
& \eta_{X}(x)=x x x \cdots \quad \mu_{X}\left(w_{1} w_{2} \cdots\right)=w_{11} w_{22} w_{33} \cdots
\end{aligned}
$$

Examples ctd.

3.The reader monad

$$
\begin{aligned}
& T X=X^{\omega} \quad T f\left(x_{1} x_{2} \cdots\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots \\
& \eta_{X}(x)=x x x \cdots \quad \mu_{X}\left(w_{1} w_{2} \cdots\right)=w_{11} w_{22} w_{33} \cdots
\end{aligned}
$$

4,5,...: term monads
For an equational presentation (Σ, E), put:
$T X=\Sigma$-terms over X modulo the equations
$T f$ - variable substitution
η - variables as terms
$\mu \quad$ - term flattening

What we want to talk about

The class of languages recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

$L \subseteq T \Sigma$

The class of languages recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite monoids
is closed under:
-boolean combinations

- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

Algebras

A T-algebra is:

- a set X and a function $f: T X \rightarrow X$

Algebras

A T-algebra is:

- a set X and a function $f: T X \rightarrow X$ such that:

Algebras
A T-algebra is:

- a set X and a function $f: T X \rightarrow X$ such that:

Examples:
(-) ${ }^{*}$-algebras are monoids

Algebras
A T-algebra is:

- a set X and a function $f: T X \rightarrow X$
such that:

Examples:
$(-)^{*}$-algebras are monoids
$\mathcal{P}_{\text {fin }}$-algebras are semilattices

Algebras
A T-algebra is:

- a set X and a function $f: T X \rightarrow X$
such that:

Examples:
$(-)^{*}$-algebras are monoids
$\mathcal{P}_{\text {fin }}$-algebras are semilattices
Term-monad algebras are what you expect

Homomorphisms

A homomorphism from $f: T X \rightarrow X$ to $g: T Y \rightarrow Y$:
a function $h: X \rightarrow Y$ such that:

Recognizing languages with algebras
Fact: $\mu_{X}: T T X \rightarrow T X$ is always a T-algebra.

Recognizing languages with algebras
Fact: $\mu_{X}: T T X \rightarrow T X$ is always a T-algebra.

Recognizing languages with algebras
Fact: $\mu_{X}: T T X \rightarrow T X$ is always a T-algebra.

Recognizing languages with algebras
Fact: $\mu_{X}: T T X \rightarrow T X$ is always a T-algebra.

$$
\begin{aligned}
& T T \Sigma \xrightarrow{T h} T M \\
& \mu_{X} \downarrow \quad{ }^{\downarrow} \\
& T \Sigma \longrightarrow h \\
& \text { UI UI } \\
& \overleftarrow{h}(A)=L \quad A \\
& \text { finite }
\end{aligned}
$$

Recognizing languages with algebras
Fact: $\mu_{X}: T T X \rightarrow T X$ is always a T-algebra.

What we want to talk about

The class of languages

 recognized by finite algebras is closed under:- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
letter-to-letter homomorphisms.

What we want to talk about

The class of languages

 recognized by finite algebras is closed under:- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
letter-to-letter homomorphisms.
those of the form $T f: T \Sigma \rightarrow T \Gamma$

What we want to talk about

The class of languages

 recognized by finite algebras is closed under:- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
letter-to-letter homomorphisms.
those of the form $T f: T \Sigma \rightarrow T \Gamma$

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

What we want to talk about

The class of languages recognized by finite algebras is closed under:

- boolean combinations
\checkmark - inverse images along homomorphisms,
X - direct images along (surjective) letter-to-letter homomorphisms.

Counterexample

Let T be the list monad quotiented by:

$$
x \cdot x \cdot x=x \cdot x
$$

Counterexample

Let T be the list monad quotiented by:

$$
x \cdot x \cdot x=x \cdot x
$$

Counterexample

Let T be the list monad quotiented by:

$$
x \cdot x \cdot x=x \cdot x
$$

A language $L \subseteq T \Sigma$ corresponds to
a language $L \subseteq \Sigma^{*}$ closed under B
(in the sense of (sub)word rewriting)

Counterexample

Let T be the list monad quotiented by:

$$
x \cdot x \cdot x=x \cdot x
$$

A language $L \subseteq T \Sigma$ corresponds to
a language $L \subseteq \Sigma^{*}$ closed under B
(in the sense of (sub)word rewriting)
A T-algebra is a monoid that satisfies B

Counterexample

Let T be the list monad quotiented by:

$$
x \cdot x \cdot x=x \cdot x
$$

A language $L \subseteq T \Sigma$ corresponds to
a language $L \subseteq \Sigma^{*}$ closed under B
(in the sense of (sub)word rewriting)
A T-algebra is a monoid that satisfies B
Fact: $L \subseteq T \Sigma$ is recognizable iff
(the corresponding) $L \subseteq \Sigma^{*}$ is regular and closed under B.

Counterexample ctd.

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Fact: L is closed under B.

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Fact: L is closed under B.
So: L is T-recognizable.

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Fact: L is closed under B.
So: L is T-recognizable.
Put $\Gamma=\Delta \cup\{0\}$ and $h: \Sigma \rightarrow \Gamma$ s.t. $h(1)=0$.

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Fact: L is closed under B.
So: L is T-recognizable.
Put $\Gamma=\Delta \cup\{0\}$ and $h: \Sigma \rightarrow \Gamma$ s.t. $h(1)=0$.
Then $\overrightarrow{T h}(L)$ is the B-closure of $\Delta^{*} 0 \Delta^{*} 0 \subseteq \Gamma^{*}$

Counterexample ctd.

For $\Delta=\{a, b, c\}$ and $\Sigma=\Delta \cup\{0,1\}$, let

$$
L=\Delta^{*} 0 \Delta^{*} 1 \subseteq \Sigma^{*}
$$

Fact: L is closed under B.
So: L is T-recognizable.
Put $\Gamma=\Delta \cup\{0\}$ and $h: \Sigma \rightarrow \Gamma$ s.t. $h(1)=0$.
Then $\overrightarrow{T h}(L)$ is the B-closure of $\Delta^{*} 0 \Delta^{*} 0 \subseteq \Gamma^{*}$
Fact: $\overrightarrow{T h}(L)$ is not regular, so not T-recognizable.

The landscape of monads

cudish

The landscape of monads

cudish

$$
x^{3}=x^{2}
$$

The landscape of monads

cudish

$$
x^{3}=x^{2}
$$

The landscape of monads

cudish

$$
x^{3}=x^{2}
$$

Sufficient condition I

Fact: if T preserves finiteness then every language on a finite alphabet Σ is recognizable (by $T \Sigma$).

Sufficient condition I

Fact: if T preserves finiteness then every language on a finite alphabet Σ is recognizable (by $T \Sigma$).

Examples:

- $\mathcal{P}, \mathcal{P}^{+}, \mathcal{P}_{\text {fin }}$
- idempotent monoids/semigroups
- distributive lattices
- Boolean algebras

The landscape of monads

The landscape of monads

Sufficient condition II

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term $t(x, y, z)$ such that

$$
t(x, x, y)=y=t(y, x, x)
$$

Sufficient condition II

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term $t(x, y, z)$ such that

$$
t(x, x, y)=y=t(y, x, x)
$$

Fact: Malcevian monads are cudish.

Sufficient condition II

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term $t(x, y, z)$ such that

$$
t(x, x, y)=y=t(y, x, x)
$$

Fact: Malcevian monads are cudish.
Examples:

- groups $\quad t(x, y, z)=x y^{-1} z$

Sufficient condition II

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term $t(x, y, z)$ such that

$$
t(x, x, y)=y=t(y, x, x)
$$

Fact: Malcevian monads are cudish.
Examples:

- groups $\quad t(x, y, z)=x y^{-1} z$
- Boolean algebras

$$
t(x, y, z)=(x \wedge z) \vee(x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z)
$$

Sufficient condition II

Def.: a monad is Malcevian
if it admits (an eq. presentation with)
a ternary term $t(x, y, z)$ such that

$$
t(x, x, y)=y=t(y, x, x)
$$

Fact: Malcevian monads are cudish.
Examples:

- groups $\quad t(x, y, z)=x y^{-1} z$
- Boolean algebras

$$
t(x, y, z)=(x \wedge z) \vee(x \wedge \neg y \wedge \neg z) \vee(\neg x \wedge \neg y \wedge z)
$$

- Heyting algebras

$$
t(x, y, z)=((x \rightarrow y) \rightarrow z) \wedge((z \rightarrow y) \rightarrow z) \wedge(x \vee z)
$$

The landscape of monads

The landscape of monads

Sufficient condition III

Def.: a monad T is weakly Cartesian if: - T preserves weak pullbacks

- all naturality squares for η and μ are weak pullbacks.

Sufficient condition III

Def.: a monad T is weakly Cartesian
if: - T preserves weak pullbacks

- all naturality squares for η and μ are weak pullbacks.

Sufficient condition III

Def.: a monad T is weakly Cartesian if: - T preserves weak pullbacks

- all naturality squares for η and μ are weak pullbacks.
weak pullback:
for all $x \in X, y \in Y$ s.t. $f(x)=g(y)$
there is $p \in P$ s.t. $h(p)=x, k(p)=y$

Sufficient condition III

Def.: a monad T is weakly Cartesian if: - T preserves weak pullbacks

- all naturality squares for η and μ are weak pullbacks.
weak pullback:
for all $x \in X, y \in Y$ s.t. $f(x)=g(y)$
there is $p \in P$ s.t. $h(p)=x, k(p)=y$

E.g. for η :
"a non-unit element never becomes
a unit element after a substitution"

Sufficient condition III

Fact: weakly Cartesian monads are cudish.
 (the powerset construction works)

Sufficient condition III

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)

Examples:

- any monad presented by linear regular equations:

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot z \\
x \cdot y & =y \cdot x \\
x \cdot x & =x \\
x \cdot x^{-1} & =e
\end{aligned}
$$

Sufficient condition III

Fact: weakly Cartesian monads are cudish.
(the powerset construction works)
Examples:

- any monad presented by linear regular equations:

$$
\begin{aligned}
x \cdot(y \cdot z) & =(x \cdot y) \cdot z \\
x \cdot y & =y \cdot x \\
x \cdot x & =x \\
x \cdot x^{-1} & =e
\end{aligned}
$$

- T presented by a binary operation with:

$$
x \cdot(x \cdot y)=x \cdot y
$$

The landscape of monads

Other examples

I.The reader monad X^{ω}
(a compactness argument)

Other examples

I.The reader monad X^{ω}

(a compactness argument)

2.The free lattice monad Lat
(a convexity argument)

Other examples

I.The reader monad X^{ω}

(a compactness argument)

2.The free lattice monad Lat
(a convexity argument)
3. A binary operation with:

$$
\begin{aligned}
& z \cdot(x \cdot(x \cdot y))=z \cdot(x \cdot y) \\
& \text { (a "powerset squared" construction works) }
\end{aligned}
$$

Other examples

I.The reader monad X^{ω}
(a compactness argument)
2.The free lattice monad Lat

> (a convexity argument)
3. A binary operation with:

$$
z \cdot(x \cdot(x \cdot y))=z \cdot(x \cdot y)
$$

(a "powerset squared" construction works)
4. Unary operations f, g with:

$$
f g f g g(x)=x \quad f g f f g g(x)=f g f f g g(y)
$$

(has no nontrivial finite algebras)

The landscape of monads

Counterexamples

I. Monoids with $x^{3}=x^{2}$

Counterexamples

I. Monoids with $x^{3}=x^{2}$
2.The "marked words" monad:

$$
T X=\left\{(\beta, w) \mid \beta: X \rightarrow \mathbb{N}, w \in X^{*}, \beta \leq w\right\}
$$

Counterexamples

I. Monoids with $x^{3}=x^{2}$
2.The "marked words" monad:

$$
T X=\left\{(\beta, w) \mid \beta: X \rightarrow \mathbb{N}, w \in X^{*}, \beta \leq w\right\}
$$

3.The "balanced associativity" monad:
a binary operation with

$$
x \cdot(y \cdot x)=(x \cdot y) \cdot x
$$

Counterexamples

I. Monoids with $x^{3}=x^{2}$
2.The "marked words" monad:

$$
T X=\left\{(\beta, w) \mid \beta: X \rightarrow \mathbb{N}, w \in X^{*}, \beta \leq w\right\}
$$

3.The "balanced associativity" monad:
a binary operation with

$$
x \cdot(y \cdot x)=(x \cdot y) \cdot x
$$

4. The "almost Mal'cevian" monad:
a ternary operation with

$$
o(x, x, y)=o(y, x, x)
$$

The landscape of monads

