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Monadic Second-Order Logic

3

a c b c a c b a c a c

• words as relational structures:



• examples:

8x.Qa(x) ) 9y.x < y ^Qc(y)

9X.(8x 9y y  x ^ y 2 X) ^
(8x 9y y � x ^ y 2 X) ^
(8x 8y (x < y ^ ¬(9z x < z < y)) ) (x 2 X , y 62 X)).
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5

Things

• finite words
•    -words!
• countable total orders
• scattered total orders
• total orders of size  c

• finite trees
• infinite trees
• graphs of bounded treewidth
• graphs of bounded cliquewidth
• ...
• ...



OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _  ¬� 9X.�



OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _  ¬� 9X.�

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments



OWLS, 13/05/20 /33

- relatively easy for all cases
- the arguments look generic

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _  ¬� 9X.�

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments



OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _  ¬� 9X.�



OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

MSO-definable

x < y

Qa(x) x 2 X

� _  ¬� 9X.�

-  
least class closed under:

- boolean combinations
- inv. images along
- dir. images along

0⇤1⇤ ✓ {0, 1}⇤

h : ⌃ ! �⇤

h : ⌃ ⇣ �



OWLS, 13/05/20 /33

Our focus

6

recognized by finite monoids

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

-  
least class closed under:

- boolean combinations
- inv. images along
- dir. images along

0⇤1⇤ ✓ {0, 1}⇤

h : ⌃ ! �⇤

h : ⌃ ⇣ �



OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

•                         recognized

Definable implies recognizable, for finite words

-  
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤



OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

•                         recognized

•      rec. by                       (for             )  Li hi : ⌃
⇤ ! Mi i = 1, 2

implies              rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

Definable implies recognizable, for finite words

-  
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤



OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

•                         recognized

•      rec. by                       (for             )  Li hi : ⌃
⇤ ! Mi i = 1, 2

implies              rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

rec. by ⌃⇤ \ Li hi

Definable implies recognizable, for finite words

-  
least class closed under:

- boolean combinations
- inv. images along h : ⌃ ! �⇤

- dir. images along h : ⌃ ⇣ �

0⇤1⇤ ✓ {0, 1}⇤

0⇤1⇤ ✓ {0, 1}⇤



OWLS, 13/05/20 /337

recognized by a finite monoid

⌃⇤
h
// M

L A✓ ✓

 �
h (A) =

•                         recognized

•      rec. by                       (for             )  Li hi : ⌃
⇤ ! Mi i = 1, 2

implies              rec. by L1 \ L2 hh1, h2i : ⌃⇤ ! M1 ⇥M2

rec. by ⌃⇤ \ Li hi

•     rec. by                    ,          L h : �⇤ ! M g : ⌃ ! �⇤

implies           rec. by  �g (L) h � ĝ ĝ : ⌃⇤ ! �⇤
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Definable implies recognizable, for finite words

We have just shown:

The class of languages 
recognized by finite monoids
is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)

letter-to-letter homomorphisms.

We want to generalize this to other things. 
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Examples:      ,       ,        ,        ,  X⇤ X! X1 PX NX

⌘X : X ! TX

µX : TTX ! TX :

TX
⌘TX
// TTX

µX

✏✏

TX
T⌘X
oo

TX

TTTX
TµX //

µTX

✏✏

TTX

µX

✏✏
TTX µX

// TX That’s it!
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1. The list monad 

TX = X⇤

Tf(x1 · · ·xn) = f(x1) · · · f(xn)

⌘X(x) = x

µX(w1w2 · · ·wn) = w_
1 w_

2 · · ·_ wn
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1. The list monad 

TX = X⇤

Tf(x1 · · ·xn) = f(x1) · · · f(xn)

⌘X(x) = x

µX(w1w2 · · ·wn) = w_
1 w_

2 · · ·_ wn

2. The powerset monad 

TX = PX

Tf =
�!
f

⌘X(x) = {x}
µX(�) =

[
�
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3. The reader monad 

TX = X!
Tf(x1x2 · · · ) = f(x1)f(x2) · · ·

⌘X(x) = xxx · · · µX(w1w2 · · · ) = w11w22w33 · · ·
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Examples ctd.

14

3. The reader monad 

TX = X!
Tf(x1x2 · · · ) = f(x1)f(x2) · · ·

⌘X(x) = xxx · · · µX(w1w2 · · · ) = w11w22w33 · · ·

4,5,...: term monads 
For an equational presentation            , put:(⌃, E)

TX = -terms over     modulo the equations⌃ X

Tf - variable substitution    
⌘ - variables as terms   

µ - term flattening
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• a set     and a function                
A    -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
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Algebras
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• a set     and a function                
A    -algebra is:T

X f : TX ! X

such that:

X
⌘X // TX

h
✏✏
X

TTX
µX //

Th
✏✏

TX

h
✏✏

TX
h
// X

Term-monad algebras are what you expect

Examples:
    -algebras are monoids(�)⇤

    -algebras are semilatticesPfin
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A homomorphism from 
to                     :

f : TX ! X
g : TY ! Y

a function                   such that: h : X ! Y

TX
Th //

f

✏✏

TY

g

✏✏
X

h
// Y
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Fact:                              is always a    -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓ �
h (A) =

finite
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Recognizing languages with algebras

18

Fact:                              is always a    -algebra.µX : TTX ! TX T

TT⌃
Th //

µX

✏✏

TM

m

✏✏
T⌃

h
// M

L A

✓ ✓ �
h (A) =

language recognized by    h

finite
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Counterexample

Let     be the list monad quotiented by:  
x · x · x = x · x

T

B  

A language               corresponds to     L ✓ T⌃

a language              closed under     L ✓ ⌃⇤ B  
(in the sense of (sub)word rewriting) 

A    -algebra is a monoid that satisfies  B  T

Fact:              is recognizable iffL ✓ T⌃
(the corresponding)             isL ✓ ⌃⇤

regular and closed under     .   B
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Counterexample ctd.

For                     and                        , let� = {a, b, c} ⌃ = � [ {0, 1}
L = �⇤0�⇤1 ✓ ⌃⇤

So:     is    -recognizable. L T

Put                     and                  s.t.                .     � = � [ {0} h : ⌃ ! � h(1) = 0

Fact:           is not regular, so not    -recognizable. 
�!
Th(L) T

Fact:    is closed under     .     L B  

Then            is the     -closure of 
�!
Th(L) �⇤0�⇤0 ✓ �⇤B  
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The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc
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Sufficient condition 1

23

Fact: if     preserves finiteness T

then every language on a finite alphabet
is recognizable (by       ).

⌃

T⌃

Examples:
-    ,      ,     P P+ Pfin

- distributive lattices

- idempotent monoids/semigroups

- Boolean algebras
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The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA

x

2 = x

DL

pres.fin.
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Sufficient condition 1I

25

Def.: a monad is Malcevian 
if it admits (an eq. presentation with)
a ternary term               such thatt(x, y, z)

t(x, x, y) = y = t(y, x, x)

Fact: Malcevian monads are cudish. 
Examples:

- groups                                  t(x, y, z) = xy

�1
z

- Boolean algebras
t(x, y, z) = (x ^ z) _ (x ^ ¬y ^ ¬z) _ (¬x ^ ¬y ^ z)

- Heyting algebras
t(x, y, z) = ((x ! y) ! z) ^ ((z ! y) ! z) ^ (x _ z)
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Pfin

BA

Grp

AbGrp

HA

x

2 = x

DL
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Malcevian



OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad     is weakly Cartesian 
if:   -     preserves weak pullbacks

- all naturality squares for    and 
T

T

⌘ µ
are weak pullbacks.



OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad     is weakly Cartesian 
if:   -     preserves weak pullbacks

- all naturality squares for    and 
T

T

⌘ µ
are weak pullbacks.



OWLS, 13/05/20 /33

Sufficient condition III

27

Def.: a monad     is weakly Cartesian 
if:   -     preserves weak pullbacks

- all naturality squares for    and 
T

T

⌘ µ
are weak pullbacks.

weak pullback:
for all            ,            s.t.x 2 X

y 2 Y f(x) = g(y)

there is            s.t.                , p 2 P

P
h //

k
✏✏

X

f

✏✏
Y g

// Zh(p) = x

k(p) = y
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Sufficient condition III

27

Def.: a monad     is weakly Cartesian 
if:   -     preserves weak pullbacks

- all naturality squares for    and 
T

T

⌘ µ
are weak pullbacks.

weak pullback:
for all            ,            s.t.x 2 X

y 2 Y f(x) = g(y)

there is            s.t.                , p 2 P

P
h //

k
✏✏

X

f

✏✏
Y g

// Zh(p) = x

k(p) = y

E.g. for    :⌘ X
⌘X //

f

✏✏

TX

Tf

✏✏
Y ⌘Y

// TY

“a non-unit element never becomes
  a unit element after a substitution”
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Sufficient condition III

28

Fact: weakly Cartesian monads are cudish. 

Examples:
- any monad presented by linear regular equations:

x · (y · z) = (x · y) · z
x · y = y · x
x · x = x

x · x�1 = e

-     presented by a binary operation with:T

x · (x · y) = x · y

(the powerset construction works)
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P

Pfin

BA

Grp

AbGrp

HA

X+

NX

x

2 = x

DL
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The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

BA X+1

Grp

AbGrp

HA

X+

NX

x

2 = x

DL

x(xy) = xy

pres.fin.

Malcevian weakly Cartesian
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Other examples

30

1. The reader monad X!

(a compactness argument)

2. The free lattice monad Lat
(a convexity argument)

3.  A binary operation with:
z · (x · (x · y)) = z · (x · y)

(a “powerset squared” construction works)

4.  Unary operations   ,     with:f g

fgfgg(x) = x

fgffgg(x) = fgffgg(y)

(has no nontrivial finite algebras)
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X⇤
X1
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P

Pfin

X+

BA X+1

Grp

AbGrp

HA

NX

x

2 = x

DL

X!

Lat

x(xy) = xy

z(x(xy)) = z(xy)
fgffgg

pres.fin.

Mal’cevian weakly Cartesian
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Counterexamples

32

1. Monoids with x

3 = x

2

2. The “marked words” monad:

TX = {(�, w) | � : X ! N, w 2 X⇤, �  w}

3. The “balanced associativity” monad:
a binary operation with

x · (y · x) = (x · y) · x

4. The “almost Mal’cevian” monad:
a ternary operation with

o(x, x, y) = o(y, x, x)
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The landscape of monads

cudish
x

3 = x

2

X⇤
X1
X⇧ Xc

P

Pfin

X+

BA X+1

Grp

AbGrp

HA

NX

x

2 = x

(xy)x = x(yx)

NX X⇤

DL

o(x, x, y) = o(y, x, x)

X!

Lat

x(xy) = xy

z(x(xy)) = z(xy)
fgffgg

pres.fin.

Mal’cevian weakly Cartesian


