On Termination of Probabilistic Programs

Joost-Pieter Katoen

UNIVERSITY OF TWENTE.

Online Worldwide Seminar Logic and Semantics, April 15, 2020

What we all know about termination

The halting problem — does a program *P* terminate on a given input state *s*? is semi-decidable.

The universal halting problem — does a program *P* terminate on all input states? is undecidable.

Alan Mathison Turing

On computable numbers, with an application to the Entscheidungsproblem

1937

What if programs roll dice?

A radical change

- A program either terminates or not (on a given input)
- Terminating programs have a finite run-time
- Having a finite run-time is compositional

All these facts do not hold for probabilistic programs!

Certain termination

```
while (x > 0) {
    x := x-1 [1/2] x := x-2
}
```

This program never diverges. For all integer inputs x.

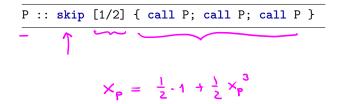
Almost-sure termination

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

This program does not always terminate. It diverges with probability zero. It almost surely terminates.

Non almost-sure termination



Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

This program terminates with probability $\frac{\sqrt{5}-1}{2} < 1$.

Positive almost-sure termination

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

R{i=N]= (I-p)^{N-1}·p J finite expectation

This program almost surely terminates. In finite expected time. Despite its possible divergence.

Null almost-sure termination

Consider the symmetric one-dimensional random walk:

int x := 10; while (x > 0) { x-- [1/2] x++ }

This program almost surely terminates. But: It requires an infinite expected time to do so.

Nuances of termination

Olivier Bournez Florent Garnier

..... certain termination

..... termination with probability one

⇒ almost-sure termination

..... in an expected finite number of steps

⇒ "positive" almost-sure termination

..... a.s.-termination in an expected infinite number of steps \implies "null" almost-sure termination

Three contributions

The <u>hardness</u> of the various notions <u>of termination</u>. [MFCS 2015, Acta Informatica 2019]

A powerful <u>proof rule</u> for <u>almost-sure termination</u>. [POPL 2018]

Proving positive almost-sure termination using weakest pre-conditions.

[ESOP 2016, J. ACM 2018]

Part 1: Hardness of termination

It is a known fact that deciding termination of ordinary programs is undecidable.

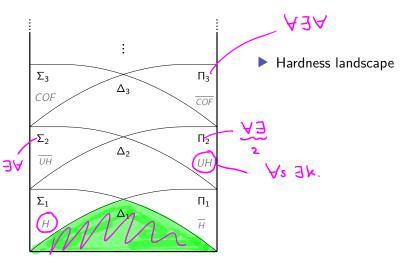
Our aim is to classify "how undecidable" (positive) almost-sure termination is.

Kleene and Mostovski

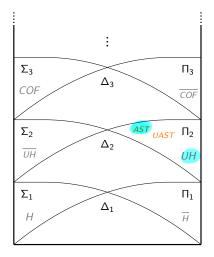
Stephen Kleene (1909-1994)

Andrzej Mostovski (1913–1975)

Hardness of almost-sure termination

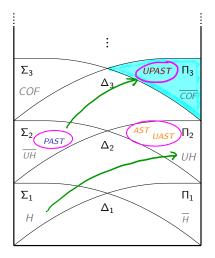


Hardness of almost-sure termination



- Hardness landscape
- AST for one input is as hard as ordinary termination for all inputs

Hardness of almost-sure termination



- Hardness landscape
- AST for one input is as hard as ordinary termination for all inputs
- Finite termination is even "more undecidable"

Proof idea: hardness of positive as-termination

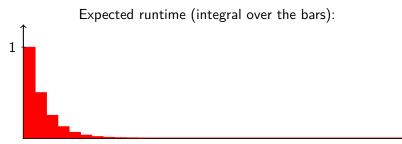
Reduction from the complement of the universal halting problem

For an ordinary program Q, provide a probabilistic program P (depending on Q) and an input s, such that

P terminates in a finite expected number of steps on s if and only if Q does not terminate on some input

Let's start simple

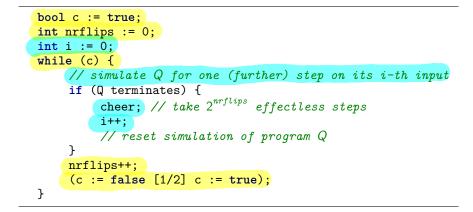
```
bool c := true;
int nrflips := 0;
while (c) {
    nrflips++;
    (c := false [1/2] c := true);
}
```



The nrflips-th iteration takes place with probability $1/2^{nrflips}$.

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given



Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

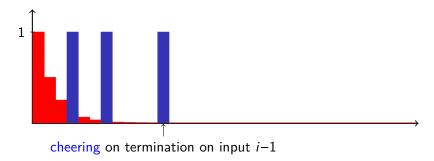
```
bool c := true;
int nrflips := 0;
int i := 0;
while (c) {
    // simulate Q for one (further) step on its i-th input
    if (Q terminates) {
         cheer; // take 2<sup>nrflips</sup> effectless steps
         i++:
         // reset simulation of program Q
    }
    nrflips++;
    (c := false [1/2] c := true);
}
```

P looses interest in further simulating Q by a coin flip to decide for termination.

Q does not always halt

Let i be the first input for which Q does not terminate.

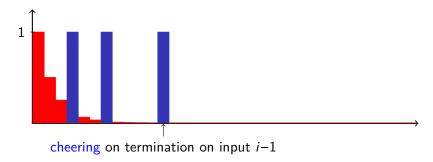
Expected runtime of *P* (integral over the bars):



Q does not always halt

Let i be the first input for which Q does not terminate.

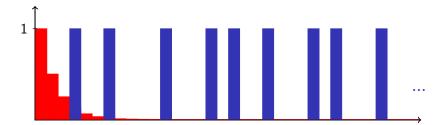
Expected runtime of *P* (integral over the bars):



Finite cheering — finite expected runtime

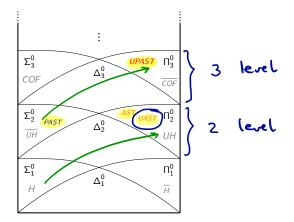
Q terminates on all inputs

Expected runtime of P (integral over the bars):



Infinite cheering — infinite expected runtime

Hardness of almost sure termination



No change for non-deterministic probabilistic programs. No change when approximating termination probabilities.

Part 2: Proving almost-sure termination

What? Termination with probability one. For all inputs.

Why?

- Reachability can be encoded as termination
- Often a prerequisite for proving correctness
- Often implicitly assumed

Why is it hard in practice?

Requires a lower bound 1 for termination probability

Almost-sure termination

"[Ordinary] termination is a purely topological property [...], but almost-sure termination is not. [...] Proving almostsure termination requires <u>arithmetic reasoning</u> not offered by termination provers."

Javier Esparza CAV 2012

How to prove termination?

Use a variant function on the program's state space whose value — on each loop iteration — is monotonically decreasing with respect to a (strict) well-founded relation.

Alan Mathison Turing Checking a large routine 1949

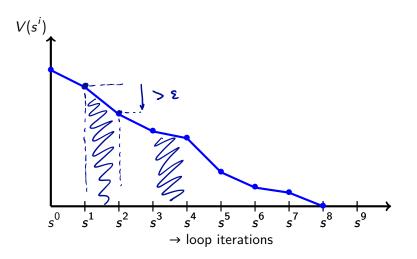
Variant (aka: ranking) functions

 $V: \Sigma \to \mathbb{R}_{\geq 0}$ is variant function for loop while (G) P if for every state s:

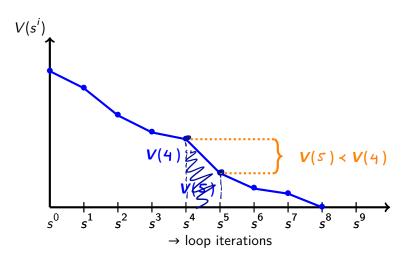
1. If $s \models G$, then *P*'s execution on *s* terminates in a state *t* with: $V(t) \le V(s) - \varepsilon$ for some fixed $\varepsilon > 0$, and

2. If $V(s) \leq 0$, then $s \notin G$.

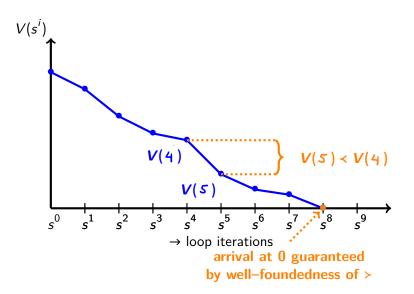
Termination proofs



Termination proofs



Termination proofs



Examples

while (x > 0) { x-- }

Ranking function V = x.

Ranking function V = x + y.

A large body of existing works

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982
Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005
Mclver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005
Esparza *et al.*: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012
Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013
Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and
Compositionality. POPL 2015

Chatterjee *et al*.: Algorithmic Termination of Affine Probabilistic Programs. POPL 2016 Agrawal/Chatterjee/Novotný: Lexicographic Ranking Supermartingales. POPL 2018

Key ingredient: super- (or some form of) martingales

On super-martingales

A stochastic process X_1, X_2, \ldots is a martingale whenever:

$$\mathbb{E}(X_{n+1} \mid X_1, \ldots, X_n) = X_n$$

It is a super-martingale whenever:

$$\mathbb{E}(X_{n+1} \mid X_1, \ldots, X_n) \leq X_n$$

A historical perspective

A countable Markov process is "non-dissipative"

if almost every infinite path eventually enters

- and remains in - positive recurrent states.

expected return

time < 00

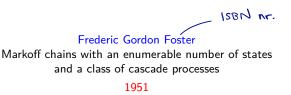
A historical perspective

A countable Markov process is "non-dissipative"

- if almost every infinite path eventually enters
- and remains in positive recurrent states.

A sufficient condition for being non-dissipative is:

$$\sum_{j\geq 0} j \cdot p_{ij} \leq i \quad \text{for all states } i$$

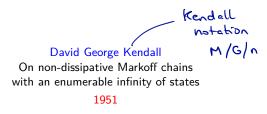


Kendall's variation

A Markov process is non-dissipative if for some function $V: \Sigma \to \mathbb{R}$:

$$\sum_{j\geq 0} V(j) \cdot p_{ij} \leq V(i) \quad \text{for all states } i$$

and for each $r \ge 0$ there are finitely many states *i* with $V(i) \le r$



On positive recurrence

Every irreducible positive recurrent Markov chain is non-dissipative.

A Markov process is positive recurrent iff there is a Lyapunov function $V: \Sigma \rightarrow \mathbb{R}_{\geq 0}$ with for finite $F \subseteq \Sigma$ and $\varepsilon > 0$:

$$\sum_{j} V(j) \cdot p_{ij} < \infty \quad \text{for } i \in F, \text{ and}$$

$$\sum_{j} V(j) \cdot p_{ij} < V(i) - \varepsilon \quad \text{for } i \notin F.$$

Markov Chains pp 167-193 I Cite as

Lyapunov Functions and Martingales

Authors Authors and affiliations

Pierre Brémaud

Pierre Brémaud 1999

Frederic Gordon Foster

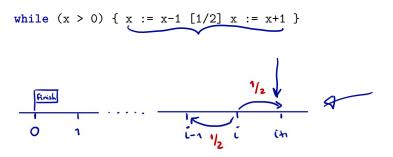
On the stochastic matrices associated with certain queuing processes

1953

Our aim

A powerful, simple proof rule for almost-sure termination. At the source code level. No "descend" into the underlying probabilistic model.

Proving almost-sure termination $V = \times$ $\mathbb{E}(X_{k+1}) = X_k$ The symmetric random walk: does not work

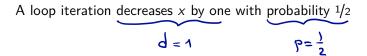


Proving almost-sure termination

The symmetric random walk:

 $V = \times$

Is out-of-reach for many proof rules.



Proving almost-sure termination

The symmetric random walk:

while $(x > 0) \{ x := x-1 [1/2] x := x+1 \}$

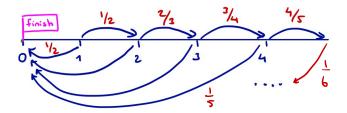
Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2This observation is enough to witness almost-sure termination!

Are these programs almost surely terminating?

Escaping spline:

while $(x > 0) \{ p := 1/(x+1); (x := 0 [p] x++) \}$



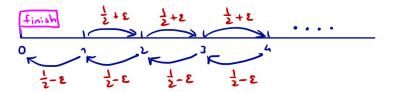
Are these programs almost surely terminating?

Escaping spline:

while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

A slightly unbiased random walk:

1/2-eps; while (x > 0) { x-- [p] x++ }



Are these programs almost surely terminating?

Escaping spline: while (x > 0) { p := 1/(x+1); (x := 0 [p] x++) }

A slightly unbiased random walk: 1/2-eps ; while (x > 0) { x-- [p] x++ }

A symmetric-in-the limit random walk: while (x > 0) { p := x/(2*x+1) ; (x-- [p] x++) }

Proving almost-sure termination

Goal: prove a.s.-termination of while(G) P, for all inputs

Ingredients:

- A supermartingale $V : \Sigma \to \mathbb{R}_{\geq 0}$ with
 - $\mathbb{E}\left\{V(s_{n+1}) \mid V(s_0), \ldots, V(s_n)\right\} \leq V(s_n)$
 - Running body P on state s ⊨ G does not increase E(V(s))
 - Loop iteration ceases if V(s) = 0

..... and a progress condition: on each loop iteration in sⁱ
 V(sⁱ) = v decreases by ≥ d(v) > 0 with probability ≥ p(v) > 0
 with antitone p ("probability") and d ("decrease")

$$x \leq y \longrightarrow f(x) \leq f(y)$$
 monotone
 $x \leq y \longrightarrow f(y) \leq f(x)$ antitude

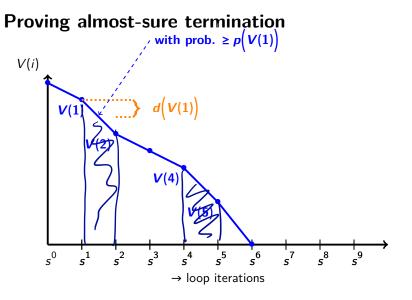
Proving almost-sure termination

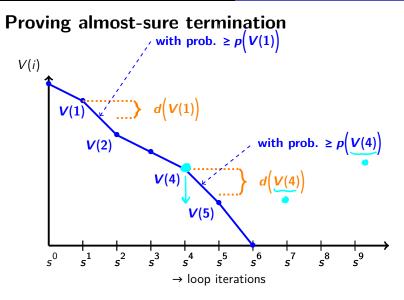
Goal: prove a.s.-termination of while(G) P, for all inputs

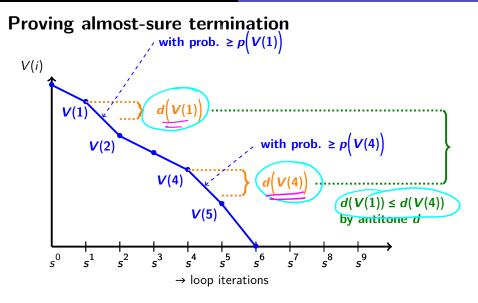
Ingredients:

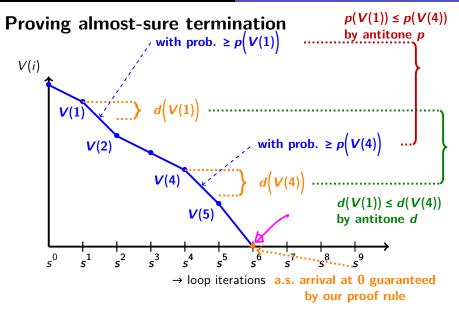
- A supermartingale $V : \Sigma \to \mathbb{R}_{\geq 0}$ with
 - $\mathbb{E}\left\{V(s_{n+1}) \mid V(s_0), \ldots, V(s_n)\right\} \leq V(s_n)$
 - Running body P on state s ⊨ G does not increase E(V(s))
 - Loop iteration ceases if V(s) = 0
- and a progress condition: on each loop iteration in sⁱ
 V(sⁱ) = v decreases by ≥ d(v) > 0 with probability ≥ p(v) > 0
 with antitone p ("probability") and d ("decrease")

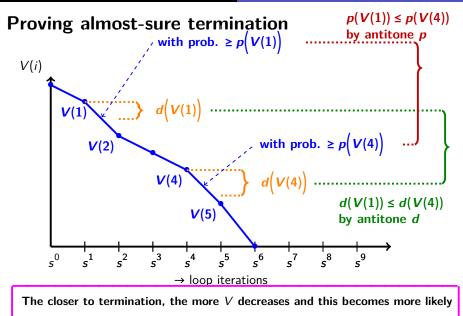
Then: while(G) P is universally almost-surely terminating





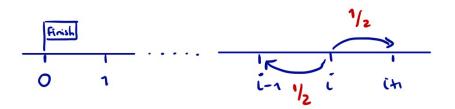






The symmetric random walk

while (x > 0) { x := x-1 [1/2] x := x+1 }



The symmetric random walk

Recall:

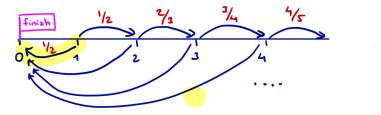
while $(x > 0) \{ x := x-1 [1/2] x := x+1 \}$

Witnesses of almost-sure termination:

$$p(v) = \frac{1}{2} \text{ and } d(v) = 1$$

That's all you need to prove almost-sure termination!

The escaping spline



Consider the program:

while $(x > 0) \{ p := 1/(x+1); x := 0 [p] x++ \}$

Witnesses of almost-sure termination:

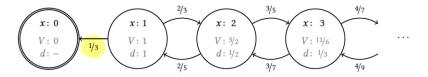
$$V = x$$

•
$$p(v) = \frac{1}{v+1}$$
 and $d(v) = 1$

A symmetric-in-the-limit random walk

Consider the program:

A symmetric-in-the-limit random walk



Consider the program:

Part 3: Proving positive almost-sure termination

- What? Termination in finite expected time
- ► How?
 - Weakest-precondition calculus for expected run-times

Why?

- Reason about the efficiency of randomised algorithms
- Reason about simulation (in)efficiency of Bayesian networks
- Is compositional and reasons at the program's code

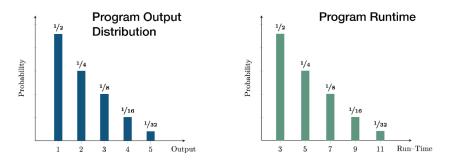
AST by weakest preconditions

Determine wp(P, 1) for program P and postcondition 1.

Dexter Kozen A probabilistic PDL 1983

The run time of a probabilistic program is random

```
int i := 0;
repeat {i++; (c := false [1/2] c := true)}
until (c)
```



The expected runtime is $1 + 3 \cdot 1/2 + 5 \cdot 1/4 + \ldots + (2n+1) \cdot 1/2^n = \ldots$

Expected run-times

Expected run-time of program P on input s:

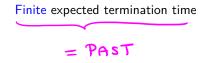
$$\sum_{k=1}^{\infty} k \cdot Pr\left(\begin{array}{c} "P \text{ terminates after} \\ k \text{ steps on input } s" \end{array}\right)$$

• Let *ert* be a function
$$t: \Sigma \to \mathbb{R}_{\geq 0} \cup \{\infty\}$$

This is called a run-time. Complete partial order :

$$t_1 \leq t_2$$
 iff $\forall s \in \Sigma$. $t_1(s) \leq t_2(s)$

PAST is not compositional



PAST is not compositional

Consider the two probabilistic programs:

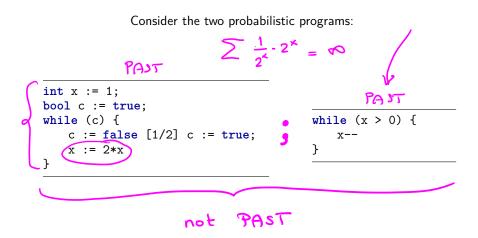
```
int x := 1;
bool c := true;
while (c) {
    c := false [1/2] c := true;
    x := 2*x
}
```

while (x > 0) {
 x-}

Finite termination time

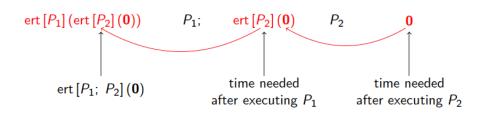
Finite expected termination time

PAST is not compositional



Run-times by program verification

ert(P, t)(s) is the expected run-time of P on input state s if t captures the run-time of the computation following P.



Expected run-time transformer

Syntax	Run-time <i>ert</i> (<i>P</i> , t)
▶ skip	▶ 1+ <i>t</i>
diverge	$\blacktriangleright \infty$
▶ x := E	$\blacktriangleright 1 + t[x \coloneqq E]$
▶ P1 ; P2	<pre>ert(P₁, ert(P₂, t))</pre>
▶ if (G)P1 else P2	▶ $1 + [G] \cdot ert(P_1, t) + [\neg G] \cdot ert(P_2, t)$
▶ P1 [p] P2	▶ $1 + p \cdot ert(P_1, t) + (1-p) \cdot ert(P_2, t)$
while(G)P	$\blacktriangleright \text{ Ifp } X.1 + ([G] \cdot ert(P, X) + [\neg G] \cdot t)$

If p is the least fixed point operator wrt. the ordering \leq on run-times Plus a set of proof rules to get bounds on run-times of loops

Elementary properties

Continuity: ert(P, t) is continuous, that is

for every chain $T = t_0 \le t_1 \le t_2 \le \dots : ert(P, \sup T) = \sup ert(P, T)$

- Monotonicity: $t \leq t'$ implies $ert(P, t) \leq ert(P, t')$
- Constant propagation: $ert(P, \mathbf{k} + t) = \mathbf{k} + ert(P, t)$
- ▶ Preservation of ∞ : $ert(P, \infty) = \infty$
- Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
- Affinity: $ert(P, r \cdot t + t') = ert(P, \mathbf{0}) + r \cdot wp(P, t) + wp(P, t')$

Elementary properties (Isabelle/HOL certified [Hölzl])

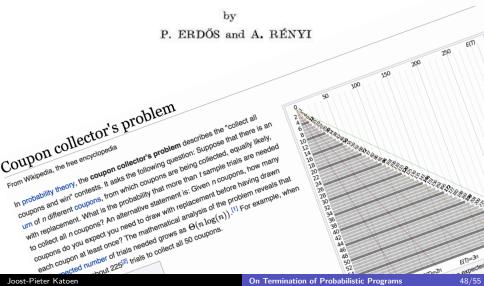
Continuity: ert(P, t) is continuous, that is

for every chain $T = t_0 \le t_1 \le t_2 \le \dots : ert(P, \sup T) = \sup ert(P, T)$

- Monotonicity: $t \le t'$ implies $ert(P, t) \le ert(P, t')$
- Constant propagation: $ert(P, \mathbf{k} + t) = \mathbf{k} + ert(P, t)$
- ▶ Preservation of ∞ : $ert(P, \infty) = \infty$
- Relation to wp: ert(P, t) = ert(P, 0) + wp(P, t)
- Affinity: $ert(P, r \cdot t + t') = ert(P, \mathbf{0}) + r \cdot wp(P, t) + wp(P, t')$

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY



Joost-Pieter Katoen

On Termination of Probabilistic Programs

Coupon collector's problem

```
cp := [0,...,0]; i := 1; x := 0; // no coupons yet
while (x < N) {
    while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
    }
    cp[i] := 1; // coupon i obtained
    x++; // one coupon less to go
}</pre>
```

Using the ert-calculus one can prove that:

 $ert(cpcl, \mathbf{0}) = \mathbf{4} + [N > 0] \cdot 2N \cdot (2 + H_{N-1}) \in \Theta(N \cdot \log N)$

By systematic program verification à la Floyd-Hoare. Machine checkable.

How long to sample a Bayes' network?

"the main challenge in this setting [sampling-based approaches] is that many samples that are generated during execution are ultimately rejected for not satisfying the observations." [FOSE 2014]

Andy Gordon

Tom Henzinger

Aditya Nori

Sriram Rajamani

OWLS 2020

How long to simulate a Bayes network?

_ # evidences

ert

Benchmark BNs from www.bnlearn.com

BN	V	<i>E</i>	aMB	0	EST	time (s)
hailfinder	56	66	3.54	5	5 10 ⁵	0.63
hepar2	70	123	4.51	1	1.5 10 ²	1.84
win95pts	76	112	5.92	3	4.3 10 ⁵	0.36
pathfinder	135	200	3.04	7	œ	5.44
andes	223	338	5.61	3	5.2 10 ³	1.66
pigs	441	592	3.92	1	2.9 10 ³	0.74
munin	1041	1397	3.54	5	Ø	1.43

aMB = average Markov Blanket, a measure of independence in BNs

Epilogue

 $(A) \begin{cases} Hardness of probabilistic termination. \\ AST for one input <math>\equiv_{hard}$ universal halting problem. Positive almost-sure termination is Π_3 -complete.

Proof rule for almost-sure termination.Widely applicable.

 $\bigcirc \begin{cases} Weakest pre-conditions for expected run-time analysis. \\ To (dis)prove positive almost-sure termination. And more. \end{cases}$

A big thanks to my co-authors!

Kevin Batz

Benjamin Kaminski

Christoph Matheja

Annabelle McIver

Carroll Morgan

Federico Olmedo

Further reading

B. KAMINSKI, JPK, C. MATHEJA.
 On the hardness of analysing probabilistic programs. Acta Inf. 2019.

B. KAMINSKI, JPK, C. MATHEJA, AND F. OLMEDO.
 Expected run-time analysis of probabilistic programs. J. ACM 2018.

A. MCIVER, C. MORGAN, B. KAMINSKI, JPK. A new proof rule for almost-sure termination. POPL 2018.

K. BATZ, B. KAMINSKI, JPK, AND C. MATHEJA. How long, O Bayesian network, will I sample thee? ESOP 2018.

 K. CHATTERJEE, H. FU AND P. NOVOTNY. *Termination analysis of probabilistic programs with martingales.* In: Found. of Prob. Programming, 2020 (to appear).

Using wp for expected run-times?

while(true) { x++ }

- Consider the post-expectation x
- Characteristic function $\Phi_x(X) = X(x \mapsto x + 1)$
- Candidate upper bound is l = 0
- Induction: $\Phi_x(I) = \mathbf{0}(x := x + 1) = \mathbf{0} = I \leq I$

We — wrongly — conclude that $\mathbf{0}$ is the runtime.

Using weakest pre-expectations is unsound for expected run-time analysis.