A Probabilistic Separation Logic

Justin Hsu UW-Madison Computer Sciences

Brilliant Collaborators

Gilles Barthe

Kevin Liao

Jialu Bao

Simon Docherty

Alexandra Silva

What Is Independence, Intuitively?

Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.

Things that are independent

Fresh random samples

- $\blacktriangleright x$ is the result of a fair coin flip
- \blacktriangleright y is the result of another, "fresh" coin flip
- ► More generally: "separate" sources of randomness

Uncorrelated things

- \blacktriangleright x is today's winning lottery number
- \blacktriangleright y is the closing price of the stock market

Things that are not independent

Re-used samples

- $\blacktriangleright x$ is the result of a fair coin flip
- \blacktriangleright y is the result of the same coin flip

Common cause

- \blacktriangleright x is today's ice cream sales
- ► *y* is today's sunglasses sales

What Is Independence, Formally?

Definition

Two random variables x and y are independent (in some implicit distribution over x and y) if for all values a and b:

$$\Pr(x = a \land y = b) = \Pr(x = a) \cdot \Pr(y = b)$$

That is, the distribution over (x, y) is the product of a distribution over x and a distribution over y.

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

► A "fresh" random sample is independent of the state.

Simplifies reasoning about groups of variables

- Complicated: general distribution over many variables
- Simple: product of distributions over each variable

Preserved under common program operations

- Local operations independent of "separate" randomness
- Behaves well under conditioning (prob. control flow)

Reasoning about Independence: Challenges

Formal definition isn't very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?

Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_x and μ_y with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O'Hearn, Reynolds, and Yang
- ► Highly developed area of program verification research
- ► Rich logical theory, automated tools, etc.

Our Approach: Two Ingredients

 Develop a probabilistic model of the logic BI

• Design a probabilistic separation logic PSL

Recap: Bunched Implications and Separation Logics

1. Programs

Transform input states to output states

1. Programs

Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

1. Programs

Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

3. Program logic

- ► Formulas describe programs
- Assertions specify pre- and post-conditions

Classical Setting: Heaps

Program states (s, h)

- A store $s : \mathcal{X} \to \mathcal{V}$, map from variables to values
- A heap $h : \mathbb{N} \rightarrow \mathcal{V}$, partial map from addresses to values

Classical Setting: Heaps

Program states (s, h)

- A store $s : \mathcal{X} \to \mathcal{V}$, map from variables to values
- A heap $h : \mathbb{N} \rightarrow \mathcal{V}$, partial map from addresses to values

Heap-manipulating programs

- Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- Allocate/free heap cells

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- ► Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- Add a new conjunction ("star"): P * Q
- Add a new implication ("magic wand"): $P \twoheadrightarrow Q$

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- ► Start with regular propositional logic $(\top, \bot, \land, \lor, \rightarrow)$
- Add a new conjunction ("star"): P * Q
- Add a new implication ("magic wand"): $P \twoheadrightarrow Q$

Star is a multiplicative conjunction

- $P \land Q$: P and Q hold on the entire state
- \blacktriangleright *P* * *Q*: *P* and *Q* hold on disjoint parts of the entire state

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

⊨⊤	always
⊨⊥	never

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$s \models \top$	always
$s \models \bot$	never
$s \models P \land Q$	$iff \ s \models P \ and \ s \models Q$

- Set S of states, pre-order \sqsubseteq on S
- ▶ Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$s \models \top$	always
$s \models \bot$	never
$s \models P \land Q$	$iff \ s \models P \ and \ s \models Q$
$s \models P * Q$	iff $s_1 \circ s_2 \sqsubseteq s$ with $s_1 \models P$ and $s_2 \models Q$

State *s* can be split into two "disjoint" states, one satisfying *P* and one satisfying *Q*

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

▶ $s_1 \circ s_2$ is defined to be union iff dom $(s_1) \cap$ dom $(s_2) = \emptyset$

Example: Heap Model of BI

Set of states: heaps

▶ $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

▶ $s_1 \circ s_2$ is defined to be union iff dom $(s_1) \cap$ dom $(s_2) = \emptyset$

Pre-order: extend/project heaps

▶ $s_1 \sqsubseteq s_2$ iff dom $(s_1) \subseteq$ dom (s_2) , and s_1, s_2 agree on dom (s_1)

Propositions for Heaps

Atomic propositions: "points-to"

▶ $x \mapsto v$ holds in heap s iff $x \in \text{dom}(s)$ and s(x) = v

Example axioms (not complete)

- Deterministic: $x \mapsto v \land y \mapsto w \land x = y \rightarrow v = w$
- Disjoint: $x \mapsto v * y \mapsto w \to x \neq y$

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: x := *e
- Write to location: *e := e'

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: x := *e
- Write to location: *e := e'

Program logic judgments

 $\{P\} \ c \ \{Q\}$

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.

Basic Proof Rules

Basic Proof Rules

Reading a location

$$\overline{\{x\mapsto v\}\;y:=\ast x\;\{x\mapsto v\wedge y=v\}}\;\operatorname{Read}$$

Basic Proof Rules

Reading a location

$$\overline{\{x\mapsto v\}\ y:=\ast x\ \{x\mapsto v\wedge y=v\}} \ \mathsf{Read}$$

Writing a location

$$\overline{\{x\mapsto v\}\ast x:=e\;\{x\mapsto e\}}\; \mathsf{Write}$$

The Frame Rule

Properties about unmodified heaps are preserved

 $\frac{\{P\} \ c \ \{Q\} \ \ c \ {\rm doesn't \ modify} \ FV(R)}{\{P*R\} \ c \ \{Q*R\}} \ {\rm Frame}$

The Frame Rule

Properties about unmodified heaps are preserved

$$\frac{\{P\}\;c\;\{Q\}}{\{P*R\}\;c\;\{Q*R\}} \frac{c\;\mathrm{doesn't\;modify}\;FV(R)}{\{P*R\}\;c\;\{Q*R\}}\;\mathrm{Frame}$$

So-called "local reasoning" in SL

- \blacktriangleright Only need to reason about part of heap used by c
- ▶ Note: doesn't hold if * replaced by ∧, due to aliasing!

A Probabilistic Model of BI
States: Distributions over Memories

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

Program states: randomized memories

- States are distributions over memories with same domain
- ▶ Formally: $S = \{s \mid s \in \mathsf{Distr}(\mathcal{M}(A)), A \subseteq \mathcal{X}\}$
- ▶ When $s \in \text{Distr}(\mathcal{M}(A))$, write dom(s) for A

Monoid: "Disjoint" Product Distribution

Intuition

- ► Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

Monoid: "Disjoint" Product Distribution

Intuition

- ► Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...

Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. If A, B are disjoint, then:

$$(s \circ s')(m \cup m') = s(m) \cdot s'(m')$$

for $m \in \mathcal{M}(A)$ and $m' \in \mathcal{M}(B)$. Otherwise, $s \circ s'$ is undefined.

Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s'$ if s "has less information than" s'
- In probabilistic setting: s is a projection of s'

Pre-Order: Extension/Projection

Intuitior

- Define $s \sqsubseteq s'$ if s "has less information than" s'
- In probabilistic setting: s is a projection of s'

More formally...

Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$s(m) = \sum_{m' \in \mathcal{M}(B)} s'(m \cup m').$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.

Atomic Formulas

Equalities

► e = e' holds in s iff all variables $FV(e, e') \subseteq dom(s)$, and e is equal to e' with probability 1 in s

Atomic Formulas

Equalities

► e = e' holds in s iff all variables $FV(e, e') \subseteq dom(s)$, and e is equal to e' with probability 1 in s

Distribution laws

- ▶ $e \sim Unif$ holds in s iff $FV(e) \subseteq dom(s)$, and e is uniformly distributed (e.g., fair coin flip)
- ▶ $e \sim \mathbf{D}$ holds in *s* iff all variables in $FV(e) \subseteq \mathsf{dom}(s)$

Distribution operations

$$\blacktriangleright x \sim \mathbf{D} \land y \sim \mathbf{D} \to x \land y \sim \mathbf{D}$$

Distribution operations

$$\blacktriangleright \ x \sim \mathbf{D} \land y \sim \mathbf{D} \to x \land y \sim \mathbf{D}$$

Equality and distributions

$$\blacktriangleright$$
 $x = y \land x \sim \text{Unif} \rightarrow y \sim \text{Unif}$

Distribution operations

$$\blacktriangleright \ x \sim \mathbf{D} \land y \sim \mathbf{D} \to x \land y \sim \mathbf{D}$$

Equality and distributions

$$\blacktriangleright \ x = y \land x \sim \mathbf{Unif} \to y \sim \mathbf{Unif}$$

Uniformity and products

$$\blacktriangleright \ (x \sim \mathbf{Unif} * y \sim \mathbf{Unif}) \rightarrow (x, y) \sim \mathbf{Unif}_{\mathbb{B} \times \mathbb{B}}$$

Distribution operations

$$\blacktriangleright \ x \sim \mathbf{D} \land y \sim \mathbf{D} \to x \land y \sim \mathbf{D}$$

Equality and distributions

$$\blacktriangleright \ x = y \land x \sim \mathbf{Unif} \to y \sim \mathbf{Unif}$$

Uniformity and products

$$\blacktriangleright (x \sim \mathbf{Unif} * y \sim \mathbf{Unif}) \rightarrow (x, y) \sim \mathbf{Unif}_{\mathbb{B} \times \mathbb{B}}$$

Uniformity and exclusive-or (\oplus)

 $\blacktriangleright x \sim \mathbf{Unif} * y \sim \mathbf{D} \land z = x \oplus y \rightarrow z \sim \mathbf{Unif} * y \sim \mathbf{D}$

Intuitionistic, or Classical?

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

- Pre-order is nontrivial
- Benefits: can describe a subset of the variables
- Necessary: other variables might not be independent!

A Probabilistic Separation Logic

A Toy Probabilistic Language

Program syntax

 $\begin{aligned} \mathsf{Exp} \ni e &::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots \end{aligned} \\ \mathsf{Com} \ni c &::= \mathsf{skip} \mid x \leftarrow e \mid x \overset{\texttt{s}}{\leftarrow} \mathbf{Unif} \mid c; c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c' \end{aligned}$

A Toy Probabilistic Language

Program syntax

 $\mathsf{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots$ $\mathsf{Com} \ni c ::= \mathsf{skip} \mid x \leftarrow e \mid x \Leftarrow \mathsf{Unif} \mid c; c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c'$

A Toy Probabilistic Language

Program syntax

$$\mathsf{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots$$
$$\mathsf{Com} \ni c ::= \mathsf{skip} \mid x \leftarrow e \mid x \notin \mathsf{Unif} \mid c; c' \mid \mathsf{if} \ e \ \mathsf{then} \ c \ \mathsf{else} \ c'$$

Semantics: distribution transformers (Kozen) $\llbracket c \rrbracket : \mathsf{Distr}(\mathcal{M}(\mathcal{X})) \to \mathsf{Distr}(\mathcal{M}(\mathcal{X}))$

Program Logic Judgments in PSL

${}^{\scriptscriptstyle P}$ and ${}^{\scriptscriptstyle Q}$ from probabilistic BI, ${}^{\scriptscriptstyle c}$ a probabilistic program $\{P\}\;c\;\{Q\}$

Program Logic Judgments in PSL

${\it P}$ and ${\it Q}$ from probabilistic BI, c a probabilistic program

$$\{P\} \ c \ \{Q\}$$

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Program Logic Judgments in PSL

${\it P}$ and ${\it Q}$ from probabilistic BI, c a probabilistic program

$$\{P\} \ c \ \{Q\}$$

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Basic Proof Rules in PSL

Basic Proof Rules in PSL

Assignment

$$\frac{x \notin FV(e)}{\{\top\} x \leftarrow e \; \{x = e\}} \; \mathrm{Assn}$$

Basic Proof Rules in PSL

Assignment

$$\frac{x \notin FV(e)}{\{\top\} x \leftarrow e \; \{x = e\}} \; \mathrm{Assn}$$

Sampling

$$\overline{\{\top\} x \notin \mathbf{Unif} \{x \sim \mathbf{Unif}\}} \mathsf{Samp}$$

Conditional Rule in PSL

$$\begin{array}{c} Q \text{ is "supported"} \\ \{e = tt * P\} \ c \ \{e = tt * Q\} \\ \{e = ff * P\} \ c' \ \{e = ff * Q\} \\ \hline \{e \sim \mathbf{D} * P\} \text{ if } e \text{ then } c \text{ else } c' \ \{e \sim \mathbf{D} * Q\} \end{array} \text{ Cond} \end{array}$$

Conditional Rule in PSL

$$\begin{array}{c} Q \text{ is "supported"} \\ \{e = tt * P\} \ c \ \{e = tt * Q\} \\ \{e = ff * P\} \ c' \ \{e = ff * Q\} \\ \hline \{e \sim \mathbf{D} * P\} \text{ if } e \text{ then } c \text{ else } c' \ \{e \sim \mathbf{D} * Q\} \end{array} \text{COND} \end{array}$$

Pre-conditions

- \blacktriangleright Inputs to branches derived from conditioning on e
- ► Independence ensures that *P* holds after conditioning

Conditional Rule in PSL

$$\begin{array}{c} Q \text{ is "supported"} \\ \{e = tt * P\} \ c \ \{e = tt * Q\} \\ \{e = ff * P\} \ c' \ \{e = ff * Q\} \\ \hline \{e \sim \mathbf{D} * P\} \text{ if } e \text{ then } c \text{ else } c' \ \{e \sim \mathbf{D} * Q\} \end{array} \text{Cond} \end{array}$$

Pre-conditions

- \blacktriangleright Inputs to branches derived from conditioning on e
- Independence ensures that P holds after conditioning

Post-conditions

- ► Not all post-conditions *Q* can be soundly combined
- "Supported": Q describes unique distribution (Reynolds)

$$\begin{array}{ll} \left\{ P \right\} c \left\{ Q \right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{ P \ast R \right\} c \left\{ Q \ast R \right\} \end{array} \text{ Frame} \end{array}$$

Side conditions

$$\begin{array}{ll} \left\{ P \right\} c \left\{ Q \right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{ P \ast R \right\} c \left\{ Q \ast R \right\} \end{array} \text{ Frame} \end{array}$$

Side conditions

1. Variables in R are not modified (standard in SL)

 $\begin{array}{l} \left\{ P \right\} c \left\{ Q \right\} & FV(R) \cap MV(c) = \emptyset \\ \\ \left| = P \rightarrow RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline & \left\{ P \ast R \right\} c \left\{ Q \ast R \right\} \end{array} \right. \text{Frame} \end{array}$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. *P* describes all variables that might be read

 $\begin{array}{ccc} \{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ \\ \hline P \rightarrow RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \{P \ast R\} \ c \ \{Q \ast R\} \end{array} \text{ Frame} \end{array}$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. P describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

 $\begin{array}{c|c} \hline \{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ \hline & FV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline & \{P \ast R\} \ c \ \{Q \ast R\} \end{array} \mathsf{Frame} \end{array} \mathsf{Frame}$

Side conditions

- 1. Variables in R are not modified (standard in SL)
- 2. *P* describes all variables that might be read
- 3. Everything in Q is freshly written, or in P

Variables in the post *Q* were independent of *R*, or are newly independent of *R*

Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{cases} \{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \{P * R\} \ c \ \{Q * R\} \end{cases}$$
 Frame

$$\overline{\{\top\} x \notin \mathbf{Unif} \{x \sim \mathbf{Unif}\}}$$
 say
Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{array}{ll} \left\{P\right\} c \left\{Q\right\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \left\{P * R\right\} c \left\{Q * R\right\} \end{array} \text{ Frame} \end{array}$$

$$\overline{\{\top\} x \not\in \mathbf{Unif} \{x \sim \mathbf{Unif}\}} \mathsf{Samp}$$

Can derive:

 $\frac{x \notin FV(R)}{\{R\} \ x \not \in \mathbf{Unif} \ \{x \sim \mathbf{Unif} \ \ast R\}} \ \mathsf{Samp}^{\star}$

Example: Deriving a Better Sampling Rule

Given rules:

$$\begin{array}{ll} \{P\} \ c \ \{Q\} & FV(R) \cap MV(c) = \emptyset \\ \hline P \to RV(c) \sim \mathbf{D} & FV(Q) \subseteq RV(c) \cup WV(c) \\ \hline \{P \ast R\} \ c \ \{Q \ast R\} \end{array} \text{ Frame} \end{array}$$

$$\overline{\{\top\} x \notin \mathbf{Unif} \{x \sim \mathbf{Unif}\}} \text{ Samp}$$

Can derive:

 $\frac{x \notin FV(R)}{\{R\} x \stackrel{\text{\tiny{(R)}}}{=} \mathbf{Unif} \{x \sim \mathbf{Unif} \ast R\}} \mathsf{Samp}^*$

Intuitively: fresh random sample is independent of everything

Key Property for Soundness: Restriction

Theorem (Restriction)

Let P be any formula of probabilistic BI, and suppose that $s \models P$. Then there exists $s' \sqsubseteq s$ such that $s' \models P$ and $dom(s') = dom(s) \cap FV(P)$.

Intuition

- The only variables that "matter" for P are FV(P)
- Tricky for implications; proof "glues" distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- ► Idea: encrypt by taking xor with a uniformly random key *k*

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- ▶ Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- ► Idea: encrypt by taking xor with a uniformly random key *k*

The encoding program:

$$k
eq \mathbf{Unif}$$
 $\ c \leftarrow k \oplus m$

How to Formalize Security?

How to Formalize Security?

Method 1: Uniformity

- \blacktriangleright Show that c is uniformly distributed
- $\blacktriangleright\,$ Always the same, no matter what the message m is

How to Formalize Security?

Method 1: Uniformity

- ► Show that *c* is uniformly distributed
- \blacktriangleright Always the same, no matter what the message m is

Method 2: Input-output independence

- \blacktriangleright Assume that m is drawn from some (unknown) distribution
- \blacktriangleright Show that c and m are independent

 $k \not \in \mathbf{Unif} \texttt{\ref}$

 $c \leftarrow k \oplus m$

 $\{m \sim \mathbf{D}\}$ $k \not \in \mathbf{Unif};$

assumption

 $c \leftarrow k \oplus m$

 $\{m \sim \mathbf{D}\}$ assumption $k \not \in \mathbf{Unif}$; $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$

 $\{m \sim \mathbf{D}\}$ assumption $k \stackrel{\hspace{0.1em}{\leftarrow}}{=} \mathbf{Unif};$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif} \land c = k \oplus m\}$ [ASSN*]

 $\{m \sim \mathbf{D}\}$ assumption $k \not \in \mathbf{Unif};$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif}\}$ [SAMP*] $c \leftarrow k \oplus m$ $\{m \sim \mathbf{D} * k \sim \mathbf{Unif} \land c = k \oplus m\}$ [ASSN*] $\{m \sim \mathbf{D} * c \sim \mathbf{Unif}\}$ XOR axiom

Recent Directions: Conditional Independence

What is Conditional Independence (CI)?

Two random variables x and y are independent conditioned on z if they are only correlated through z: fixing any value of z, the value of x gives no information about the value of y.

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \to \mathsf{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must "preserve input to output"
- ▶ Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \text{Distr}(\mathcal{M}(T))$

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \to \mathsf{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must "preserve input to output"
- ▶ Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \text{Distr}(\mathcal{M}(T))$

CI expressible in terms of kernels

Let \odot be Kleisli composition and \otimes be "parallel" composition. If we can decompose:

$$\mu = \mu_z \odot (\mu_x \otimes \mu_y)$$

with $\mu_x : \mathcal{M}(z) \to \mathsf{Distr}(\mathcal{M}(x,z)), \mu_y : \mathcal{M}(z) \to \mathsf{Distr}(\mathcal{M}(y,z))$, then x and y are independent conditioned on z.

DIBI: Dependent and Independent BI

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction P; Q

- States are now kernels
- P * Q: parallel composition of kernels
- ▶ P; Q: Kleisli composition of kernels

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction P; Q

- States are now kernels
- P * Q: parallel composition of kernels
- P; Q: Kleisli composition of kernels

Interaction: reverse exchange law

$$(P\, \mathrm{\r{g}}\, Q)*(R\, \mathrm{\r{g}}\, S)\vdash (P*R)\, \mathrm{\r{g}}\, (Q*S)$$

Reverse of the usual direction (cf. Concurrent Kleene Algebra)

See the Papers for More Details

A Probabilistic Separation Logic (POPL 2020)

- Extensions to PSL: deterministic variables, loops, etc.
- Many examples from cryptography, security of ORAM
- arXiv: https://arxiv.org/abs/1907.10708

A Logic to Reason about Dependence and Independence

- Details about DIBI, sound and complete Hilbert system
- Models capturing join dependency in relational algebra
- ► A separation logic (CPSL) based on DIBI
- arXiv: available soon, or send an email

A Probabilistic Separation Logic

Justin Hsu UW-Madison Computer Sciences