A Probabilistic Separation Logic

Justin Hsu

UW-Madison
Computer Sciences

Brilliant Collaborators

Gilles Barthe

Kevin Liao

Jialu Bao

Simon Docherty Alexandra Silva

What Is Independence, Intuitively?

Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.

Things that are independent

Fresh random samples

- x is the result of a fair coin flip
- y is the result of another, "fresh" coin flip
- More generally: "separate" sources of randomness

Uncorrelated things

- x is today's winning lottery number
- y is the closing price of the stock market

Things that are not independent

Re-used samples

- x is the result of a fair coin flip
- y is the result of the same coin flip

Common cause

- x is today's ice cream sales
- y is today's sunglasses sales

What Is Independence, Formally?

Definition

Two random variables x and y are independent (in some implicit distribution over x and y) if for all values a and b :

$$
\operatorname{Pr}(x=a \wedge y=b)=\operatorname{Pr}(x=a) \cdot \operatorname{Pr}(y=b)
$$

That is, the distribution over (x, y) is the product of a distribution over x and a distribution over y.

Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs

- A "fresh" random sample is independent of the state.

Simplifies reasoning about groups of variables

- Complicated: general distribution over many variables
- Simple: product of distributions over each variable

Preserved under common program operations

- Local operations independent of "separate" randomness
- Behaves well under conditioning (prob. control flow)

Reasoning about Independence: Challenges

Formal definition isn't very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?

Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_{x} and μ_{y} with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O'Hearn, Reynolds, and Yang
- Highly developed area of program verification research
- Rich logical theory, automated tools, etc.

Our Approach: Two Ingredients

- Develop a probabilistic model of the logic BI
 - Design a probabilistic separation logic PSL

Recap: Bunched Implications

and Separation Logics

What Goes into a Separation Logic?

What Goes into a Separation Logic?

1. Programs

- Transform input states to output states

What Goes into a Separation Logic?

1. Programs

- Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

What Goes into a Separation Logic?

1. Programs

- Transform input states to output states

2. Assertions

- Formulas describe pieces of program states
- Semantics defined by a model of BI (Pym and O'Hearn)

3. Program logic

- Formulas describe programs
- Assertions specify pre- and post-conditions

Classical Setting: Heaps

Program states (s, h)

- A store $s: \mathcal{X} \rightarrow \mathcal{V}$, map from variables to values
- A heap $h: \mathbb{N} \rightarrow \mathcal{V}$, partial map from addresses to values

Classical Setting: Heaps

Program states (s, h)

- A store $s: \mathcal{X} \rightarrow \mathcal{V}$, map from variables to values
- A heap $h: \mathbb{N} \rightharpoonup \mathcal{V}$, partial map from addresses to values

Heap-manipulating programs

- Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- Allocate/free heap cells

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- Start with regular propositional logic $(\top, \perp, \wedge, \vee, \rightarrow)$
- Add a new conjunction ("star"): $P * Q$
- Add a new implication ("magic wand"): $P \rightarrow Q$

Assertion Logic: Bunched Implications (BI)

Substructural logic (O'Hearn and Pym)

- Start with regular propositional logic $(\top, \perp, \wedge, \vee, \rightarrow)$
- Add a new conjunction ("star"): $P * Q$
- Add a new implication ("magic wand"): $P \rightarrow Q$

Star is a multiplicative conjunction

- $P \wedge Q: P$ and Q hold on the entire state
- $P * Q: P$ and Q hold on disjoint parts of the entire state

Resource Semantics of BI (O'Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Resource Semantics of BI (O'Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...) Inductively define states that satisfy formulas

Resource Semantics of BI (O'Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

$$
\begin{array}{ll}
s \nvdash \top & \\
s \models \perp & \\
s \neq \perp \text { always }
\end{array}
$$

Resource Semantics of BI (O'Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...) Inductively define states that satisfy formulas

$$
\begin{array}{ll}
s \models T & \text { always } \\
s \models \perp & \text { never } \\
s \models P \wedge Q & \text { iff } s \models P \text { and } s \models Q
\end{array}
$$

Resource Semantics of BI (O'Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \rightarrow S$ (assoc., comm., ...) Inductively define states that satisfy formulas

$$
\begin{array}{ll}
s \models T & \text { always } \\
s \models \perp & \text { never } \\
s \models P \wedge Q & \\
\text { iff } s \models P \text { and } s \models Q \\
s \models P * Q & \\
\text { iff } s_{1} \circ s_{2} \sqsubseteq s \text { with } s_{1} \models P \text { and } s_{2} \models Q
\end{array}
$$

State s can be split into two "disjoint" states, one satisfying P and one satisfying Q

Example: Heap Model of BI

Set of states: heaps

- $S=\mathbb{N} \rightharpoonup \mathcal{V}$, partial maps from addresses to values

Example: Heap Model of BI

Set of states: heaps

- $S=\mathbb{N} \rightharpoonup \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

- $s_{1} \circ s_{2}$ is defined to be union iff $\operatorname{dom}\left(s_{1}\right) \cap \operatorname{dom}\left(s_{2}\right)=\emptyset$

Example: Heap Model of BI

Set of states: heaps

- $S=\mathbb{N} \rightharpoonup \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps
$-s_{1} \circ s_{2}$ is defined to be union iff $\operatorname{dom}\left(s_{1}\right) \cap \operatorname{dom}\left(s_{2}\right)=\emptyset$
Pre-order: extend/project heaps
> $s_{1} \sqsubseteq s_{2}$ iff $\operatorname{dom}\left(s_{1}\right) \subseteq \operatorname{dom}\left(s_{2}\right)$, and s_{1}, s_{2} agree on dom $\left(s_{1}\right)$

Propositions for Heaps

Atomic propositions: "points-to"

- $x \mapsto v$ holds in heap s iff $x \in \operatorname{dom}(s)$ and $s(x)=v$

Example axioms (not complete)

- Deterministic: $x \mapsto v \wedge y \mapsto w \wedge x=y \rightarrow v=w$
- Disjoint: $x \mapsto v * y \mapsto w \rightarrow x \neq y$

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x:=* e$
- Write to location: $* e:=e^{\prime}$

The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x:=* e$
- Write to location: $* e:=e^{\prime}$

Program logic judgments

$$
\{P\} c\{Q\}
$$

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.

Basic Proof Rules

Basic Proof Rules

Reading a location

$$
\overline{\{x \mapsto v\} y:=* x\{x \mapsto v \wedge y=v\}} \text { READ }
$$

Basic Proof Rules

Reading a location

$$
\overline{\{x \mapsto v\} y:=* x\{x \mapsto v \wedge y=v\}} \text { READ }
$$

Writing a location

$$
\overline{\{x \mapsto v\} * x:=e\{x \mapsto e\}} \text { WRITE }
$$

The Frame Rule

Properties about unmodified heaps are preserved

$$
\frac{\{P\} \subset\{Q\} \quad c \text { doesn't modify } F V(R)}{\{P * R\} \subset\{Q * R\}} \text { Frame }
$$

The Frame Rule

Properties about unmodified heaps are preserved

$$
\frac{\{P\} c\{Q\} \quad c \text { doesn't modify } F V(R)}{\{P * R\} c\{Q * R\}} \text { FRAME }
$$

So-called "local reasoning" in SL

- Only need to reason about part of heap used by c
- Note: doesn't hold if $*$ replaced by \wedge, due to aliasing!

A Probabilistic Model of BI

States: Distributions over Memories

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}: \mathcal{M}(A)=A \rightarrow \mathcal{V}$

States: Distributions over Memories

Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}: \mathcal{M}(A)=A \rightarrow \mathcal{V}$

Program states: randomized memories

- States are distributions over memories with same domain
- Formally: $S=\{s \mid s \in \operatorname{Distr}(\mathcal{M}(A)), A \subseteq \mathcal{X}\}$
- When $s \in \operatorname{Distr}(\mathcal{M}(A))$, write $\operatorname{dom}(s)$ for A

Monoid: "Disjoint" Product Distribution

Intuition

- Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

Monoid: "Disjoint" Product Distribution

Intuition

- Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...
Suppose that $s \in \operatorname{Distr}(\mathcal{M}(A))$ and $s^{\prime} \in \operatorname{Distr}(\mathcal{M}(B))$. If A, B are disjoint, then:

$$
\left(s \circ s^{\prime}\right)\left(m \cup m^{\prime}\right)=s(m) \cdot s^{\prime}\left(m^{\prime}\right)
$$

for $m \in \mathcal{M}(A)$ and $m^{\prime} \in \mathcal{M}(B)$. Otherwise, $s \circ s^{\prime}$ is undefined.

Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s^{\prime}$ if s "has less information than" s^{\prime}
- In probabilistic setting: s is a projection of s^{\prime}

Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s^{\prime}$ if s "has less information than" s^{\prime}
- In probabilistic setting: s is a projection of s^{\prime}

More formally...
Suppose that $s \in \operatorname{Distr}(\mathcal{M}(A))$ and $s^{\prime} \in \operatorname{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s^{\prime}$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$
s(m)=\sum_{m^{\prime} \in \mathcal{M}(B)} s^{\prime}\left(m \cup m^{\prime}\right) .
$$

That is, s is obtained from s^{\prime} by marginalizing variables in $B \backslash A$.

Atomic Formulas

Equalities

> $e=e^{\prime}$ holds in s iff all variables $F V\left(e, e^{\prime}\right) \subseteq \operatorname{dom}(s)$, and e is equal to e^{\prime} with probability 1 in s

Atomic Formulas

Equalities

- $e=e^{\prime}$ holds in s iff all variables $F V\left(e, e^{\prime}\right) \subseteq \operatorname{dom}(s)$, and e is equal to e^{\prime} with probability 1 in s

Distribution laws

$>e \sim$ Unif holds in s iff $F V(e) \subseteq \operatorname{dom}(s)$, and e is uniformly distributed (e.g., fair coin flip)

- $e \sim \mathbf{D}$ holds in s iff all variables in $F V(e) \subseteq \operatorname{dom}(s)$

Example Axioms (not complete)

Example Axioms (not complete)

Distribution operations
$\vee x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$

Example Axioms (not complete)

Distribution operations
> $x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$
Equality and distributions

- $x=y \wedge x \sim$ Unif $\rightarrow y \sim$ Unif

Example Axioms (not complete)

Distribution operations
$>x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$
Equality and distributions

- $x=y \wedge x \sim$ Unif $\rightarrow y \sim$ Unif

Uniformity and products
$>(x \sim$ Unif $* y \sim$ Unif $) \rightarrow(x, y) \sim$ Unif $_{\mathbb{B}} \times \mathbb{B}$

Example Axioms (not complete)

Distribution operations
$>x \sim \mathbf{D} \wedge y \sim \mathbf{D} \rightarrow x \wedge y \sim \mathbf{D}$
Equality and distributions

- $x=y \wedge x \sim$ Unif $\rightarrow y \sim$ Unif

Uniformity and products
$\triangleright(x \sim$ Unif $* y \sim$ Unif $) \rightarrow(x, y) \sim \operatorname{Unif}_{\mathbb{B} \times \mathbb{B}}$
Uniformity and exclusive-or (\oplus)
> $x \sim$ Unif $* y \sim \mathbf{D} \wedge z=x \oplus y \rightarrow z \sim$ Unif $* y \sim \mathbf{D}$

Intuitionistic, or Classical?

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

- Pre-order is nontrivial
- Benefits: can describe a subset of the variables
- Necessary: other variables might not be independent!

A Probabilistic Separation Logic

A Toy Probabilistic Language

Program syntax

$\operatorname{Exp} \ni e::=x \in \mathcal{X}|t t| f f\left|e \wedge e^{\prime}\right| e \vee e^{\prime} \mid \cdots$
Com $\ni c::=$ skip $|x \leftarrow e| x \leftrightarrow$ Unif $\left|c ; c^{\prime}\right|$ if e then c else c^{\prime}

A Toy Probabilistic Language

Program syntax

$\operatorname{Exp} \ni e::=x \in \mathcal{X}|t t| f f\left|e \wedge e^{\prime}\right| e \vee e^{\prime} \mid \cdots$
Com $\ni c::=$ skip $|x \leftarrow e| x \leftarrow$ Unif $\left|c ; c^{\prime}\right|$ if e then c else c^{\prime}

A Toy Probabilistic Language

Program syntax

$$
\begin{aligned}
& \text { Exp } \ni e::=x \in \mathcal{X}|t t| f f\left|e \wedge e^{\prime}\right| e \vee e^{\prime} \mid \cdots \\
& \text { Com } \ni c::=\text { skip }|x \leftarrow e| x \& \text { Unif }\left|c ; c^{\prime}\right| \text { if } e \text { then } c \text { else } c^{\prime}
\end{aligned}
$$

Semantics: distribution transformers (Kozen)

$$
\llbracket c \rrbracket: \operatorname{Distr}(\mathcal{M}(\mathcal{X})) \rightarrow \operatorname{Distr}(\mathcal{M}(\mathcal{X}))
$$

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$
\{P\} c\{Q\}
$$

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$
\{P\} \subset\{Q\}
$$

Validity
For all input states $s \in \operatorname{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$
\{P\} \subset\{Q\}
$$

Validity
For all input states $s \in \operatorname{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.

Basic Proof Rules in PSL

Basic Proof Rules in PSL

Assignment

$$
\frac{x \notin F V(e)}{\{\top\} x \leftarrow e\{x=e\}} \text { AssN }
$$

Basic Proof Rules in PSL

Assignment

$$
\frac{x \notin F V(e)}{\{T\} x \leftarrow e\{x=e\}} \text { AssN }
$$

Sampling

$$
\overline{\{\top\} x \&} \text { Unif }\{x \sim \text { Unif }\} \text { SAMP }
$$

Conditional Rule in PSL

$$
\begin{gathered}
Q \text { is "supported" } \\
\{e=t t * P\} c\{e=t t * Q\} \\
\{e=f f * P\} c^{\prime}\{e=f f * Q\} \\
\{e \sim \mathbf{D} * P\} \text { if } e \text { then } c \text { else } c^{\prime}\{e \sim \mathbf{D} * Q\}
\end{gathered}
$$

Conditional Rule in PSL

$$
\begin{gathered}
Q \text { is "supported" } \\
\{e=t t * P\} c\{e=t t * Q\} \\
\{e=f f * P\} c^{\prime}\{e=f f * Q\} \\
\{e \sim \mathbf{D} * P\} \text { if } e \text { then } c \text { else } c^{\prime}\{e \sim \mathbf{D} * Q\}
\end{gathered}
$$

Pre-conditions

- Inputs to branches derived from conditioning on e
- Independence ensures that P holds after conditioning

Conditional Rule in PSL

$$
\begin{gathered}
Q \text { is "supported" } \\
\{e=t t * P\} c\{e=t t * Q\} \\
\{e=f f * P\} c^{\prime}\{e=f f * Q\} \\
\{e \sim \mathbf{D} * P\} \text { if } e \text { then } c \text { else } c^{\prime}\{e \sim \mathbf{D} * Q\}
\end{gathered}
$$

Pre-conditions

- Inputs to branches derived from conditioning on e
- Independence ensures that P holds after conditioning

Post-conditions

- Not all post-conditions Q can be soundly combined
- "Supported": Q describes unique distribution (Reynolds)

The Frame Rule in PSL

$$
\begin{aligned}
& \{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
& \frac{\models P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME }
\end{aligned}
$$

Side conditions

The Frame Rule in PSL

$$
\begin{aligned}
& \{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
& \frac{\models P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME }
\end{aligned}
$$

Side conditions

1. Variables in R are not modified (standard in SL)

The Frame Rule in PSL

$$
\begin{aligned}
& \{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
& \frac{\models P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME }
\end{aligned}
$$

Side conditions

1. Variables in R are not modified (standard in SL)
2. P describes all variables that might be read

The Frame Rule in PSL

$$
\begin{array}{cc}
\{P\} c\{Q\} & F V(R) \cap M V(c)=\emptyset \\
\models P \rightarrow R V(c) \sim \mathbf{D} & F V(Q) \subseteq R V(c) \cup W V(c) \\
\{P * R\} c\{Q * R\} & \text { FRAME }
\end{array}
$$

Side conditions

1. Variables in R are not modified (standard in SL)
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

The Frame Rule in PSL

$$
\begin{gathered}
\{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
\models P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c) \\
\{P * R\} c\{Q * R\}
\end{gathered}
$$

Side conditions

1. Variables in R are not modified (standard in SL)
2. P describes all variables that might be read
3. Everything in Q is freshly written, or in P

Variables in the post Q were independent of R, or are newly independent of R

Example: Deriving a Better Sampling Rule

Given rules:

$$
\begin{gathered}
\{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
\frac{F P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME } \\
\frac{\{\top\} x \& \text { Unif }\{x \sim \text { Unif }\}}{} \text { SAMP }
\end{gathered}
$$

Example: Deriving a Better Sampling Rule

Given rules:

$$
\begin{gathered}
\{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
\frac{F P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME } \\
\frac{\{\top\} x \& \text { Unif }\{x \sim \text { Unif }\}}{} \text { SAMP }
\end{gathered}
$$

Can derive:

$$
\frac{x \notin F V(R)}{\{R\} x \& \text { Unif }\{x \sim \text { Unif } * R\}} \text { SAMP* }
$$

Example: Deriving a Better Sampling Rule

Given rules:

$$
\begin{gathered}
\{P\} c\{Q\} \quad F V(R) \cap M V(c)=\emptyset \\
\frac{F P \rightarrow R V(c) \sim \mathbf{D} \quad F V(Q) \subseteq R V(c) \cup W V(c)}{\{P * R\} c\{Q * R\}} \text { FRAME } \\
\frac{\{\top\} x \& \text { Unif }\{x \sim \text { Unif }\}}{} \text { SAMP }
\end{gathered}
$$

Can derive:

$$
\frac{x \notin F V(R)}{\{R\} x \& \text { Unif }\{x \sim \text { Unif } * R\}} \text { SAMP* }
$$

Intuitively: fresh random sample is independent of everything

Key Property for Soundness: Restriction

Theorem (Restriction)
Let P be any formula of probabilistic BI, and suppose that $s \models P$. Then there exists $s^{\prime} \sqsubseteq s$ such that $s^{\prime} \mid=P$ and $\operatorname{dom}\left(s^{\prime}\right)=\operatorname{dom}(s) \cap F V(P)$.

Intuition

- The only variables that "matter" for P are $F V(P)$
- Tricky for implications; proof "glues" distributions

Verifying an Example

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- Idea: encrypt by taking xor with a uniformly random key k

One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- Idea: encrypt by taking xor with a uniformly random key k

The encoding program:
$k \stackrel{\$}{\&}$ Unif $_{9}^{\circ}$
$c \leftarrow k \oplus m$

How to Formalize Security?

How to Formalize Security?

Method 1: Uniformity

- Show that c is uniformly distributed
- Always the same, no matter what the message m is

How to Formalize Security?

Method 1: Uniformity

- Show that c is uniformly distributed
- Always the same, no matter what the message m is

Method 2: Input-output independence

- Assume that m is drawn from some (unknown) distribution
- Show that c and m are independent

Proving Input-Output Independence for OTP in PSL

$k \stackrel{\&}{\leftarrow}$ Unif;
$c \leftarrow k \oplus m$

Proving Input-Output Independence for OTP in PSL

$\{m \sim \mathbf{D}\}$
assumption
$k \stackrel{\&}{\&}$ Unif ${ }_{9}$
$c \leftarrow k \oplus m$

Proving Input-Output Independence for OTP in PSL

$\{m \sim \mathbf{D}\}$
assumption
$k \stackrel{\&}{\&}$ Unif?
$\{m \sim \mathbf{D} * k \sim$ Unif $\}$
[SAMP*]
$c \leftarrow k \oplus m$

Proving Input-Output Independence for OTP in PSL

$\{m \sim \mathbf{D}\}$
assumption
$k \stackrel{\&}{\&}$ Unif ${ }_{9}$
$\{m \sim \mathbf{D} * k \sim$ Unif $\}$
$c \leftarrow k \oplus m$
$\{m \sim \mathbf{D} * k \sim$ Unif $\wedge c=k \oplus m\}$
[SAMP*]
[Assn*]

Proving Input-Output Independence for OTP in PSL

$\{m \sim \mathbf{D}\}$
$k \stackrel{\$}{*}$ Unif $\stackrel{ }{9}$
$\{m \sim \mathbf{D} * k \sim$ Unif $\}$
$c \leftarrow k \oplus m$
$\{m \sim \mathbf{D} * k \sim$ Unif $\wedge c=k \oplus m\}$
$\{m \sim \mathbf{D} * c \sim \mathbf{U n i f}\}$

Recent Directions:
 Conditional Independence

What is Conditional Independence (CI)?

Two random variables x and y are independent conditioned on z if they are only correlated through z : fixing any value of z, the value of x gives no information about the value of y.

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \rightarrow \operatorname{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must "preserve input to output"
- Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \operatorname{Distr}(\mathcal{M}(T))$

Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \rightarrow \operatorname{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must "preserve input to output"
- Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \operatorname{Distr}(\mathcal{M}(T))$

Cl expressible in terms of kernels
Let \odot be Kleisli composition and \otimes be "parallel" composition. If we can decompose:

$$
\mu=\mu_{z} \odot\left(\mu_{x} \otimes \mu_{y}\right)
$$

with $\mu_{x}: \mathcal{M}(z) \rightarrow \operatorname{Distr}(\mathcal{M}(x, z)), \mu_{y}: \mathcal{M}(z) \rightarrow \operatorname{Distr}(\mathcal{M}(y, z))$, then x and y are independent conditioned on z.

DIBI: Dependent and Independent BI

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction P; Q

- States are now kernels
- $P * Q$: parallel composition of kernels
- P; Q : Kleisli composition of kernels

DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction P; Q

- States are now kernels
- $P * Q$: parallel composition of kernels
- P; Q : Kleisli composition of kernels

Interaction: reverse exchange law

$$
(P ; Q) *(R ; S) \vdash(P * R) ;(Q * S)
$$

Reverse of the usual direction (cf. Concurrent Kleene Algebra)

See the Papers for More Details

A Probabilistic Separation Logic (POPL 2020)

- Extensions to PSL: deterministic variables, loops, etc.
- Many examples from cryptography, security of ORAM
- arXiv: https://arxiv.org/abs/1907.10708

A Logic to Reason about Dependence and Independence

- Details about DIBI, sound and complete Hilbert system
- Models capturing join dependency in relational algebra
- A separation logic (CPSL) based on DIBI
- arXiv: available soon, or send an email

A Probabilistic Separation Logic

Justin Hsu

UW-Madison
Computer Sciences

