
Modal Reasoning = Metric Reasoning, via
Lawvere

Francesco Gavazzo (joint work with Ugo Dal Lago)

University of Bologna & INRIA Sophia Antipolis

A Long Introduction

Why This Talk?

Extensional properties of programs

in out
• Does the program terminate?
• Does the program raise errors?
• What the program computes

Programs as black‑boxes
• Relations between
input‑output

• Do not care how output is
produced

• Same IO behaviour implies
equivalent programs

Mathematical foundation
• Type theory
• Denotational Semantics
• Program equivalence

1

Why This Talk?

Extensional properties of programs

in out
• Does the program terminate?
• Does the program raise errors?
• What the program computes

Programs as black‑boxes
• Relations between
input‑output

• Do not care how output is
produced

• Same IO behaviour implies
equivalent programs

Mathematical foundation
• Type theory
• Denotational Semantics
• Program equivalence

1

Why This Talk?

Extensional properties of programs

in out
• Does the program terminate?
• Does the program raise errors?
• What the program computes

Programs as black‑boxes
• Relations between
input‑output

• Do not care how output is
produced

• Same IO behaviour implies
equivalent programs

Mathematical foundation
• Type theory
• Denotational Semantics
• Program equivalence

1

Why This Talk?

Intensional properties of programs

in out

Focus on how programs compute

Is the program efficient?

Is the program secure?

Is the program robust wrt
variations in the input?

2

Example 1: Information‑Flow

f
key

public

Q. Is f secure?

3

Example 1: Information‑Flow

f
key

public

Q. Is f secure?

secure= classified information cannot flow‑out of programs

3

Example 1: Information‑Flow

f
key

public

Q. Is f secure?

secure= classified information cannot flow‑out of programs

Example

key ⩾ 0key

true

false

0

1

is not secure

3

Example 2: Program Sensitivity

f
x

y

f

??ε

x ′

y ′

Q. Is f robust to variations in the input?

4

Example 2: Program Sensitivity

f
x

y

f

≤ kεε

x ′

y ′

Q. Is f robust to variations in the input?

k‑robustness (aka sensitivity)= errors in input are amplified at most
of a factor k

4

Intensional Program Analysis

Q. How to guarantee intensional properties of programs?

Q. How to reason about programs intensionally?

5

Intensional Program Analysis

Q. How to guarantee intensional properties of programs?

Type Theory

Information‑flow Sensitivity
key : [secret]τ f : [k]τ → σ

Q. How to reason about programs intensionally?

5

Intensional Program Analysis

Q. How to guarantee intensional properties of programs?

Type Theory

Information‑flow Sensitivity
key : [secret]τ f : [k]τ → σ

Q. How to reason about programs intensionally?

Z Program Equivalence

5

Program Equivalence

Goal: Identify programswith the same operational behaviour

Applications in program correctness, refactoring, and optmization

• HO Arithmetic
λx.λf.f(x+ 0) ' λx.λf.f(x)

• Structural equivalences let x = a
y = b

in f(x)

 ' let x = a in f(x)

6

Program Equivalence

Goal: Identify programswith the same operational behaviour

Applications in program correctness, refactoring, and optmization

• HO Arithmetic
λx.λf.f(x+ 0) ' λx.λf.f(x)

• Structural equivalences let x = a
y = b

in f(x)

 ' let x = a in f(x)

6

Program Equivalence

Main feature: compositionality

f ' g

⇓

fk
j

e ' gk
j

e

7

Program Equivalence

Q. Program equivalence for intensional program analysis?

Non‑Interference (Abadi et al., 1999)

∀key1, key2 : [secret]τ. ∀public.

fpublic
key1 fpublic

key2'public

An observer with public permission cannot infer whether the first input
is key1 or key2

8

Program Equivalence

Q. Program equivalence for intensional program analysis?

Non‑Interference (Abadi et al., 1999)

∀key1, key2 : [secret]τ. ∀public.

fpublic
key1 fpublic

key2'public

An observer with public permission cannot infer whether the first input
is key1 or key2

8

Program Equivalence

Metric‑preservation (Reed & Pierce, 2010)

fa fb'kεa 'ε b =⇒

k‑robust programs preserve approximate equivalence up‑to a factor k

9

Summing‑up

Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

Security Sensitivity
[secret]τ [k]τ

Non‑interference Metric‑preservation

Further examples: dead‑code analysis, strictness analysis,
resource/usage analysis, . . .

10

Summing‑up

Two intensional analyses of programs

All analyses performed in languages with suitable type systems

Intensional properties of programs via program equivalence

Security Sensitivity
[secret]τ [k]τ

Non‑interference Metric‑preservation

Further examples: dead‑code analysis, strictness analysis,
resource/usage analysis, . . .

10

Summing‑up

Q. Can we give a uniform account of all these phenomena?

Type Systems
Gradedmodal types (Orchard et al., 2019; Gaboardi et al., 2016)

[j]τ

[secret]τ [k]τ [copied]τ [erased]τ

Program Equivalence
This talk

11

Summing‑up

Q. Can we give a uniform account of all these phenomena?

Type Systems
Gradedmodal types (Orchard et al., 2019; Gaboardi et al., 2016)

[j]τ

[secret]τ [k]τ [copied]τ [erased]τ

Program Equivalence
This talk

11

Intensional vs Extensional PE

Extensional Program equivalence
Programs are equivalent for any observer

e ' e ′

12

Intensional vs Extensional PE

Extensional Program equivalence
Programs are equivalent for any observer

e ' e ′

Intensional Program equivalence
Programs are equivalent wrt observers’ features

e ' e ′

public
e ' e ′

secret
e ' e ′

ε

12

Intensional vs Extensional PE

Intensional Program equivalence
Programs are equivalent wrt observers’ features

key1 ' key2 : [secret]τ

depend on the observer’s permission

public permission =⇒ key1 ' key2

secret permission =⇒ key1 6' key2

12

This Talk

Program equivalence for gradedmodal types

w ⊩ e ' e ′

Eq. wrt possible worlds

Intensionality as in logic

Metric Reasoning
Intensional equivalence

≡
Program distance

Abstract compositionality

Non‑interference
Metric Preservation

13

RelatedWork

RelatedWork

Bounded Exponentials
• (Girard et al., 1992)
• Resource‑usage (M. Hofmann, 1999)
• Complexity (Lago & Hofmann, 2009)
• Sensitivty (Reed & Pierce, 2010)

Information‑flow
• (Abadi et al., 1999)
• (Volpano et al., 1996)

Graded and Quantitative Types
• (Wood & Atkey, 2020)
• (Ghica & Smith, 2014)
• (Atkey, 2018)

Coeffects
• (Petricek et al., 2014)
• (Gaboardi et al., 2016)
• (Brunel et al., 2014)

Z How code can bemanipulated

14

RelatedWork

Bounded Exponentials
• (Girard et al., 1992)
• Resource‑usage (M. Hofmann, 1999)
• Complexity (Lago & Hofmann, 2009)
• Sensitivty (Reed & Pierce, 2010)

Information‑flow
• (Abadi et al., 1999)
• (Volpano et al., 1996)

Graded and Quantitative Types
• (Wood & Atkey, 2020)
• (Ghica & Smith, 2014)
• (Atkey, 2018)

Coeffects
• (Petricek et al., 2014)
• (Gaboardi et al., 2016)
• (Brunel et al., 2014)

Z How code can bemanipulated

14

RelatedWork

GradedModal Types
Modal types indexed by grades

Programming language Granule (Orchard et al., 2019)

Graded (co)monadic denotational semantics (Gaboardi et al.,
2016)

Logical relations (Abel & Bernardy, 2020)

15

Modal Reasoning

GradedModal Types

Goal. Program equivalence for languages with gradedmodal types

Linearity→ Data as resources

6` λx.(x, x) : τ → τ× τ 6` λx.λy.x : τ → σ → τ

Modalities→ Codemanipulations

[int]τ code can be copied and erased
[k]τ code can be used k‑times

[secret]τ code cannot contains unclassified info

16

GradedModal Types

Types τ ::= . . . | τ ⊸ τ | [j]τ
Values a ::= . . . | box a

Expressions e ::= . . . | let box x = a in e

Grade algebra S4modality
(J,⩽,+, ∗, 0, 1,∞) [j]τ

Example
Resource Usage Security Sensitivity

int

aff
���

rel

@@@

dead
yyyy

lin

@@@

secret

public

([0,∞],⩽,+, ·, 0, 1)

17

GradedModal Types

Types τ ::= . . . | τ ⊸ τ | [j]τ
Values a ::= . . . | box a

Expressions e ::= . . . | let box x = a in e

Grade algebra S4modality
(J,⩽,+, ∗, 0, 1,∞) [j]τ

Graded Judgements

x1 :j1 τ1, . . . , xn :jn τn ` e : τ

emanipulates xi according to ji

17

Program Equivalence

Program Equivalence

Goal. Identify programs with the same operational and intensional
behaviour

Operational Semantics

Programs evaluate to values: e ⇓ a

(λx.e)a 7→ e[x := a]
...

let box x = (box a) in e 7→ e[x := a]

18

Program Equivalence

Goal. Identify programs with the same operational and intensional
behaviour

Operational Semantics

Programs evaluate to values: e ⇓ a

(λx.e)a 7→ e[x := a]
...

let box x = (box a) in e 7→ e[x := a]

18

Program Equivalence

Goal. identify programs with the same operational and intensional
behaviour

Q. How to capture intensionality?

Extensional PE Intensional PE
e R e ′ w ⊩ e R e ′

R ⊆ Exp× Exp R : W → P(Exp× Exp)
Relations Relations over possible worlds

Possible worlds=Monoidal preoprder (W,⩽, •, ε)

Semantics substructural logic (Urquhart, 1972; Routley & Meyer, 1973)

19

Program Equivalence

Goal. identify programs with the same operational and intensional
behaviour

Q. How to capture intensionality?

Extensional PE Intensional PE
e R e ′ w ⊩ e R e ′

R ⊆ Exp× Exp R : W → P(Exp× Exp)
Relations Relations over possible worlds

Possible worlds=Monoidal preoprder (W,⩽, •, ε)

Semantics substructural logic (Urquhart, 1972; Routley & Meyer, 1973)

19

Program Equivalence

Goal. identify programs with the same operational and intensional
behaviour

Q. How to capture intensionality?

Extensional PE Intensional PE
e R e ′ w ⊩ e R e ′

R ⊆ Exp× Exp R : W → P(Exp× Exp)
Relations Relations over possible worlds

Possible worlds=Monoidal preoprder (W,⩽, •, ε)

Semantics substructural logic (Urquhart, 1972; Routley & Meyer, 1973)
19

Categories of Relations

CategoryW‑Rel

• Objects: X, Y, . . .
• Arrows: R : (W,⩽) → (P(X× Y),⊆)

w0 w1 w2
W

R(w0) R(w1) R(w2)

. . .

20

Applicative Bisimilarity

Goal. Define notions of equivalence
• Contextual/CIU equivalence
• Logical relations (Abel & Bernardy, 2020)
• Applicative bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
Idea. λ‑terms are functions

f = g ⇐⇒ ∀x. f(x) = g(x)

λx.e' λx.e ′ ⇐⇒ ∀a. e[x := a]' e ′[x := a]

Solution. Coinduction

21

Applicative Bisimilarity

Goal. Define notions of equivalence
• Contextual/CIU equivalence
• Logical relations (Abel & Bernardy, 2020)
• Applicative bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
Idea. λ‑terms are functions

f = g ⇐⇒ ∀x. f(x) = g(x)

λx.e' λx.e ′ ⇐⇒ ∀a. e[x := a]' e ′[x := a]

Solution. Coinduction

21

Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric R ⊆ Exp× Exp s.t.

e R e ′ and e ⇓ a =⇒ e ′ ⇓ a ′ and a R a ′

λx.e R λx.e ′ =⇒ ∀a. e[x := a] R e ′[x := a]

Modal Applicative Bisimilarity
The largest symmetricW‑relation R s.t.

w ⊩ e R e ′ and e ⇓ a =⇒ e ′ ⇓ a ′ andw ⊩ a R a ′

w ⊩ λx.e R λx.e ′ =⇒ ∀a.w ⊩ e[x := a] R e ′[x := a]
w ⊩ box a R box a ′ =⇒ ???

22

Applicative Bisimilarity

Applicative Bisimilarity (Abramsky, 1990)
The largest symmetric R ⊆ Exp× Exp s.t.

e R e ′ and e ⇓ a =⇒ e ′ ⇓ a ′ and a R a ′

λx.e R λx.e ′ =⇒ ∀a. e[x := a] R e ′[x := a]

Modal Applicative Bisimilarity
The largest symmetricW‑relation R s.t.

w ⊩ e R e ′ and e ⇓ a =⇒ e ′ ⇓ a ′ andw ⊩ a R a ′

w ⊩ λx.e R λx.e ′ =⇒ ∀a.w ⊩ e[x := a] R e ′[x := a]
w ⊩ box a R box a ′ =⇒ ???

22

Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
ε ⊩ box a ' box a ′ : [k]τ ⇐⇒ ∃δ. ε ⩾ kδ. and δ ⊩ a ' a ′ : τ

Security
public ⊩ box a ' box a ′ : [secret]τ ⇐⇒ always
secret ⊩ box a ' box a ′ : [secret]τ ⇐⇒ secret ⊩ a ' a ′ : τ

Q. How do we generalise these constructions?

23

Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
ε ⊩ box a ' box a ′ : [k]τ ⇐⇒ ∃δ. ε ⩾ kδ. and δ ⊩ a ' a ′ : τ

Security
public ⊩ box a ' box a ′ : [secret]τ ⇐⇒ always
secret ⊩ box a ' box a ′ : [secret]τ ⇐⇒ secret ⊩ a ' a ′ : τ

Q. How do we generalise these constructions?

23

Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
ε ⊩ box a ' box a ′ : [k]τ ⇐⇒ ∃δ. ε ⩾ kδ. and δ ⊩ a ' a ′ : τ

Security
public ⊩ box a ' box a ′ : [secret]τ ⇐⇒ always
secret ⊩ box a ' box a ′ : [secret]τ ⇐⇒ secret ⊩ a ' a ′ : τ

Q. How do we generalise these constructions?

23

Modal Applicative Bisimilarity

Idea. Modal types act on possible worlds

Sensitivity
ε ⊩ box a ' box a ′ : [k]τ ⇐⇒ ∃δ. ε ⩾ kδ. and δ ⊩ a ' a ′ : τ

Security
public ⊩ box a ' box a ′ : [secret]τ ⇐⇒ always
secret ⊩ box a ' box a ′ : [secret]τ ⇐⇒ secret ⊩ a ' a ′ : τ

Q. How do we generalise these constructions?

23

Relation Lifting

τ 'τ
PE

24

Relation Lifting

τ 'τ
PE

F(τ)

F

24

Relation Lifting

τ 'τ
PE

F#('τ) = 'F(τ)PE

F#

F(τ)

F

Moral. Need ways to extend constructions on types/sets to relations

24

Relation Lifting

Lax Extension (Barr, 1970; Thijs, 1996)

A lax extension of F : Set → Set, is a mapping Γ : W‑Rel(X, Y) →
W‑Rel(F(X), F(Y)) s.t.

Γ(R); Γ(S) ⊆ Γ(R; S)
F(f) ⊆ Γ(f)
F(f)T ⊆ Γ(fT)
R ⊆ S =⇒ Γ(R) ⊆ Γ(S)

Functor Lax Functor
Set

F
��

Set

 7→

W‑Rel

Γ #(F)
��

W‑Rel

25

Relation Lifting

Q. What aboutmodal types [j]τ?

26

Relation Lifting

Q. What aboutmodal types [j]τ?

Modal types= Graded comonadic lax extension of the identity
comonad

Z Graded comonadic= graded S4modalities
Z Identity= act on possible worlds only

26

Relation Lifting

Graded Comonadic Lax Extension

A graded comonadic lax extension is a J‑indexed family of lax ex‑
tensions∆j : W‑Rel(X, Y) → W‑Rel(X, Y) antitone in J s.t.

∆1(R) ⊆ R
∆j∗k(R) ⊆ ∆j(∆k(R))

∆j(R)⊗ ∆j(S) ⊆ ∆j(R⊗ S)
∆j+k(R) ⊆ dupT; (∆j(R)⊗ ∆j(S)); dup

Identity Comonad Graded Lax Monoidal Comonad
Set

ID
��

Set

 7→

W‑Rel

∆#(ID)
��

W‑Rel

26

Modal Applicative Bisimilarity

Modal Applicative Bisimilarity

The largest symmetricW‑relation R s.t.

w ⊩ e R e ′ : τ and e ⇓ a =⇒ e ′ ⇓ a ′ andw ⊩ a R a ′ : τ

w ⊩ f R f ′ : τ → τ ′ =⇒ ∀a.w ′ ⊩ fa R f ′a : τ ′

w ⊩ box a R box a ′ : [j]τ =⇒ w ⊩ a ∆j(R) a ′ : τ

Theorem (Compositionality)

Modal applicative bisimilarity is compositional

x :j τ ` e, e ′ : τ ′ v ⊩ e ' e ′ w ⊩ a ∆j(') a ′ : τ

w • v ⊩ e[x := a] ' e ′[x := a ′] : τ ′

27

Modal Applicative Bisimilarity

Modal Applicative Bisimilarity

The largest symmetricW‑relation R s.t.

w ⊩ e R e ′ : τ and e ⇓ a =⇒ e ′ ⇓ a ′ andw ⊩ a R a ′ : τ

w ⊩ f R f ′ : τ → τ ′ =⇒ ∀a.w ′ ⊩ fa R f ′a : τ ′

w ⊩ box a R box a ′ : [j]τ =⇒ w ⊩ a ∆j(R) a ′ : τ

Theorem (Compositionality)

Modal applicative bisimilarity is compositional

x :j τ ` e, e ′ : τ ′ v ⊩ e ' e ′ w ⊩ a ∆j(') a ′ : τ

w • v ⊩ e[x := a] ' e ′[x := a ′] : τ ′

27

Metric Preservation, Non‑Interference, etc

Metric Preservation (Reed & Pierce, 2010)

J = [0,∞] = W

x :k τ ` f : τ ′ ε ⊩ a ' a ′ : τ

kε ⊩ f[x := a] ' f[x := a ′] : τ ′

Non‑Interference (Abadi et al., 1999)

J = {public ⩽ secret} = W

x :secret τ ` f : τ ′ & a, a ′ : τ ⇒ public ⊩ f[x := a] ' f[x := a ′] : τ ′

28

Modal Reasoning=Metric
Reasoning, via Lawvere

ProgramDistance

Relations W‑relations
e ' e ′ w ⊩ e ' e ′

Equivalence Intensional equivalence

29

ProgramDistance

Relations W‑relations Distances
e ' e ′ w ⊩ e ' e ′ δ(e, e ′) = ε

Equivalence Intensional equivalence Pseudometric

29

ProgramDistance

Relations W‑relations Distances
e ' e ′ w ⊩ e ' e ′ δ(e, e ′) = ε

Equivalence Intensional equivalence Pseudometric

Goal. Intensional equivalence≡ Program distance

Z Solid theory of program distance
Z Combined effects and coeffects

29

From Equivalences to Distances

Relations Distances
e ' e ′ δ(e, e ′) = ε

{false, true} [0,∞]

Equivalence Pseudometric

30

From Equivalences to Distances

Relations Distances Quantale‑relations
e ' e ′ δ(e, e ′) = ε δ(e, e ′) = v

{false, true} [0,∞] (V,⩽,⊗, k)
Equivalence Pseudometric V‑equivalences

(Generalised) metric spaces as enriched categories (Lawvere, 1973)

Quantale (Rosenthal, 1990)
A complete lattice (V,⩽)with amonoid structure (V,⊗, k)

v⊗
∨
i
ui =

∨
i
(v⊗ ui)

∨
i
vi ⊗ u =

∨
i
(vi ⊗ u)

30

Quantale‑relations

Example
Boolean Lawvere Strong Lawvere

({false, true},⩽,∧,>) ([0,∞],⩾,+, 0) ([0,∞],⩾,max, 0)

3‑element chain Powerset Left cont. distributions
{⊥, k,>} P(X) f : [0,∞] → [0, 1]

Example
MonotoneW‑predicates
p : (W,⩽, •, ε) → (2,⩽)

31

Quantale‑relations

Category V‑Rel

• Objects: X, Y, . . .
• Arrows: α : X× Y → V

Identity
I(x, x) = k, I(x, y) = ⊥

Composition
(α;β)(x, z) =

∨
yα(x, y)⊗ β(y, z)

(α;α)(x, z) ⩽ α(x, z) ⇐⇒ inf yα(x, y) + α(y, z) ⩾ α(x, z) ⇐⇒ TI

Boolean Lawvere Strong Lawvere
Transitivity Triangle Inequality Strong TI
Equivalence Pseudometric Ultra Pseudometric

32

Quantale‑relations

Category V‑Rel

• Objects: X, Y, . . .
• Arrows: α : X× Y → V

Identity
I(x, x) = k, I(x, y) = ⊥

Composition
(α;β)(x, z) =

∨
yα(x, y)⊗ β(y, z)

(α;α)(x, z) ⩽ α(x, z) ⇐⇒ inf yα(x, y) + α(y, z) ⩾ α(x, z) ⇐⇒ TI

Boolean Lawvere Strong Lawvere
Transitivity Triangle Inequality Strong TI
Equivalence Pseudometric Ultra Pseudometric

32

Bisimilarity Distance

Rich literature on V‑distances

Monoidal topology (D. Hofmann et al., 2014)
Effectful applicative bisimilarity (Gavazzo, 2018)

Bisimilarity Distance δ

The largest V‑relation α s.t.

...

ατ→τ′(λx.f, λx.f ′) ⩽
∧
a
ατ(f[x := a], f ′[x := a])

α[j]τ(box a, box a ′) ⩽ ∆j(ατ)(a, a ′)

33

Bisimilarity Distance

Rich literature on V‑distances

Monoidal topology (D. Hofmann et al., 2014)
Effectful applicative bisimilarity (Gavazzo, 2018)

Bisimilarity Distance δ

The largest V‑relation α s.t.

...

ατ→τ′(λx.f, λx.f ′) ⩽
∧
a
ατ(f[x := a], f ′[x := a])

α[j]τ(box a, box a ′) ⩽ ∆j(ατ)(a, a ′)

33

Bisimilarity Distance

Comonadic Lax Extension
∆j : V‑Rel(X, Y) → V‑Rel(X, Y)

Main Example
V = J = [0,∞]

∆j(α)(x, y) = j · α(x, y)

Non‑expansive Lipschitz‑continuous

X
⩽

f //

α

��

Y
β

��
X

f
// Y

X
⩽

f //

∆j(α)

��

Y
β

��
X

f
// Y

34

Bisimilarity Distance

Theorem (Abstract Metric Preservation)

For x :j τ ` e, e ′ : τ ′ and ` a, a ′ : τ, we have:

∆j(δ)(a, a ′)⊗ δ(e, e ′) ⩽ δ(e[x := a], e ′[x := a ′])

Theorem

For V = (W,⩽, •, ε) → (2,⩽),

AMP =⇒ Compositionality

34

Conclusion

Summing Up

Intensional program equivalence for gradedmodal types

Compositionality theorem for modal applicative bisimilarity

Same results for other equivalences

Z Böhm tree‑like equivalences

w ⊩ BT(e) ≡ BT(e ′)

Intensional equality as program distance

Z Abstract Metric Preservation

35

Summing Up

What do we gain from AMP?

Combined effects and coeffects

Add algebraic operations (random, print, lookup, . . .) andmonads

(ℓ := 2; !ℓ+ 3)⊕ 1
3
(ℓ := 3; !ℓ− 1)

Bisimilarity distance usingmonadic lax extension

Monadic Lax Extension
Γ : V‑Rel(X, Y) → V‑Rel(T(X), T(Y))

Lax distributive law
∆r ◦ Γ ⊆ Γ ◦ ∆r

Abstract metric preservation theorem

36

Summing Up

What do we gain from AMP? Combined effects and coeffects

Add algebraic operations (random, print, lookup, . . .) andmonads

(ℓ := 2; !ℓ+ 3)⊕ 1
3
(ℓ := 3; !ℓ− 1)

Bisimilarity distance usingmonadic lax extension

Monadic Lax Extension
Γ : V‑Rel(X, Y) → V‑Rel(T(X), T(Y))

Lax distributive law
∆r ◦ Γ ⊆ Γ ◦ ∆r

Abstract metric preservation theorem

36

Summing Up

What do we gain from AMP? Combined effects and coeffects

Add algebraic operations (random, print, lookup, . . .) andmonads

(ℓ := 2; !ℓ+ 3)⊕ 1
3
(ℓ := 3; !ℓ− 1)

Bisimilarity distance usingmonadic lax extension

Monadic Lax Extension
Γ : V‑Rel(X, Y) → V‑Rel(T(X), T(Y))

Lax distributive law
∆r ◦ Γ ⊆ Γ ◦ ∆r

Abstract metric preservation theorem

36

Summing Up

What do we gain from AMP? Combined effects and coeffects

Add algebraic operations (random, print, lookup, . . .) andmonads

(ℓ := 2; !ℓ+ 3)⊕ 1
3
(ℓ := 3; !ℓ− 1)

Bisimilarity distance usingmonadic lax extension

Monadic Lax Extension
Γ : V‑Rel(X, Y) → V‑Rel(T(X), T(Y))

Lax distributive law
∆r ◦ Γ ⊆ Γ ◦ ∆r

Abstract metric preservation theorem

36

References

Abadi, M., Banerjee, A., Heintze, N., & Riecke, J. G. (1999). A core
calculus of dependency. In POPL ’99, proceedings of the 26th ACM
SIGPLAN‑SIGACT symposium on principles of programming
languages, san antonio, tx, usa, january 20‑22, 1999 (pp. 147–160).

Abel, A., & Bernardy, J. (2020). A unified view of modalities in type
systems. Proc. ACM Program. Lang., 4(ICFP), 90:1–90:28.

Abramsky, S. (1990). The lazy lambda calculus. In D. Turner (Ed.),
Research topics in functional programming (pp. 65–117). Addison
Wesley.

Atkey, R. (2018). Syntax and semantics of quantitative type theory. In
Proceedings of the 33rd annual ACM/IEEE symposium on logic in
computer science, LICS 2018, oxford, uk, july 09‑12, 2018 (pp.
56–65).

Barr, M. (1970). Relational algebras. Lect. Notes Math., 137, 39–55.

37

Brunel, A., Gaboardi, M., Mazza, D., & Zdancewic, S. (2014). A core
quantitative coeffect calculus. In Programming languages and
systems ‑ 23rd european symposium on programming, ESOP 2014,
held as part of the european joint conferences on theory and
practice of software, ETAPS 2014, grenoble, france, april 5‑13, 2014,
proceedings (pp. 351–370).

Gaboardi, M., Katsumata, S., Orchard, D. A., Breuvart, F., & Uustalu, T.
(2016). Combining effects and coeffects via grading. In
Proceedings of the 21st ACM SIGPLAN international conference on
functional programming, ICFP 2016, nara, japan, september 18‑22,
2016 (pp. 476–489).

Gavazzo, F. (2018). Quantitative behavioural reasoning for higher‑order
effectful programs: Applicative distances. In Proc. of LICS 2018
(pp. 452–461).

38

Ghica, D. R., & Smith, A. I. (2014). Bounded linear types in a resource
semiring. In Programming languages and systems ‑ 23rd european
symposium on programming, ESOP 2014, held as part of the
european joint conferences on theory and practice of software,
ETAPS 2014, grenoble, france, april 5‑13, 2014, proceedings (pp.
331–350).

Girard, J., Scedrov, A., & Scott, P. J. (1992). Bounded linear logic: A
modular approach to polynomial‑time computability. Theor.
Comput. Sci., 97(1), 1–66.

Hofmann, D., Seal, G., & Tholen, W. (Eds.). (2014). Monoidal topology. a
categorical approach to order, metric, and topology (No. 153).
Cambridge University Press.

Hofmann, M. (1999). Linear types and non‑size‑increasing polynomial
time computation. In 14th annual IEEE symposium on logic in
computer science, trento, italy, july 2‑5, 1999 (pp. 464–473).

39

Lago, U. D., & Hofmann, M. (2009). Bounded linear logic, revisited. In
Typed lambda calculi and applications, 9th international
conference, TLCA 2009, brasilia, brazil, july 1‑3, 2009. proceedings
(pp. 80–94).

Lawvere, F. (1973). Metric spaces, generalized logic, and closed
categories. Rend. Sem. Mat. Fis. Milano, 43, 135–166.

Orchard, D., Liepelt, V., & Eades III, H. (2019). Quantitative program
reasoning with gradedmodal types. Proc. ACM Program. Lang.,
3(ICFP), 110:1–110:30.

Petricek, T., Orchard, D. A., & Mycroft, A. (2014). Coeffects: a calculus of
context‑dependent computation. In Proceedings of the 19th ACM
SIGPLAN international conference on functional programming,
gothenburg, sweden, september 1‑3, 2014 (pp. 123–135).

40

Reed, J., & Pierce, B. C. (2010). Distancemakes the types grow stronger:
a calculus for differential privacy. In Proceeding of the 15th ACM
SIGPLAN international conference on functional programming, ICFP
2010, baltimore, maryland, usa, september 27‑29, 2010 (pp.
157–168).

Rosenthal, K. (1990). Quantales and their applications. Longman
Scientific & Technical.

Routley, R., & Meyer, R. K. (1973). The semantics of entailment. In
H. Leblanc (Ed.), Truth, syntax andmodality (Vol. 68, p. 199 ‑ 243).
Elsevier.

Thijs, A. (1996). Simulation and fixpoint semantics. Rijksuniversiteit
Groningen.

Urquhart, A. (1972). Semantics for relevant logics. J. Symb. Log., 37(1),
159–169.

Volpano, D. M., Irvine, C. E., & Smith, G. (1996). A sound type system for
secure flow analysis. Journal of Computer Security, 4(2/3),
167–188.

41

Wood, J., & Atkey, R. (2020). A linear algebra approach to linear
metatheory. CoRR, abs/2005.02247. Retrieved from
https://arxiv.org/abs/2005.02247

42

https://arxiv.org/abs/2005.02247

	A Long Introduction
	Related Work
	Modal Reasoning
	Program Equivalence
	Modal Reasoning = Metric Reasoning, via Lawvere
	Conclusion
	References

