$\mathrm{FO}=\mathrm{FO}^{3}$ for Linear Orders with Monotone Binary Relations

Marie Fortin

University of Liverpool
YR-OWLS, June 16, 2020

The k-variable property

How many variables are needed in first-order logic ?

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} . \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} \cdot \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} \cdot \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} \cdot \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} . \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} . \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} . \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

The k-variable property

How many variables are needed in first-order logic ?

- Some properties require unboundedly many variables

$$
\exists x_{1} \cdot \exists x_{2} \cdot \exists x_{3} \cdot \exists x_{4} \cdot \bigwedge_{1 \leq i<j \leq 4} x_{i} \neq x_{j}
$$

- ... but not in every class of models:

$$
\exists x \cdot \exists y \cdot(x<y \wedge \exists x \cdot(y<x \wedge \exists y \cdot x<y))
$$

Over linear orders, $\mathbf{F O}=\mathbf{F O}^{3}$.

Bounded variable logics

Why do we care about the number of variables?

Bounded variable logics

Why do we care about the number of variables?

- (Descriptive) complexity

Bounded variable logics

Why do we care about the number of variables?

- (Descriptive) complexity
- Temporal logics

Bounded variable logics

Why do we care about the number of variables?

- (Descriptive) complexity
- Temporal logics
[Gabbay 1981] In any class of time flows, TFAE:
- There exists an expressively complete finite set of FO-definable (multi-dimensional) temporal connectives
- There exists k such that every first-order sentence is equivalent to one with at most k variables

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic

Example: Over complete linear orders,

$$
\mathrm{FO}^{3} \subseteq \mathrm{FO}=\mathrm{LTL} \subseteq \mathrm{FO}^{3} \quad[\text { Kamp 1968 }]
$$

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic

Example: Over complete linear orders,

$$
\begin{aligned}
& \mathrm{FO}^{3} \subseteq \mathrm{FO}=\mathrm{LTL} \subseteq \mathrm{FO}^{3} \quad[\text { Kamp 1968] } \\
& \text { Over (arbitrary) linear orders, } \\
& \mathrm{FO}^{3} \subseteq \mathrm{FO}=\mathrm{LTL} \text { with Stavi connectives } \subseteq \mathrm{FO}^{3} \\
& \\
& \quad[\text { Gabbay, Hodkinson, Reynolds 1993] }
\end{aligned}
$$

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic
2. Ehrenfeucht-Fraïssé games with k pebbles

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic
2. Ehrenfeucht-Fraïssé games with k pebbles

Example: Over complete linear orders,

$$
\mathrm{FO}=\mathrm{FO}^{3} \quad \text { [Immerman, Kozen 1989] }
$$

Example

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$.

Two classical techniques to prove $\mathrm{FO}=\mathrm{FO}^{k}$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic 0 or 1 free variables
2. Ehrenfeucht-Fraïssé games with k pebbles up to k free variables

Known results (non-exhaustive)

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$
[Immerman-Kozen'89]

Known results (non-exhaustive)

```
Over linear orders,
    FO = FO
[Immerman-Kozen'89]
```

What happens if we have additional binary relations?

Known results (non-exhaustive)

> Over linear orders, FO $=$ FO 3
> [Immerman-Kozen'89]

What happens if we have additional binary relations?
Over ordered graphs, $\forall k, \mathrm{FO} \neq \mathrm{FO}^{k}$
x
[Rossman'08]

Known results (non-exhaustive)

> Over linear orders, FO $=$ FO 3
> [Immerman-Kozen'89]

What happens if we have additional binary relations?

$$
\begin{gathered}
\text { Over }(\mathbb{R},<,+1), \\
\text { FO }=\text { FO }^{3} \\
{[\text { AHRW'15] }}
\end{gathered}
$$

Known results (non-exhaustive)

Over linear orders, $\mathrm{FO}=\mathrm{FO}^{3}$
[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
$\forall k$, FO $\neq \mathrm{FO}^{k}$
$[$ Rossman'08 $]$
x

Over Mazurkiewicz traces,

$$
\mathrm{FO}=\mathrm{FO}^{3}
$$

[Gastin-Mukund'02]

$$
\begin{gathered}
\text { Over }(\mathbb{R},<,+1), \\
\text { FO }=\text { FO }^{3} \\
{[\text { AHRW'15] }}
\end{gathered}
$$

Known results (non-exhaustive)

> Over linear orders, FO $=$ FO 3
> $[$ [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs, $\forall k, \mathrm{FO} \neq \mathrm{FO}^{k} \quad \mathrm{x}$ [Rossman'08]

$$
\begin{gathered}
\text { Over }(\mathbb{R},<,+1), \\
\text { FO }=\text { FO }^{3} \\
{[\text { AHRW'15] }}
\end{gathered}
$$

Over Mazurkiewicz traces,

$$
\mathrm{FO}=\mathrm{FO}^{3}
$$

[Gastin-Mukund'02]

What do these 4 positive results have in common?

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{Im}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{Im}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Generalisation [F.'19]

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

R is interval-preserving if for all intervals I,
- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

A special case: monotone partial functions

Any relation R corresponding to a monotone partial function is interval-preserving.

- $R(I)$ is an interval of $(\operatorname{lm}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

Applications

$\mathrm{FO}=\mathrm{FO}^{3}$ over

1. Linear orders with partial non-decreasing or non-increasing functions (new)

Applications

$\mathrm{FO}=\mathrm{FO}^{3}$ over

1. Linear orders with partial non-decreasing or non-increasing functions (new)
2. Linear orders: finite or infinite words, \mathbb{R}, \mathbb{Q}, ordinals...

Applications

$\mathrm{FO}=\mathrm{FO}^{3}$ over

1. Linear orders with partial non-decreasing or non-increasing functions (new)
2. Linear orders: finite or infinite words, \mathbb{R}, \mathbb{Q}, ordinals...
3. $(\mathbb{R}, \leq,+1),\left(\mathbb{R}, \leq,(+q)_{q \in \mathbb{Q}}\right) \ldots$

Applications

$\mathrm{FO}=\mathrm{FO}^{3}$ over

1. Linear orders with partial non-decreasing or non-increasing functions (new)
2. Linear orders: finite or infinite words, \mathbb{R}, \mathbb{Q}, ordinals...
3. $(\mathbb{R}, \leq,+1),\left(\mathbb{R}, \leq,(+q)_{q \in \mathbb{Q}}\right) \ldots$
4. $(\mathbb{R}, \leq)+$ polynomial functions (new)

Applications

5. Message sequence charts (MSCs)

Applications

5. Message sequence charts (MSCs)

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$
- Message relations $\triangleleft_{p, q}$

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$
- Message relations $\triangleleft_{p, q}$

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$

Extended to a linear order

- Message relations $\triangleleft_{p, q}$

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$
- Message relations $\triangleleft_{p, q}$

Extended to a linear order
FIFO \rightarrow monotone

Applications

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order $\leq_{\text {proc }}$
- Message relations $\triangleleft_{p, q}$

Extended to a linear order
FIFO \rightarrow monotone
\rightarrow Interval-preserving structure

Applications

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

1. Linear orders with partial non-decreasing or non-increasing functions (new)
2. Linear orders: finite or infinite words, \mathbb{R}, \mathbb{Q}, ordinals...
3. $(\mathbb{R}, \leq,+1),\left(\mathbb{R}, \leq,(+q)_{q \in \mathbb{Q}}\right) \ldots$
4. $(\mathbb{R}, \leq)+$ polynomial functions (new)
5. MSCs
6. Mazurkiewicz traces

How does the interval-preserving assumption help?

How does the interval-preserving assumption help?

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right)
$$

How does the interval-preserving assumption help?

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right)
$$

Equivalent FO^{3} formula?

How does the interval-preserving assumption help?

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right)
$$

Equivalent FO^{3} formula?

How does the interval-preserving assumption help?

$$
\varphi\left(x_{1}, x_{2}, x_{3}\right)=\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right)
$$

Equivalent FO^{3} formula?

How does the interval-preserving assumption help?

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}, x_{3}\right)= & \exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right) \\
\equiv & \left(\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge\right. \\
& \left(\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{3}\left(x_{3}, y\right) \wedge\right. \\
& \left(\exists y \cdot R_{2}\left(x_{2}, y\right) \wedge R_{2}\left(x_{3}, y\right) \wedge\right. \\
& \frac{R_{3}\left(x_{3}\right) \quad R_{1}\left(x_{1}\right)}{R_{2}\left(x_{2}\right) \quad y} 1 \\
& \text { Equivalent } \mathrm{FO}^{3} \text { formula? }
\end{aligned}
$$

How does the interval-preserving assumption help?

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}, x_{3}\right)= & \exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right) \\
\equiv & \left(\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge \exists x \cdot R_{3}(x, y)\right) \wedge \\
& \left(\exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{3}\left(x_{3}, y\right) \wedge \exists x \cdot R_{2}(x, y)\right) \wedge \\
& \left(\exists y \cdot R_{2}\left(x_{2}, y\right) \wedge R_{2}\left(x_{3}, y\right) \wedge \exists x \cdot R_{1}(x, y)\right) \\
& \longmapsto \begin{array}{l}
R_{3}\left(x_{3}\right) \quad R_{1}\left(x_{1}\right) \\
R_{2}\left(x_{2}\right) \\
y
\end{array}
\end{aligned}
$$

Equivalent FO^{3} formula?

How does the interval-preserving assumption help?

$$
\begin{aligned}
\varphi\left(x_{1}, x_{2}, x_{3}\right)= & \exists y \cdot R_{1}\left(x_{1}, y\right) \wedge R_{2}\left(x_{2}, y\right) \wedge R_{3}\left(x_{3}, y\right) \\
\equiv & \left(\exists x_{3} \cdot R_{1}\left(x_{1}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge \exists x_{1} \cdot R_{3}\left(x_{1}, x_{3}\right)\right) \wedge \\
& \left(\exists x_{2} \cdot R_{1}\left(x_{1}, x_{2}\right) \wedge R_{3}\left(x_{3}, x_{2}\right) \wedge \exists x_{1} \cdot R_{2}\left(x_{1}, x_{2}\right)\right) \wedge \\
& \left(\exists x_{1} \cdot R_{2}\left(x_{2}, x_{1}\right) \wedge R_{2}\left(x_{3}, x_{1}\right) \wedge \exists x_{2} \cdot R_{1}\left(x_{2}, x_{1}\right)\right) \\
& \frac{R_{3}\left(x_{3}\right) \quad R_{1}\left(x_{1}\right)}{R_{2}\left(x_{2}\right)} \text { Equivalent } \mathrm{FO}^{3} \text { formula? }
\end{aligned}
$$

The proof

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

The proof

$\mathrm{FO}=\mathrm{FO}^{3}$ over structures with

- one linear order \leq,
- "interval-preserving" binary relations R_{1}, R_{2}, \ldots,
- arbitrary unary predicates p, q, \ldots

Key idea: Go through an intermediate language: Star-free Propositional Dynamic Logic.

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic

Examples

$\operatorname{Over}\left(\mathbb{R},<,\left\{+q \mid q \in \mathbb{Q}_{+}\right\}\right)$,
$\varphi \mathrm{U}_{(q, r)} \psi \equiv$

Star-free Propositional Dynamic Logic

Examples

$\operatorname{Over}\left(\mathbb{R},<,\left\{+q \mid q \in \mathbb{Q}_{+}\right\}\right)$,

$$
\varphi \mathrm{U}_{(q, r)} \psi \equiv\left\langle(+q \cdot<) \cap\left(+r \cdot<^{-1}\right) \cap(<\cdot\{\neg \varphi\} ? \cdot<)^{c}\right\rangle \psi
$$

Star-free Propositional Dynamic Logic

Syntax

State formulas:

$$
\varphi::=P|\varphi \vee \varphi| \neg \varphi \mid\langle\pi\rangle \varphi
$$

Path formulas:

$$
\pi::=\leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cup \pi| \pi^{c}
$$

Star-free Propositional Dynamic Logic

Syntax

State formulas:

$$
\varphi::=P|\varphi \vee \varphi| \neg \varphi \mid\langle\pi\rangle \varphi
$$

Path formulas:

$$
\pi::=\leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cup \pi| \pi^{c}
$$

Combines features from

- Propositional Dynamic Logic [Fisher-Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Star-free Propositional Dynamic Logic

Syntax

State formulas:

$$
\varphi::=P|\varphi \vee \varphi| \neg \varphi \mid\langle\pi\rangle \varphi
$$

Path formulas:

$$
\pi::=\leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cup \pi| \pi^{\mathrm{c}}
$$

Combines features from

- Propositional Dynamic Logic [Fisher-Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Theorem: [Tarski-Givant 1987 (calculus of relations)] $\mathrm{PDL}_{\text {sf }}$ and FO^{3} are expressively equivalent

A fragment of Star-free PDL

A fragment of Star-free PDL

State formulas:

$$
\varphi::=P|\varphi \vee \varphi| \neg \varphi \mid\langle\pi\rangle \varphi
$$

Path formulas:

$$
\pi::=\leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cup \pi| \pi^{c}
$$

$$
\begin{aligned}
\pi::= & \leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cap \pi| \\
& (\leq \cdot \pi \cdot \leq)^{c}\left|(\leq \cdot \pi \cdot \geq)^{c}\right| \\
& (\geq \cdot \pi \cdot \leq)^{c} \mid(\geq \cdot \pi \cdot \geq)^{c}
\end{aligned}
$$

PD L $\mathrm{Lf}_{\mathrm{sf}}^{\text {int }}$

A fragment of Star-free PDL

State formulas:

$$
\varphi::=P|\varphi \vee \varphi| \neg \varphi \mid\langle\pi\rangle \varphi
$$

Path formulas:

$$
\pi::=\leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cup \pi| \pi^{\mathrm{c}}
$$

$$
\begin{aligned}
\pi::= & \leq|R|\{\varphi\} ?\left|\pi^{-1}\right| \pi \cdot \pi|\pi \cap \pi| \\
& (\leq \cdot \pi \cdot \leq)^{c}\left|(\leq \cdot \pi \cdot \geq)^{c}\right| \\
& (\geq \cdot \pi \cdot \leq)^{c} \mid(\geq \cdot \pi \cdot \geq)^{c}
\end{aligned}
$$

PDLint

Lemma: $\forall \pi \in \mathrm{PDL}_{\text {sf }}^{\text {int }}, \llbracket \pi \rrbracket$ is interval-preserving

Equivalences over interval-preserving structures

- State formula $\varphi \in \mathrm{PDL}_{\text {sf }} \rightsquigarrow \varphi^{\mathrm{FO}}(x) \in \mathrm{FO}$
- Path formula $\pi \in \mathrm{PDL}_{\text {sf }} \rightsquigarrow \pi^{\mathrm{FO}}(x, y) \in \mathrm{FO}$

Equivalences over interval-preserving structures

- State formula $\varphi \in \mathrm{PDL}_{\text {sf }} \rightsquigarrow \varphi^{\mathrm{FO}}(x) \in \mathrm{FO}$

$$
\langle\pi\rangle \varphi \rightsquigarrow \exists y \cdot \pi^{\mathrm{FO}}(x, y) \wedge \varphi^{\mathrm{FO}}(y)
$$

- Path formula $\pi \in \mathrm{PDL}_{\text {sf }} \rightsquigarrow \pi^{\mathrm{FO}}(x, y) \in \mathrm{FO}$

$$
\pi_{1} \cdot \pi_{2} \rightsquigarrow \exists z \cdot \pi_{1}^{\mathrm{FO}}(x, z) \wedge \pi_{2}^{\mathrm{FO}}(z, y)
$$

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\text {sf }}^{\mathrm{int}}$.

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Atomic formulas, disjunction: easy

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Negation: Express π^{c} using

$$
(\leq \cdot \pi \cdot \leq)^{c},(\leq \cdot \pi \cdot \geq)^{c},(\geq \cdot \pi \cdot \leq)^{c},(\geq \cdot \pi \cdot \geq)^{c}
$$

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Existential quantification: Similar to the example before.

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Existential quantification: Similar to the example before.

$$
\exists x \cdot \bigwedge_{i} \pi_{i}^{\mathrm{FO}}\left(x_{i}, x\right)
$$

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Existential quantification: Similar to the example before.

$$
\underbrace{\exists x . \bigwedge_{i} \pi_{i}^{\mathrm{FO}}\left(x_{i}, x\right)}_{\text {intersection of } n \text { intervals }}
$$

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Existential quantification: Similar to the example before.

$$
\underbrace{\exists x . \bigwedge_{i} \pi_{i}^{\mathrm{FO}}\left(x_{i}, x\right)}_{\text {intersection of } n \text { intervals }}
$$

Equivalences over interval-preserving structures

Any FO formula $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\mathrm{FO}}\left(x_{i}, x_{j}\right)$, where $\pi \in \mathrm{PDL}_{\mathrm{sf}}^{\mathrm{int}}$.

Proof: by induction on Φ.

- Existential quantification: Similar to the example before.

$$
\underbrace{\exists x \cdot \bigwedge_{i} \pi_{i}^{\mathrm{FO}}\left(x_{i}, x\right)}_{\text {intersection of } n \text { intervals }} \equiv \underbrace{\bigwedge_{i, j}\left(\pi_{i} \cdot\{\varphi\} ? \cdot \pi_{j}^{-1}\right)^{\mathrm{FO}}\left(x_{i}, x_{j}\right)}_{\text {pairwise intersections }}
$$

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.
Further directions:
- Generalizations to ther types of orders (trees...), relations of arity >2 ?

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.
Further directions:
- Generalizations to ther types of orders (trees. . .), relations of arity >2 ?
- Uniform approach for proving completeness of temporal logics?

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.
Further directions:
- Generalizations to ther types of orders (trees. . .), relations of arity >2 ?
- Uniform approach for proving completeness of temporal logics?

Conclusion

- Over linearly ordered structures with interval-preserving binary relations,

$$
\mathrm{FO}=\mathrm{PDL}_{\mathrm{sf}}=\mathrm{FO}^{3}
$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.
Further directions:
- Generalizations to ther types of orders (trees. . .), relations of arity >2 ?
- Uniform approach for proving completeness of temporal logics?

Thank you!

