
FO = FO3 for Linear Orders with

Monotone Binary Relations

Marie Fortin

University of Liverpool

YR-OWLS, June 16, 2020

1 / 18



The k-variable property
How many variables are needed in first-order logic ?

I Some properties require unboundedly many variables

∃x1.∃x2.∃x3.∃x4.
∧

1≤i<j≤4 xi 6= xj
x1

x2
x3

x4

I ... but not in every class of models:

∃x.∃y.
(
x < y ∧ ∃x. (y < x ∧ ∃y. x < y)

)

xx y< y x< x y<

Over linear orders, FO = FO3.
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Bounded variable logics

Why do we care about the number of variables?

I (Descriptive) complexity

I Temporal logics

[Gabbay 1981] In any class of time flows, TFAE:

I There exists an expressively complete finite set of
FO-definable (multi-dimensional) temporal connectives

I There exists k such that every first-order sentence is
equivalent to one with at most k variables
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Example

Over linear orders, FO = FO3.

Two classical techniques to prove FO = FOk (over a class C)

1. Corollary of expressive completeness of a temporal logic

2. Ehrenfeucht-Fräıssé games with k pebbles
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2. Ehrenfeucht-Fräıssé games with k pebbles

4 / 18



Example

Over linear orders, FO = FO3.

Two classical techniques to prove FO = FOk (over a class C)

1. Corollary of expressive completeness of a temporal logic
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Example

Over linear orders, FO = FO3.

Two classical techniques to prove FO = FOk (over a class C)

1. Corollary of expressive completeness of a temporal logic
0 or 1 free variables

2. Ehrenfeucht-Fräıssé games with k pebbles
up to k free variables

4 / 18



Known results (non-exhaustive)

Over linear orders,
FO = FO3

[Immerman-Kozen’89]

3

What happens if we have additional binary relations?

Over ordered graphs,
∀k,FO 6= FOk

[Rossman’08]

7

Over (R, <,+1),
FO = FO3

[AHRW’15]

3

Over Mazurkiewicz traces,
FO = FO3

[Gastin-Mukund’02]

3

Over MSCs,
FO = FO3

[Bollig-F.-Gastin’18]

3

What do these 4 positive results have in common?
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Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)

p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)

p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I

R(I)

I

R−1(I)
p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)
p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)
p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)
p p pq qp, q p, q

7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



Generalisation [F.’19]

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

I R(I)

I

R−1(I)

p p pq qp, q p, q
7

R is interval-preserving if for all intervals I,

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)

6 / 18



A special case: monotone partial functions

Any relation R corresponding to a monotone partial function
is interval-preserving.

I R(I) is an interval of (Im(R),≤)

I R−1(I) is an interval of (dom(R),≤)
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Applications

FO = FO3 over

1. Linear orders with partial non-decreasing or non-increasing
functions (new)

2. Linear orders: finite or infinite words, R, Q, ordinals...

3. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

4. (R,≤) + polynomial functions (new)
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Applications

5. Message sequence charts (MSCs)

a a c a a a a a
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Applications

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

1. Linear orders with partial non-decreasing or non-increasing
functions (new)

2. Linear orders: finite or infinite words, R, Q, ordinals...

3. (R,≤,+1), (R,≤, (+q)q∈Q) . . .

4. (R,≤) + polynomial functions (new)

5. MSCs

6. Mazurkiewicz traces
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How does the interval-preserving assumption help?

ϕ(x1, x2, x3) = ∃y.R1(x1, y) ∧R2(x2, y) ∧R3(x3, y)

≡
(
∃y.R1(x1, y) ∧R2(x2, y) ∧

∃x.R3(x, y)

)
∧(

∃y.R1(x1, y) ∧R3(x3, y) ∧

∃x.R2(x, y)

)
∧(

∃y.R2(x2, y) ∧R2(x3, y) ∧

∃x.R1(x, y)

)
R1(x1)

R2(x2)

R3(x3)

y

Equivalent FO3 formula?
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The proof

FO = FO3 over structures with

I one linear order ≤,

I “interval-preserving” binary relations R1, R2, . . .,

I arbitrary unary predicates p, q, . . .

Key idea: Go through an intermediate language:
Star-free Propositional Dynamic Logic.

FO

Star-free PDL FO3
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Star-free Propositional Dynamic Logic
Examples

p p pq q qp, q

R

(p ∧ ¬q) ∨ (q ∧ ¬p) 3 3 3 3 3 37 7 7

〈R〉 q 3 37 7 7 7 7 7 7

〈≤ ·R−1〉 q 3 3 3 3 3 3 3 7 7

〈≤ · {〈R〉 q}? · ≤〉 p 3 3 3 7 7 7 7 7 7

〈Rc ∩ ≤〉 (p ∧ q) 3 3 3 3 3 3 37 7
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Star-free Propositional Dynamic Logic
Examples

Over (R, <, {+q | q ∈ Q+}),

ϕ U(q,r) ψ ≡

〈
(+q ·<) ∩ (+r ·<−1) ∩ (< · {¬ϕ}? ·<)c

〉
ψ

ψ

t t+ q t+ r

ϕ

+q
<

+r

<

ϕ
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Star-free Propositional Dynamic Logic
Syntax

State formulas:
ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:
π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

Combines features from

I Propositional Dynamic Logic [Fisher-Ladner 1979]

I Star-free regular expressions

I The calculus of relations

Theorem: [Tarski-Givant 1987 (calculus of relations)]
PDLsf and FO3 are expressively equivalent
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A fragment of Star-free PDL

State formulas:
ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ

Path formulas:
π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∪ π | πc

PDLsf

π ::= ≤ | R | {ϕ}? | π−1 | π · π | π ∩ π |
(≤ · π · ≤)c | (≤ · π · ≥)c |
(≥ · π · ≤)c | (≥ · π · ≥)c

PDLint
sf

Lemma: ∀π ∈ PDLint
sf , JπK is interval-preserving
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Equivalences over interval-preserving structures

FO PDLint
sf

?

Any FO formula Φ(x1, . . . , xn) is equivalent to a finite positive
boolean combination of formulas of the form πFO(xi, xj),
where π ∈ PDLint

sf .

Proof: by induction on Φ.

I
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−1
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Conclusion
I Over linearly ordered structures with interval-preserving

binary relations,

FO = PDLsf = FO3

I Covers many classical classes of structures: linear orders,
real-time signals, MSCs, . . .

I Star-free PDL is a useful technical tool, but also an
interesting logic on its own.

Further directions:
I Generalizations to ther types of orders (trees. . . ),

relations of arity > 2?

I Uniform approach for proving completeness of temporal
logics?

Thank you!
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