$FO = FO^3$ for Linear Orders with Monotone Binary Relations

Marie Fortin

University of Liverpool

YR-OWLS, June 16, 2020

How many variables are needed in first-order logic ?

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

$$\exists x_1. \exists x_2. \exists x_3. \exists x_4. \ \bigwedge_{1 \le i < j \le 4} x_i \neq x_j \qquad \begin{array}{c} x_3 & & \\ \bullet & x_1 \\ \bullet & \bullet \\ \bullet & \bullet \end{array}$$

but not in every class of models:

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

• ... but not in every class of models: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

$$\exists x_1. \exists x_2. \exists x_3. \exists x_4. \ \bigwedge_{1 \leq i < j \leq 4} x_i \neq x_j \qquad \begin{array}{c} x_3 & & \\ \bullet & x_1 \\ \bullet & & \\$$

• ... but not in every class of models: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

• ... but not in every class of models: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

▶ ... but not in every class of models: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

► ... but not in every class of models: $\exists x. \exists y. (x < y \land \exists x. (y < x \land \exists y. x < y))$

How many variables are needed in first-order logic ?

Some properties require unboundedly many variables

Over linear orders, $FO = FO^3$.

Why do we care about the number of variables?

Why do we care about the number of variables?

(Descriptive) complexity

Why do we care about the number of variables?

- (Descriptive) complexity
- Temporal logics

Why do we care about the number of variables?

- (Descriptive) complexity
- Temporal logics

[Gabbay 1981] In any class of time flows, TFAE:

- There exists an expressively complete finite set of FO-definable (multi-dimensional) temporal connectives
- There exists k such that every first-order sentence is equivalent to one with at most k variables

Over linear orders,
$$FO = FO^3$$
.

Two classical techniques to prove $FO = FO^k$ (over a class C)

Two classical techniques to prove $\mathsf{FO} = \mathsf{FO}^k$ (over a class \mathcal{C})

1. Corollary of expressive completeness of a temporal logic

Two classical techniques to prove $FO = FO^k$ (over a class C)

1. Corollary of expressive completeness of a temporal logic **Example:** Over complete linear orders, $FO^3 \subseteq FO = LTL \subseteq FO^3$ [Kamp 1968]

Two classical techniques to prove $FO = FO^k$ (over a class C)

1. Corollary of expressive completeness of a temporal logic

Example: Over complete linear orders, $FO^3 \subseteq FO = LTL \subseteq FO^3$ [Kamp 1968]

> Over (arbitrary) linear orders, $FO^3 \subseteq FO = LTL$ with Stavi connectives $\subseteq FO^3$ [Gabbay, Hodkinson, Reynolds 1993]

Two classical techniques to prove $FO = FO^k$ (over a class C)

- 1. Corollary of expressive completeness of a temporal logic
- 2. Ehrenfeucht-Fra $\ddot{s}s\acute{e}$ games with k pebbles

Two classical techniques to prove $FO = FO^k$ (over a class C)

- 1. Corollary of expressive completeness of a temporal logic
- 2. Ehrenfeucht-Fraïssé games with k pebbles

Example: Over complete linear orders, $FO = FO^3$ [Immerman, Kozen 1989]

Two classical techniques to prove $FO = FO^k$ (over a class C)

- 1. Corollary of expressive completeness of a temporal logic 0 or 1 free variables
- 2. Ehrenfeucht-Fraïssé games with k pebbles up to k free variables

Over linear orders, $FO = FO^3$ [Immerman-Kozen'89]

Over linear orders, $FO = FO^3$ [Immerman-Kozen'89]

Over linear orders, $FO = FO^3$ \checkmark [Immerman-Kozen'89]

Over linear orders, FO = FO³ ✓ [Immerman-Kozen'89]

Over linear orders, $FO = FO^3$ [Immerman-Kozen'89]

Over ordered graphs,

$$\forall k, FO \neq FO^{k}$$

[Rossman'08]

Over ($\mathbb{R}, <, +1$),
 $FO = FO^{3}$
[AHRW'15]

Over MSCs,
 $FO = FO^{3}$
[Gastin-Mukund'02]

 \checkmark

Dver MSCs,
 $FO = FO^{3}$
[Bollig-F.-Gastin'18]

Over linear orders, FO = FO³ [Immerman-Kozen'89]

What happens if we have additional binary relations?

What do these 4 positive results have in common?

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(\operatorname{Im}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(\operatorname{Im}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(\operatorname{Im}(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

 $FO = FO^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

- R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

A special case: monotone partial functions

Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.
Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.

Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.

Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.

Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.

Any relation ${\cal R}$ corresponding to a monotone partial function is interval-preserving.

- R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

- ▶ R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

- ▶ R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

- ▶ R(I) is an interval of $(Im(R), \leq)$
- $R^{-1}(I)$ is an interval of $(\operatorname{dom}(R), \leq)$

- $\mathsf{FO}=\mathsf{FO}^3 \text{ over}$
- 1. Linear orders with partial non-decreasing or non-increasing functions (new)

 $\mathsf{FO}=\mathsf{FO}^3 \text{ over}$

- 1. Linear orders with partial non-decreasing or non-increasing functions (new)
- 2. Linear orders: finite or infinite words, \mathbb{R} , \mathbb{Q} , ordinals...

 $\mathsf{FO}=\mathsf{FO}^3 \text{ over}$

- 1. Linear orders with partial non-decreasing or non-increasing functions (new)
- 2. Linear orders: finite or infinite words, \mathbb{R} , \mathbb{Q} , ordinals...
- 3. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...

 $\mathsf{FO}=\mathsf{FO}^3 \text{ over}$

- 1. Linear orders with partial non-decreasing or non-increasing functions (new)
- 2. Linear orders: finite or infinite words, \mathbb{R} , \mathbb{Q} , ordinals...
- 3. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 4. (\mathbb{R}, \leq) + polynomial functions (new)

5. Message sequence charts (MSCs)

5. Message sequence charts (MSCs)

5. Message sequence charts (MSCs)

5. Message sequence charts (MSCs)

Executions of message-passing systems

Fixed, finite set of processes

5. Message sequence charts (MSCs)

- Fixed, finite set of processes
- ▶ Process order ≤_{proc}

5. Message sequence charts (MSCs)

- Fixed, finite set of processes
- ▶ Process order ≤_{proc}
- ► Message relations <_p,q</p>

5. Message sequence charts (MSCs)

- Fixed, finite set of processes
- ▶ Process order ≤_{proc}
- ► Message relations ⊲_{p,q}

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- ▶ Process order ≤_{proc}
- ► Message relations ⊲_{p,q}

Extended to a linear order

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Process order \leq_{proc}
- ► Message relations ⊲_{p,q}

 $\begin{array}{l} \mbox{Extended to a linear order} \\ \mbox{FIFO} \rightarrow \mbox{monotone} \end{array}$

5. Message sequence charts (MSCs)

Executions of message-passing systems

- Fixed, finite set of processes
- Extended to a linear order • Process order \leq_{proc}
- Message relations $\triangleleft_{p,q}$

 $FIFO \rightarrow monotone$

 \rightarrow Interval-preserving structure

 $\mathsf{FO} = \mathsf{FO}^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots
- 1. Linear orders with partial non-decreasing or non-increasing functions (new)
- 2. Linear orders: finite or infinite words, $\mathbb{R},$ $\mathbb{Q},$ ordinals...
- 3. $(\mathbb{R}, \leq, +1)$, $(\mathbb{R}, \leq, (+q)_{q \in \mathbb{Q}})$...
- 4. (\mathbb{R}, \leq) + polynomial functions (new)
- 5. MSCs
- 6. Mazurkiewicz traces

$$\begin{aligned} \varphi(x_1, x_2, x_3) &= \exists y. \, R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y) \\ &\equiv \left(\exists y. \, R_1(x_1, y) \land R_2(x_2, y) \land \right) \land \\ \left(\exists y. \, R_1(x_1, y) \land R_3(x_3, y) \land \right) \land \\ \left(\exists y. \, R_2(x_2, y) \land R_2(x_3, y) \land \right) \end{aligned}$$

$$\varphi(x_1, x_2, x_3) = \exists y. R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y)$$
$$\equiv \left(\exists y. R_1(x_1, y) \land R_2(x_2, y) \land \exists x. R_3(x, y)\right) \land$$
$$\left(\exists y. R_1(x_1, y) \land R_3(x_3, y) \land \exists x. R_2(x, y)\right) \land$$
$$\left(\exists y. R_2(x_2, y) \land R_2(x_3, y) \land \exists x. R_1(x, y)\right)$$

$$\begin{array}{c|cccc}
R_3(x_3) & R_1(x_1) \\
\hline
R_2(x_2) & y \\
\hline
\end{array}$$
Equivalent FO³ formula?

$$\begin{aligned} \varphi(x_1, x_2, x_3) &= \exists y. \ R_1(x_1, y) \land R_2(x_2, y) \land R_3(x_3, y) \\ &\equiv \left(\exists x_3. \ R_1(x_1, x_3) \land R_2(x_2, x_3) \land \exists x_1. \ R_3(x_1, x_3) \right) \land \\ &\left(\exists x_2. \ R_1(x_1, x_2) \land R_3(x_3, x_2) \land \exists x_1. \ R_2(x_1, x_2) \right) \land \\ &\left(\exists x_1. \ R_2(x_2, x_1) \land R_2(x_3, x_1) \land \exists x_2. \ R_1(x_2, x_1) \right) \end{aligned}$$

$$\begin{array}{c|c}
R_3(x_3) & R_1(x_1) \\
\hline
R_2(x_2) & y \\
\hline
\end{array}$$
Equivalent FO³ formula?

The proof

 $\mathsf{FO}=\mathsf{FO}^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

The proof

 $\mathsf{FO}=\mathsf{FO}^3$ over structures with

- ▶ one linear order ≤,
- "interval-preserving" binary relations R_1, R_2, \ldots ,
- arbitrary unary predicates p, q, \ldots

Key idea: Go through an intermediate language: Star-free Propositional Dynamic Logic.

Star-free Propositional Dynamic Logic

Examples

Star-free Propositional Dynamic Logic Examples

Over $(\mathbb{R}, <, \{+q \mid q \in \mathbb{Q}_+\})$, $\varphi \cup_{(q,r)} \psi \equiv$

Over
$$(\mathbb{R}, <, \{+q \mid q \in \mathbb{Q}_+\})$$
,
 $\varphi \cup_{(q,r)} \psi \equiv \langle (+q \cdot <) \cap (+r \cdot <^{-1}) \cap (< \cdot \{\neg \varphi\}? \cdot <)^{\mathsf{c}} \rangle \psi$

Star-free Propositional Dynamic Logic Syntax

 State formulas:
 $\varphi ::= P \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$ PI

 Path formulas:
 $\pi ::= \leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cup \pi \mid \pi^{c}$ PI

Star-free Propositional Dynamic Logic Syntax

 State formulas:

 $\varphi ::= P \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$

 Path formulas:

 $\pi ::= \leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cup \pi \mid \pi^{c}$

Combines features from

- Propositional Dynamic Logic [Fisher-Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Star-free Propositional Dynamic Logic Syntax

State formulas: $\varphi ::= P \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$ Path formulas: $\pi ::= \leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cup \pi \mid \pi^{c}$

Combines features from

- Propositional Dynamic Logic [Fisher-Ladner 1979]
- Star-free regular expressions
- The calculus of relations

Theorem: [Tarski-Givant 1987 (calculus of relations)] PDL_{sf} and FO^3 are expressively equivalent

A fragment of Star-free PDL

A fragment of Star-free PDL

State formulas:

$$\varphi ::= P \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$$
 PDL_{sf}

 Path formulas:
 $\pi ::= \leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cup \pi \mid \pi^{c}$
 PDL_{sf}

$$\pi ::= \leq |R| \{\varphi\}? |\pi^{-1}| \pi \cdot \pi |\pi \cap \pi|$$
$$(\leq \cdot \pi \cdot \leq)^{c} |(\leq \cdot \pi \cdot \geq)^{c}|$$
$$(\geq \cdot \pi \cdot \leq)^{c} |(\geq \cdot \pi \cdot \geq)^{c}$$

 $\mathsf{PDL}^{\mathsf{int}}_{\mathsf{sf}}$

A fragment of Star-free PDL

State formulas:

$$\varphi ::= P \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle \pi \rangle \varphi$$
 PDLsf

 Path formulas:
 $\pi ::= \leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cup \pi \mid \pi^{c}$

$$\begin{aligned} \pi ::= &\leq \mid R \mid \{\varphi\}? \mid \pi^{-1} \mid \pi \cdot \pi \mid \pi \cap \pi \mid \\ & (\leq \cdot \pi \cdot \leq)^{c} \mid (\leq \cdot \pi \cdot \geq)^{c} \mid \\ & (\geq \cdot \pi \cdot \leq)^{c} \mid (\geq \cdot \pi \cdot \geq)^{c} \end{aligned} \mathsf{PDL}_{\mathsf{sf}}^{\mathsf{int}}$$

Lemma: $\forall \pi \in \mathsf{PDL}_{\mathsf{sf}}^{\mathsf{int}}$, $\llbracket \pi \rrbracket$ is interval-preserving

▶ State formula $\varphi \in \mathsf{PDL}_{\mathsf{sf}} \quad \rightsquigarrow \quad \varphi^{\mathsf{FO}}(x) \in \mathsf{FO}$

▶ Path formula $\pi \in \mathsf{PDL}_{\mathsf{sf}} \quad \rightsquigarrow \quad \pi^{\mathsf{FO}}(x, y) \in \mathsf{FO}$

► State formula $\varphi \in \mathsf{PDL}_{\mathsf{sf}} \quad \rightsquigarrow \quad \varphi^{\mathsf{FO}}(x) \in \mathsf{FO}$ $\langle \pi \rangle \varphi \quad \rightsquigarrow \quad \exists y. \pi^{\mathsf{FO}}(x, y) \land \varphi^{\mathsf{FO}}(y)$

▶ Path formula $\pi \in \mathsf{PDL}_{\mathsf{sf}} \quad \leadsto \quad \pi^{\mathsf{FO}}(x, y) \in \mathsf{FO}$

 $\pi_1 \cdot \pi_2 \quad \leadsto \quad \exists z. \pi_1^{\mathsf{FO}}(x, z) \land \pi_2^{\mathsf{FO}}(z, y)$

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

Atomic formulas, disjunction: easy

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

► Negation: Express π^{c} using $(\leq \cdot \pi \cdot \leq)^{c}$, $(\leq \cdot \pi \cdot \geq)^{c}$, $(\geq \cdot \pi \cdot \leq)^{c}$, $(\geq \cdot \pi \cdot \geq)^{c}$.

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

• Existential quantification: Similar to the example before.

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

• Existential quantification: Similar to the example before. $\exists x. \bigwedge_i \pi_i^{\text{FO}}(x_i, x)$

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{\text{FO}}(x_i, x_j)$, where $\pi \in \text{PDL}_{sf}^{\text{int}}$.

Proof: by induction on Φ .

• Existential quantification: Similar to the example before.

$$\underbrace{\exists x. \bigwedge_i \pi_i^{\mathsf{FO}}(x_i, x)}_{}$$

intersection of n intervals

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{FO}(x_i, x_j)$, where $\pi \in PDL_{sf}^{int}$.

Proof: by induction on Φ .

• Existential quantification: Similar to the example before.

$$\underbrace{\exists x. \bigwedge_i \pi_i^{\mathsf{FO}}(x_i, x)}_{}$$

intersection of \boldsymbol{n} intervals

Any FO formula $\Phi(x_1, \ldots, x_n)$ is equivalent to a finite positive boolean combination of formulas of the form $\pi^{FO}(x_i, x_j)$, where $\pi \in \mathsf{PDL}_{sf}^{int}$.

Proof: by induction on Φ .

• Existential quantification: Similar to the example before.

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

 Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

Further directions:

▶ Generalizations to ther types of orders (trees...), relations of arity > 2?

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

Further directions:

- ▶ Generalizations to ther types of orders (trees...), relations of arity > 2?
- Uniform approach for proving completeness of temporal logics?

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

Further directions:

- ▶ Generalizations to ther types of orders (trees...), relations of arity > 2?
- Uniform approach for proving completeness of temporal logics?

 Over linearly ordered structures with interval-preserving binary relations,

$$\mathsf{FO}=\mathsf{PDL}_{\mathsf{sf}}=\mathsf{FO}^3$$

- Covers many classical classes of structures: linear orders, real-time signals, MSCs, ...
- Star-free PDL is a useful technical tool, but also an interesting logic on its own.

Further directions:

- ▶ Generalizations to ther types of orders (trees...), relations of arity > 2?
- Uniform approach for proving completeness of temporal logics?

Thank you!