Relation algebra
 Decidability \& Axiomatizability

YR-OWLS

July $1^{\text {st }} 2020$

Amina Doumane
CNRS- ENS Lyon

Binary relations are everywhere

- Graph theory
- Semantics of imperative programs
- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs
- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;
inst2;
```

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;}
inst2;
```

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;}
inst2;
```

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;\leftarrow
inst2;
```

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;
inst2;\leftarrow
```


- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

```
inst1;
inst2;
```

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs

$$
\begin{aligned}
& \text { inst1; } \\
& \text { inst2; }
\end{aligned}
$$

$$
x \leftarrow 1 ;(y \leftarrow x) \oplus(y \leftarrow 0) ; \quad a \cdot(b \cup c)
$$

- Foundations of mathematics

Binary relations are everywhere

- Graph theory

$$
R \subseteq E \times E
$$

- Semantics of imperative programs
inst1
inst2

$$
x \leftarrow 1 ;(y \leftarrow x) \oplus(y \leftarrow 0) ; \quad a \cdot(b \cup c)
$$

- Foundations of mathematics

Two binary relations	ϵ (membership), 1 (identity)
Operations	\cup (union), \cdot (composition), ${ }^{\circ}$ (converse), ${ }^{c}$ (complement)
Sentences	$e=f$

Relation algebra

Relational Operators	
identity relation	$:$
empty relation	$:$
composition	$: R \cdot S$
union	$: R \cup S$
intersection	$: R \cap S$
trans. closure	$: R^{+}$
converse	$: R^{\complement}$
complement	$:$
R^{c}	

Relation algebra and their universal laws

Relational Operators	
identity relation	$:$
empty relation	$:$
composition	$: R \cdot S$
union	$: R \cup S$
intersection	$: R \cap S$
trans. closure	$:$
converse	$: R^{+}$
complement	$:$
R^{C}	

Relation algebra and their universal laws

Relational Operators		
identity relation	\vdots	1
empty relation	\vdots	0
composition	$\vdots R \cdot S$	
union	$: R \cup S$	
intersection	$\vdots R \cap S$	
trans. closure	\vdots	R^{+}
converse	\vdots	R^{C}
complement	\vdots	R^{c}

Decidability and Axiomatizability

Deciding the equational theory of Relation Algebra

Decidability problem

```
Input: Expressions e and f.
Output: Is Rel \modelse=f a universal law?
```


Deciding the equational theory of Relation Algebra

Decidability problem

Input: Expressions e and f.
Output: Is $\operatorname{Rel} \models e=f$ a universal law?

Deciding the equational theory of Relation Algebra

Decidability problem

Input: Expressions e and f. Output: Is $\operatorname{Rel} \models e=f$ a universal law?

EXPSPACE-complete (Nakamura 16)

Deciding the equational theory of Relation Algebra

Decidability problem

Input: Expressions e and f. Output: Is $\operatorname{Rel} \models e=f$ a universal law?

EXPSPACE-complete (Brunet \& Pous 15)

Deciding the equational theory of Relation Algebra

Decidability problem

Input: Expressions e and f.
Output: Is $\operatorname{Rel} \models e=f$ a universal law?

PSPACE-complete (Kozen 94)

Deciding the equational theory of Relation Algebra

Decidability problem

Input: Expressions e and f.
Output: Is $\operatorname{Rel} \models e=f$ a universal law?

Axiomatizing the equational theory of Relation Algebra

Axiomatization

- A set of axioms of the form

$$
e=f \quad \text { or } \quad e=f \Rightarrow g=h
$$

- Deduction rules

$$
e=f \wedge f=g \Rightarrow e=g \quad \text { and } \quad e=f \Rightarrow e \sigma=f \sigma
$$

Axiomatizing the equational theory of Relation Algebra

Axiomatization

- A set of axioms of the form

$$
e=f \quad \text { or } \quad e=f \Rightarrow g=h
$$

- Deduction rules

$$
e=f \wedge f=g \Rightarrow e=g \quad \text { and } \quad e=f \Rightarrow e \sigma=f \sigma
$$

Axiomatizing the equational theory of Relation Algebra

Axiomatization

- A set of axioms of the form

$$
e=f \quad \text { or } \quad e=f \Rightarrow g=h
$$

- Deduction rules

$$
e=f \wedge f=g \Rightarrow e=g \quad \text { and } \quad e=f \Rightarrow e \sigma=f \sigma
$$

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Axiomatizing the equational theory of Relation Algebra

Axiomatization

- A set of axioms of the form

$$
e=f \quad \text { or } \quad e=f \Rightarrow g=h
$$

- Deduction rules

$$
e=f \wedge f=g \Rightarrow e=g \quad \text { and } \quad e=f \Rightarrow e \sigma=f \sigma
$$

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

- Solve hard instances by hand
- Gives certificates

Axiomatizing the equational theory of Relation Algebra

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Quasi-axiomatizable (Kozen 94)

Axiomatizing the equational theory of Relation Algebra

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Quasi-axiomatizable (D. \& Pous 19)

Axiomatizing the equational theory of Relation Algebra

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Non-axiomatizable (D. \& Pous 20)

Axiomatizing the equational theory of Relation Algebra

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Overview on Kleene Algebra

KA expressions \& languages

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KA expressions

$$
e, f \in::=1|a| e \cdot f|e \cup f| e^{+}
$$

KA expressions \& languages

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KA expressions

$$
e, f \in::=1|a| e \cdot f|e \cup f| e^{+}
$$

Language of a regular expression $\mathcal{L}(e)$

$$
\begin{array}{ll}
\mathcal{L}(a \cdot(b \cup c))=\{a b, a c\} & \mathcal{L}(a \cdot 1)=\{a\} \\
\mathcal{L}\left(a^{+}\right)=\{a, a a, \ldots\} &
\end{array}
$$

KA expressions \& languages
Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KA expressions

$$
e, f \in::=1|a| e \cdot f|e \cup f| e^{+}
$$

Language of a regular expression $\mathcal{L}(e)$

$$
\begin{array}{ll}
\mathcal{L}(a \cdot(b \cup c))=\{a b, a c\} & \mathcal{L}(a \cdot 1)=\{a\} \\
\mathcal{L}\left(a^{+}\right)=\{a, a a, \ldots\} &
\end{array}
$$

Theorem (Pratt 1980)

$$
\operatorname{Rel} \models e \subseteq f \Leftrightarrow \mathcal{L}(e) \subseteq \mathcal{L}(f)
$$

Axiomatization

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of $\cup, \cdot, 1$.
- Two axioms describing the behaviour of ${ }^{+}$:

$$
\begin{gathered}
f \cdot e \cup f \subseteq f \quad \Rightarrow \quad f \cdot e^{+} \cup f \subseteq f \\
e \cup e \cdot e^{+} \subseteq e^{+}
\end{gathered}
$$

We write $K A \vdash e \subseteq f$

if $e \subseteq f$ follows from the axioms of Kleene Algebra.

Theorem (Kozen 1994)

$$
\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad K A \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of $\cup, \cdot, 1$.
- Two axioms describing the behaviour of ${ }^{+}$:

$$
\begin{gathered}
f \cdot e \cup f \subseteq f \Rightarrow \quad f \cdot e^{+} \cup f \subseteq f \\
e \cup e \cdot e^{+} \subseteq e^{+}
\end{gathered}
$$

We write $K A \vdash e \subseteq f$

if $e \subseteq f$ follows from the axioms of Kleene Algebra.

Dexter Kozen

Theorem (Soundness)

$$
\operatorname{Rel} \models e \subseteq f \quad \Leftarrow \quad K A \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of $\cup, \cdot, 1$.
- Two axioms describing the behaviour of ${ }^{+}$:

$$
\begin{gathered}
f \cdot e \cup f \subseteq f \Rightarrow \quad f \cdot e^{+} \cup f \subseteq f \\
e \cup e \cdot e^{+} \subseteq e^{+}
\end{gathered}
$$

We write $K A \vdash e \subseteq f$

if $e \subseteq f$ follows from the axioms of Kleene Algebra.

Dexter Kozen

Theorem (Completeness)

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad K A \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of $\cup, \cdot, 1$.
- Two axioms describing the behaviour of ${ }^{+}$:

$$
\begin{gathered}
f \cdot e \cup f \subseteq f \Rightarrow f \cdot e^{+} \cup f \subseteq f \\
e \cup e \cdot e^{+} \subseteq e^{+}
\end{gathered}
$$

We write $K A \vdash e \subseteq f$
if $e \subseteq f$ follows from the axioms of Kleene Algebra.
Theorem (Completeness)

$$
\operatorname{Rel}=e \subseteq f \quad \Leftrightarrow \quad \mathcal{L}(e) \subseteq \mathcal{L}(f) \quad \Rightarrow \quad K A \vdash e \subseteq f
$$

Dexter Kozen

Identity-free Kleene Lattices

KL^{-}expressions \& languages

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KL- expressions

$$
e, f \in::=1|a| e \cdot f|\mathbf{e} \cap \mathbf{f}| e \cup f \mid e^{+}
$$

KL^{-}expressions \& languages
Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KL- expressions

$$
e, f \in::=1|a| e \cdot f|\mathbf{e} \cap \mathbf{f}| e \cup f \mid e^{+}
$$

Language characterization

$$
\operatorname{Rel} \models e \subseteq f \Leftrightarrow \mathcal{L}(e) \subseteq \mathcal{L}(f)
$$

KL^{-}expressions \& languages
Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KL- expressions

$$
e, f \in::=1|a| e \cdot f|\mathbf{e} \cap \mathbf{f}| e \cup f \mid e^{+}
$$

Language characterization

$$
\operatorname{Rel} \models e \subseteq f \nLeftarrow \mathcal{L}(e) \subseteq \mathcal{L}(f)
$$

KL^{-}expressions \& languages
Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
KL- expressions

$$
e, f \in::=1|a| e \cdot f|\mathbf{e} \cap \mathbf{f}| e \cup f \mid e^{+}
$$

Language characterization

$$
\operatorname{Rel} \models e \subseteq f \nLeftarrow \mathcal{L}(e) \subseteq \mathcal{L}(f)
$$

$$
\mathcal{L}(a \cap b) \subseteq \mathcal{L}(c) \quad \text { but } \quad \operatorname{Rel} \mid \neq a \cap b \subseteq c
$$

KL^{-}expressions \& languages

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

KL- expressions

$$
e, f \in::=1|a| e \cdot f|\mathbf{e} \cap \mathbf{f}| e \cup f \mid e^{+}
$$

Language characterization

$$
\operatorname{Rel} \models e \subseteq f \nLeftarrow \mathcal{L}(e) \subseteq \mathcal{L}(f)
$$

$$
\mathcal{L}(a \cap b) \subseteq \mathcal{L}(c) \quad \text { but } \quad \operatorname{Rel} \mid \neq a \cap b \subseteq c
$$

Another notion of language is needed!

Language of a KL^{-}expression

Graph language of an expression $\mathcal{G}(e)$

$$
\begin{aligned}
& G \text { (a) } \\
& =\{\rightarrow \xrightarrow{a} 0 \rightarrow\} \\
& G(a \cdot b) \\
& =\{\rightarrow 0 \xrightarrow{a} 0 \xrightarrow{b} 0\} \\
& \mathcal{G}(a \cap b) \\
& =\left\{\rightarrow 0{\underset{b}{a}}_{a}^{a}\right\} \\
& \mathcal{G}(a . b \cup a \cap b)= \\
& =a \quad b
\end{aligned}
$$

Characterization theorem

$$
\operatorname{Rel} \models e \subseteq f \Leftrightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f)
$$

Characterization theorem

$$
\operatorname{Rel} \vDash e \subseteq f \nRightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f)
$$

Characterization theorem

$$
\begin{aligned}
& \text { Rel } \vDash e \subseteq f \nRightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f) \\
& \operatorname{Rel} \models(a \cap b) \cdot c \subseteq(a \cdot c) \cap(b \cdot c) \\
& (a \cdot c) \cap(b \cdot c) \\
& \{\longrightarrow \text { - } \\
& (a \cap b) \cdot c
\end{aligned}
$$

Characterization theorem

$$
\operatorname{Rel} \models e \subseteq f \nRightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f)
$$

$$
\operatorname{Rel} \models(a \cap b) \cdot c \subseteq(a \cdot c) \cap(b \cdot c)
$$

Characterization theorem

$$
\operatorname{Rel} \models e \subseteq f \nRightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f)
$$

$$
\operatorname{Rel} \models(a \cap b) \cdot c \subseteq(a \cdot c) \cap(b \cdot c)
$$

Homomorphism

$(a \cdot c) \cap(b \cdot c)$

Damien Pous

Graph automata

Graph automata

Runs:

Kleene theorem \& Decidability

Theorem [Brunet \& Pous LICS 2015]

For every graph automaton P, there is an expression e such that

$$
\mathcal{G}(e)=\mathcal{G}(P)
$$

Kleene theorem \& Decidability

Theorem [Brunet \& Pous LICS 2015]

For every graph automaton P, there is an expression e such that

$$
\mathcal{G}(e)=\mathcal{G}(P)
$$

Example:

$$
(a \cap b) \cup\left(\left(a c^{+}\right) \cap b\right)
$$

Kleene theorem \& Decidability

Theorem [Brunet \& Pous LICS 2015]

For every graph automaton P, there is an expression e such that

$$
\mathcal{G}(e)=\mathcal{G}(P)
$$

Example:

$$
(a \cap b) \cup\left(\left(a c^{+}\right) \cap b\right)
$$

Theorem [Brunet \& Pous LICS 2015]

For every graph automata P, Q, the property $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$ is decidable.

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

We write $\mathrm{KL}^{-} \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

> We write $\mathrm{KL}^{-} \vdash e \subseteq f$
> if $e \subseteq f$ follows from these axioms.

Theorem [D. \& Pous 2018]

$$
\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

> We write $K L^{-} \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Correction

$$
\operatorname{Rel} \models e \subseteq f \quad \Leftarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

> We write $K L^{-} \vdash e \subseteq f$
> if $e \subseteq f$ follows from these axioms.

Completeness

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

> We write $K L^{-} \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Completeness

$$
\mathcal{G}(e) \subseteq \mathcal{G}(f) \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Axiomatization

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap.

> We write $K L^{-} \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Completeness

$$
\mathcal{G}(e) \subseteq \mathcal{G}(f) \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Weak completeness

$$
\mathcal{G}(e) \subseteq \mathcal{G}(f) \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Synchronized Kleene theorem

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$
\mathcal{G}(e)=\mathcal{G}(P), \quad \mathcal{G}(f)=\mathcal{G}(Q) \quad \text { and } \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Synchronized Kleene theorem

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$
\mathcal{G}(e)=\mathcal{G}(P), \quad \mathcal{G}(f)=\mathcal{G}(Q) \quad \text { and } \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

State elimination:

Synchronized Kleene theorem

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$
\mathcal{G}(e)=\mathcal{G}(P), \quad \mathcal{G}(f)=\mathcal{G}(Q) \quad \text { and } \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

State elimination:

Product automaton:

Synchronized Kleene theorem

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$
\mathcal{G}(e)=\mathcal{G}(P), \quad \mathcal{G}(f)=\mathcal{G}(Q) \quad \text { and } \quad \mathrm{KL}^{-} \vdash e \subseteq f .
$$

Proof:

State elimination:

Product automaton:

Synchronized Kleene theorem

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$
\mathcal{G}(e)=\mathcal{G}(P), \quad \mathcal{G}(f)=\mathcal{G}(Q) \quad \text { and } \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

State elimination:

Product automaton:

Completeness proof

Theorem

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

Rel $\models e \subseteq f$

Completeness proof

Theorem

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad K^{-} \vdash e \subseteq f
$$

Proof:

$$
\mathcal{G}(e) \subseteq \mathcal{G}(f)
$$

Completeness proof

Theorem

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

Completeness proof

Theorem

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

Completeness proof

Theorem

$$
\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathrm{KL}^{-} \vdash e \subseteq f
$$

Proof:

Semilattice monoids

SLM expressions \& languages
Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.
SLM expressions

$$
e, f \in::=a|e \cdot f| e \cap f \mid 1
$$

Graph of an expression $\mathcal{G}(e)$

$$
\begin{array}{lll}
\mathcal{G}(a \cdot b) & =\rightarrow 0 \stackrel{a}{\longrightarrow} 0 \stackrel{b}{\longrightarrow} 0 & \mathcal{G}(a \cap b)=\rightarrow \underbrace{a}_{b} \\
\mathcal{G}(1) & =\rightarrow 0 \rightarrow & \mathcal{G}(a \cap 1)=\rightarrow 0
\end{array}
$$

Characterization theorem [Freyd \& Scedrov 90]

$$
\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad \mathcal{G}(e) \triangleleft \mathcal{G}(f)
$$

Decidability \& Non-axiomatizability

Theorem

The equational theorey is decidable for SLM expressions.

Decidability \& Non-axiomatizability

Theorem

The equational theorey is decidable for SLM expressions.

Theorem [D. \& Pous 2020]

The equational theory is not axiomatizable for SLM expressions.

Degrees and n-decompositions of homomorphisms

Degrees and n-decompositions of homomorphisms

Homomorphism decomposition

Proposition [D. \& Pous 2019]
The equational theory of SLM is axiomatizable \Downarrow
$\exists n$ every homomorphism of SLM expressions is n-decomposable.

Homomorphism decomposition

Proposition [D. \& Pous 2019]

The equational theory of SLM is axiomatizable \Downarrow
$\exists n$ every homomorphism of SLM expressions is n-decomposable.

Find $\left(e_{n}, f_{n}\right)_{n \in \omega}$ SLM expressions such that:

- $h_{n}: e_{n} \rightarrow f_{n}$,
- h_{n} is not m-decomposable for every $m<n$.

The counter-example

Theorem (D. \& Pous 2019)

For every n, the following homomorphism

is not m-decomposable for every $m<n$.

Future work

- Find a general framework for decidability and axiomatizability proofs.
- What about non-quasi-axiomatizability?
- Sufficient conditions for non-axiomatizability.

Future work

- Find a general framework for decidability and axiomatizability proofs.
- What about non-quasi-axiomatizability?
- Sufficient conditions for non-axiomatizability.

Thank you for your attention !

