Relation algebra Decidability & Axiomatizability

YR-OWLS

July 1st 2020

Amina Doumane CNRS- ENS Lyon

Graph theory

Semantics of imperative programs

Graph theory

Semantics of imperative programs

Graph theory

Semantics of imperative programs

inst1;
inst2;

Graph theory

Semantics of imperative programs

Graph theory

Semantics of imperative programs

9

Graph theory

Semantics of imperative programs

用

B

Graph theory

Semantics of imperative programs

Graph theory

Semantics of imperative programs

inst1;
inst2;

Graph theory

Semantics of imperative programs

inst1; inst2;

 $x \leftarrow 1; (y \leftarrow x) \oplus (y \leftarrow 0);$ Foundations of mathematics

Graph theory

Semantics of imperative programs

inst1; inst2;

Foundations of mathematics

 $x \leftarrow 1; (y \leftarrow x) \oplus (y \leftarrow 0);$

Two binary relations	ϵ (membership), 1 (identity)			
Operations	\cup (union), \cdot (composition), $\overset{\smile}{}$ (converse), c (complement)			
Sentences	e = f			

Amina Doumane

Relation algebra

Relational Operators

identity relation	: 1
empty relation	: 0
composition	: $R \cdot S$
union	$: R \cup S$
intersection	$: R \cap S$
trans. closure	: R+
converse	: R~
complement	: R ^c

Relation algebra and their universal laws

Relational Operators

identity relation	: 1
empty relation	: 0
composition	: $R \cdot S$
union	$: R \cup S$
intersection	$: R \cap S$
trans. closure	: R+
converse	: <i>R</i> ~
complement	: R ^c

$$\operatorname{Rel} \models R \cdot (S \cdot R)^{+} = (R \cdot S)^{+} \cdot R$$
$$\operatorname{Rel} \models 1 \ \cup \ R^{*} \cdot S \ \subseteq \ (R \cup S)^{*}$$
$$\operatorname{Rel} \models (R \cap S) \cdot T \ \subseteq \ (R \cdot T) \cap (S \cdot T)$$
$$\operatorname{Rel} \not\models (R \cdot T) \cap (S \cdot T) \ \subseteq \ (R \cap S) \cdot T$$

Relation algebra and their universal laws

Relational Operators

identity relation	: 1
empty relation	: 0
composition	: $R \cdot S$
union	$: R \cup S$
intersection	$: R \cap S$
trans. closure	: R ⁺
converse	: R~
complement	: R ^c

$$\operatorname{Rel} \models R \cdot (S \cdot R)^{+} = (R \cdot S)^{+} \cdot R$$
$$\operatorname{Rel} \models 1 \ \cup \ R^{*} \cdot S \ \subseteq \ (R \cup S)^{*}$$
$$\operatorname{Rel} \models (R \cap S) \cdot T \ \subseteq \ (R \cdot T) \cap (S \cdot T)$$
$$\operatorname{Rel} \not\models (R \cdot T) \cap (S \cdot T) \ \subseteq \ (R \cap S) \cdot T$$

Decidability and **Axiomatizability**

Amina D	oumane
---------	--------

Decidability problem

Input: Expressions *e* and *f*.

Output: Is $\operatorname{Rel} \models e = f$ a universal law?

Decidability problem

Input: Expressions *e* and *f*. **Output:** Is $\operatorname{Rel} \models e = f$ a universal law?

Decidability problem

Input: Expressions *e* and *f*. **Output:** Is $\operatorname{Rel} \models e = f$ a universal law?

EXPSPACE-complete (Nakamura 16)

Amina Doumane

Decidability problem

Input: Expressions *e* and *f*. **Output:** Is $\operatorname{Rel} \models e = f$ a universal law?

EXPSPACE-complete (Brunet & Pous 15)

	Am	ina	Do	um	ane
--	----	-----	----	----	-----

Decidability problem

Input: Expressions *e* and *f*. **Output:** Is $\operatorname{Rel} \models e = f$ a universal law?

PSPACE-complete (Kozen 94)

Amina D	oumane
---------	--------

Decidability problem

Input: Expressions *e* and *f*. **Output:** Is $\operatorname{Rel} \models e = f$ a universal law?

Axiomatization

A set of axioms of the form

$$e = f$$
 or $e = f \Rightarrow g = h$

Deduction rules

$$e = f \land f = g \Rightarrow e = g$$
 and $e = f \Rightarrow e\sigma = f\sigma$

Axiomatization

A set of axioms of the form

$$e = f$$
 or $e = f \Rightarrow g = h$

Deduction rules

$$e = f \land f = g \Rightarrow e = g$$
 and $e = f \Rightarrow e\sigma = f\sigma$

Axiomatization

A set of axioms of the form

$$e = f$$
 or $e = f \Rightarrow g = h$

Deduction rules

$$e = f \land f = g \Rightarrow e = g$$
 and $e = f \Rightarrow e\sigma = f\sigma$

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Axiomatization

A set of axioms of the form

$$e = f$$
 or $e = f \Rightarrow g = h$

Deduction rules

$$e = f \land f = g \Rightarrow e = g$$
 and $e = f \Rightarrow e\sigma = f\sigma$

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

- Solve hard instances by hand
- Gives certificates

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Quasi-axiomatizable (Kozen 94)

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Quasi-axiomatizable (D. & Pous 19)

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Non-axiomatizable (D. & Pous 20)

Axiomatization problem

Find a set of (quasi-)equations axiomatizing the equational theory of relations.

Overview on Kleene Algebra

KA expressions & languages

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

KA expressions

$$e, f \in ::= 1 \mid a \mid e \cdot f \mid e \cup f \mid e^+$$

KA expressions & languages

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

KA expressions

$$e, f \in ::= 1 \mid a \mid e \cdot f \mid e \cup f \mid e^+$$

Language of a regular expression $\mathcal{L}(e)$ $\mathcal{L}(a \cdot (b \cup c)) = \{ab, ac\}$ $\mathcal{L}(a \cdot 1) = \{a\}$ $\mathcal{L}(a^+) = \{a, aa, \dots\}$

KA expressions & languages

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

KA expressions

$$e, f \in ::= 1 \mid a \mid e \cdot f \mid e \cup f \mid e^+$$

Language of a regular expression $\mathcal{L}(e)$		
$\mathcal{L}(a \cdot (b \cup c)) = \{ab, ac\}$	$\mathcal{L}(a\cdot 1) = \{a\}$	
$\mathcal{L}\left(a^{+} ight)=\left\{a$, aa, $\dots ight\}$		

Theorem (Pratt 1980)

$$\operatorname{Rel} \models e \subseteq f \iff \mathcal{L}(e) \subseteq \mathcal{L}(f)$$

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of ∪, ·, 1.
- Two axioms describing the behaviour of +:

$$\begin{array}{ccc} f \cdot e \cup f \subseteq f & \Rightarrow & f \cdot e^+ \cup f \subseteq f \\ & e \cup e \cdot e^+ \subseteq e^+ \end{array}$$

We write $KA \vdash e \subseteq f$ if $e \subseteq f$ follows from the axioms of Kleene Algebra. R

Dexter Kozen

Theorem (Kozen 1994)

$$\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad KA \vdash e \subseteq f$$

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of ∪, ·, 1.
- Two axioms describing the behaviour of +:

$$\begin{array}{ccc} f \cdot e \cup f \subseteq f & \Rightarrow & f \cdot e^+ \cup f \subseteq f \\ & e \cup e \cdot e^+ \subseteq e^+ \end{array}$$

We write $KA \vdash e \subseteq f$ if $e \subseteq f$ follows from the axioms of Kleene Algebra.

Dexter Kozen

Theorem (Soundness) Rel $\models e \subseteq f \iff KA \vdash e \subseteq f$

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of ∪, ·, 1.
- Two axioms describing the behaviour of +:

 $\begin{array}{ccc} f \cdot e \cup f \subseteq f & \Rightarrow & f \cdot e^+ \cup f \subseteq f \\ & e \cup e \cdot e^+ \subseteq e^+ \end{array}$

We write $KA \vdash e \subseteq f$ if $e \subseteq f$ follows from the axioms of Kleene Algebra.

Theorem (Completeness) Rel $\models e \subseteq f \implies KA \vdash e \subseteq f$

Dexter Kozen

Axioms of Kleene Algebra

- Axioms of an idempotent semiring decribing the behaviour of ∪, ·, 1.
- Two axioms describing the behaviour of +:

$$\begin{array}{ccc} f \cdot e \cup f \subseteq f & \Rightarrow & f \cdot e^+ \cup f \subseteq f \\ & e \cup e \cdot e^+ \subseteq e^+ \end{array}$$

We write
$$KA \vdash e \subseteq f$$

if $e \subseteq f$ follows from the axioms of Kleene Algebra.

$$\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad \mathcal{L}(e) \subseteq \mathcal{L}(f) \quad \Rightarrow \quad \mathcal{K}A \vdash e \subseteq f$$

Dexter Kozen
Identity-free Kleene Lattices

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

KL⁻ expressions

```
e, f \in := 1 | a | e \cdot f | \mathbf{e} \cap \mathbf{f} | e \cup f | e^+
```

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

 KL^- expressions

$$e, f \in = 1 | a | e \cdot f | \mathbf{e} \cap \mathbf{f} | e \cup f | e^+$$

Language characterization

$$\operatorname{Rel} \models e \subseteq f \iff \mathcal{L}(e) \subseteq \mathcal{L}(f)$$

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

 KL^- expressions

$$e, f \in = 1 | a | e \cdot f | \mathbf{e} \cap \mathbf{f} | e \cup f | e^+$$

Language characterization

$$\operatorname{Rel} \models e \subseteq f \ \not\Leftarrow \ \mathcal{L}(e) \subseteq \mathcal{L}(f)$$

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

KL⁻ expressions

$$e, f \in = 1 | a | e \cdot f | \mathbf{e} \cap \mathbf{f} | e \cup f | e^+$$

Language characterization

$$\operatorname{Rel} \models e \subseteq f \ \notin \ \mathcal{L}(e) \subseteq \mathcal{L}(f)$$

 $\mathcal{L}(a \cap b) \subseteq \mathcal{L}(c)$ but $\operatorname{Rel} \not\models a \cap b \subseteq c$

Let $\Sigma = \{a, b, ...\}$ be a finite alphabet.

KL⁻ expressions

$$e, f \in ::= 1 \mid a \mid e \cdot f \mid \mathbf{e} \cap \mathbf{f} \mid e \cup f \mid e^+$$

Language characterization

$$\operatorname{Rel} \models e \subseteq f \ \notin \ \mathcal{L}(e) \subseteq \mathcal{L}(f)$$

 $\mathcal{L}(a \cap b) \subseteq \mathcal{L}(c)$ but $\operatorname{Rel} \not\models a \cap b \subseteq c$

Another notion of language is needed!

Amina Doumane

Relation Algebra

Language of a KL⁻ expression

Graph language of an expression $\mathcal{G}(e)$

$$\operatorname{Rel} \models e \subseteq f \iff \mathcal{G}(e) \subseteq \mathcal{G}(f)$$

$$\operatorname{Rel} \models e \subseteq f \not\Rightarrow \mathcal{G}(e) \subseteq \mathcal{G}(f)$$

$$\operatorname{Rel} \models e \subseteq f \ \Rightarrow \ \mathcal{G}(e) \subseteq \mathcal{G}(f)$$
$$\operatorname{Rel} \models (a \cap b) \cdot c \ \subseteq \ (a \cdot c) \cap (b \cdot c)$$

Amina Doumane

Relation Algebra

Graph automata

Runs:

Kleene theorem & Decidability

Theorem [Brunet & Pous LICS 2015]

For every graph automaton P, there is an expression e such that

 $\mathcal{G}(e)=\mathcal{G}(P)$

Kleene theorem & Decidability

Theorem [Brunet & Pous LICS 2015]

For every graph automaton P, there is an expression e such that

 $\mathcal{G}(e)=\mathcal{G}(P)$

Example:

 $(a \cap b) \cup ((ac^+) \cap b)$

Kleene theorem & Decidability

Theorem [Brunet & Pous LICS 2015]

For every graph automaton P, there is an expression e such that

 $\mathcal{G}(e)=\mathcal{G}(P)$

Example:

$$(a \cap b) \cup ((ac^+) \cap b)$$

Theorem [Brunet & Pous LICS 2015]

For every graph automata P, Q, the property $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$ is decidable.

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of \cup, \cap .

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of ∪, ∩.

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Theorem [D. & Pous 2018]

$$\operatorname{Rel} \models e \subseteq f \quad \Leftrightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of ∪, ∩.

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Correction

$$\operatorname{Rel} \models e \subseteq f \quad \Leftarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of ∪, ∩.

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Completeness

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of ∪, ∩.

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Completeness

$$\mathcal{G}(e) \subseteq \mathcal{G}(f) \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Axioms of Kleene lattices

- Axioms of Kleene algebra.
- Axioms os a distributive lattice describing the behavior of ∪, ∩.

We write $KL^- \vdash e \subseteq f$ if $e \subseteq f$ follows from these axioms.

Completeness

$$\mathcal{G}(e) \stackrel{\blacktriangleleft}{\subseteq} \mathcal{G}(f) \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Weak completeness

$$\mathcal{G}(e) \subseteq \mathcal{G}(f) \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Amina Doumane

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

 $\mathcal{G}(e) = \mathcal{G}(P), \quad \mathcal{G}(f) = \mathcal{G}(Q) \quad \text{and} \quad \mathsf{KL}^- \vdash e \subseteq f.$

Theorem

If P and Q are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions e and f such that:

$$\mathcal{G}(e) = \mathcal{G}(P), \quad \mathcal{G}(f) = \mathcal{G}(Q) \quad \text{and} \quad \mathsf{KL}^- \vdash e \subseteq f.$$

Proof:

State elimination:

$$(S \xrightarrow{B_1} T) \sim (S \xrightarrow{B_1 + B_2} T) \qquad (S \xrightarrow{A} \xrightarrow{B} T) \xrightarrow{C} U \sim (S \xrightarrow{A,B^*,C} T)$$

Theorem

If *P* and *Q* are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions *e* and *f* such that:

$$\mathcal{G}(e) = \mathcal{G}(P), \quad \mathcal{G}(f) = \mathcal{G}(Q) \quad \text{and} \quad \mathsf{KL}^- \vdash e \subseteq f.$$

Proof:

State elimination:

Product automaton:

Theorem

If *P* and *Q* are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions *e* and *f* such that:

$$\mathcal{G}(e) = \mathcal{G}(P), \quad \mathcal{G}(f) = \mathcal{G}(Q) \quad \text{and} \quad \mathsf{KL}^- \vdash e \subseteq f.$$

Proof:

State elimination:

Product automaton:

Theorem

If *P* and *Q* are graph automata such that $\mathcal{G}(P) \subseteq \mathcal{G}(Q)$, then there are two expressions *e* and *f* such that:

$$\mathcal{G}(e) = \mathcal{G}(P), \quad \mathcal{G}(f) = \mathcal{G}(Q) \quad \text{and} \quad \mathsf{KL}^- \vdash e \subseteq f.$$

Proof:

State elimination:

Product automaton:

Theorem

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

e Rel $\models e \subseteq f$	f
---------------------------------	---

Theorem

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Theorem

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Theorem

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Theorem

$$\operatorname{Rel} \models e \subseteq f \quad \Rightarrow \quad \mathsf{KL}^- \vdash e \subseteq f$$

Semilattice monoids

SLM expressions & languages

Let $\Sigma = \{a, b, \dots\}$ be a finite alphabet.

SLM expressions

$$e, f \in ::= a \mid e \cdot f \mid e \cap f \mid 1$$

Characterization theorem [Freyd & Scedrov 90]

$$\operatorname{Rel} \models e \subseteq f \qquad \Leftrightarrow \qquad \mathcal{G}(e) \blacktriangleleft \mathcal{G}(f)$$

Amina Doumane

Relation Algebra

Decidability & Non-axiomatizability

Theorem

The equational theorey is decidable for SLM expressions.
Decidability & Non-axiomatizability

Theorem

The equational theorey is decidable for SLM expressions.

Theorem [D. & Pous 2020]

The equational theory is not axiomatizable for SLM expressions.

Degrees and *n*-decompositions of homomorphisms

Degrees and *n*-decompositions of homomorphisms

Homomorphism decomposition

Proposition [D. & Pous 2019]

The equational theory of SLM is axiomatizable \Downarrow $\exists n$ every homomorphism of SLM expressions is *n*-decomposable.

Homomorphism decomposition

Proposition [D. & Pous 2019]

The equational theory of SLM is axiomatizable \Downarrow $\exists n \text{ every homomorphism of SLM expressions is } n\text{-decomposable.}$

Find $(e_n, f_n)_{n \in \omega}$ SLM expressions such that:

- ▶ $h_n: e_n \to f_n$,
- h_n is not *m*-decomposable for every m < n.

The counter-example

Theorem (D. & Pous 2019)

For every n, the following homomorphism

is not *m*-decomposable for every m < n.

Future work

- Find a general framework for decidability and axiomatizability proofs.
- What about non-quasi-axiomatizability?
- Sufficient conditions for non-axiomatizability.

Future work

- Find a general framework for decidability and axiomatizability proofs.
- What about non-quasi-axiomatizability?
- Sufficient conditions for non-axiomatizability.

Thank you for your attention !