404 NOT FOUND? A QUEST FOR DTN APPLICATIONS

Jörg Ott Aalto University Comnet

MobiOpp – 16 March 2012

Roadmap

- Evolution of mobile opportunistic communication
- Applications and their characteristics
- Two case studies
- Some conclusions

What do we observe?

- We have lots of motivation for some areas
- We have specific applications in another
- We focus our tracing and modeling on a third one
- Is this sensible from an evaluation perspective?
- Do we know what we are doing?
- Need to understand what we design for

A

A note on users

- Key: user expectations!
- Governed by the Internet
 - You can get (usually) to everything that exists
 - You can get there right away
- Instant predictable outcome: result or error
 - 404 Not Found
 - Server not found

A

A note on performance

- Users aren't patient
 - If they want something, they want it now!
- Delivery times > 12h are pointless
 - You'll have WLAN before
- Delay = f(geo distance)
 - Don't try to compete with infrastructure
- Low delivery rates?

Δ

Two conclusions

Find those niche(s) where delay is acceptable (e.g., don't involve a user in the first place)

Find applications that don't keep the user waiting!

A

What does this mean?

- Applications operate invisibly in the background
- Respond immediately upon user attention
- Completeness, congruence & repeatability are not essential
- Provide best-effort value-add
- Reflect this in the UI

A

Why bother?

- No connectivity (to infrastructure) needed
- Location privacy
- Content "privacy"
- No centralized censorship
- Geographic validity
- Temporal validity
- No user identification

Some suitable applications

- Content sharing: PodNet
- Volatile sharing: SCAMPImusic
- Geographic sharing: Floating Content
- Social networking: D-Book, GridNet, PeopleInHere
- Generic cellular offloading

APP 1: FLOATING CONTENT

http://www.floating-content.net/

Floating Content

- Ad-hoc local social network-style information sharing: Digital graffiti w/o servers and infrastructure
- Leave notes, comments, photos, etc. in places
- Define reach (area of interest) and lifetime
- Prioritize contents for replication: inversely proportional to reach, size, and lifetime
- Inherently best effort

Floating API

```
label = post ((B, meta), (L, a, r, TTL), <label>)
delete (label)
<(label, meta)> = select (meta, interval)
((B, meta), (L, a, r, TTL), <label>) = get (label)
watch (meta, duration, wake-interval)

notify (<(label, meta)>)
```

A

Flea market application

- Simple auction variant using the Floating API
- A stationary seller posts offers for goods
 - Floating 500m around his position
- Pedestrians may place bids
 - Upon receiving the offer or another bid
- Effectively extends the reach of the seller
 - 50-75% of the bids make it to the seller
 - 85-95% of the highest bid value (assuming unit incr.)

Nice properties

- Simple best effort geo cooperation model
- Workable already for modestly dense scenarios
- Independent of larger-scale mobility models
- "Routing" is trivial and scalable
- Built-in DoS protection and garbage collection
- Simple API to support a range of applications

Mining

- 3000-4000 operating mines worldwide
 - Lifetime of a few years to tens of years
 - Ten to thousands of pieces of equipment per mine
 - Personnel operating in two to three shifts
- Development and production phases
 - Work cycles with specialized equipment
 - Tens of locations in various phases and stages
- Coordinating the fleet of equipment and personnel requires a robust communication in a challenging environment.

System properties

- Even a few hours delay is an improvement
- Limited degrees of freedom in mobility
- Routing is simple: Epidemic
- Cumulative data transmission + e2e ACKs
 - ACKs also serve as anti packets

A

WRAPPING UP

Mainstream vs. Niche

- Generic devices vs. specific ones
- More heterogeneity
- Implementation obstacles by design
- More security and privacy concerns
- Potential legal caveats
- Incentives or force needed?
- User studies and large scale experiments needed

Evaluation challenge: traffic

- There is lots of data on mobile user behavior...
 - ...when accessing the fixed Internet
 - ...when interacting via infrastructure
- Mobile opportunistic communication is clean slate
 - We have no real idea how they are going to be used
 - Nor which applications will emerge
 - How to make sensible assumptions about traffic load?
- Interaction of mobility and traffic generation

Concluding thoughts

- New environments → new ways of thinking
 - Doing ok on some niches
 - Gradually becoming clueful on the mainstream
- Stuff doesn't need to be complex
- Understand your applications
 - Scenarios, traffic matrices, dependencies

Perspectives

- We have enough generic routing protocols
- We don't have enough data yet
- Our understanding is not quite balanced: scenarios, node densities, modeling, implement.
- Lack of user and usability studies
- Eat (more of) our own dog food!

