

A genetic test for differential causative pathology in disease subgroups

James Liley, John Todd and Chris Wallace
Y chrlswallace © chrlswallace.github.io \boxtimes cew54@cam.ac.uk

Clinical heterogeneity in disease often ignored in GWAS

Clinical heterogeneity in disease often ignored in GWAS

Juvenile Idiopathic Arthritis is a heterogeneous family of diseases

Eng et al., 2014

Two dimensional GWAS model

μ represents population allele frequency at a given genetic variant (SNP) in each group

Test hypotheses of the form $\mu_{1}=\mu_{2}$ to derive a Z score at each SNP

Two dimensional GWAS model

Joint mixture Gaussian model of $\left(Z_{a}, Z_{d}\right)$. SNPs may fall into one of three groups:

Group 1 SNPs not associated with the disease and with the same frequency in subgroups ($\mu_{1}=\mu_{C}=\mu_{2}$)
Group 2 SNPs associated with the disease, but with the same frequency in subgroups ($\mu_{1}=\mu_{2} \neq \mu_{C}$)
Group 3 SNPs with different frequencies in subgroups $\left(\mu_{1} \neq \mu_{2}\right)$

Group 1: $\mu_{C}=\mu_{1}=\mu_{2}$

Z_{a}, Z_{d} both $\sim N(0,1)$, and are independent.

$$
\binom{Z_{d}}{Z_{a}} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

Group 2: $\mu_{C} \neq \mu_{1}=\mu_{2}$

Assume that underlying case-control effect sizes $\log O R\left(\mu_{C}, \mu_{12}\right)$ are normally distributed with mean 0

$$
\binom{Z_{d}}{Z_{a}} \sim N\left(\binom{0}{0},\left(\begin{array}{cc}
1 & 0 \\
0 & \sigma_{1}^{2}
\end{array}\right)\right)
$$

Group $3 \mu_{1} \neq \mu_{2}$ - Null hypothesis

Assume that underlying between subgroup effect sizes $\log O R\left(\mu_{1}, \mu_{2}\right)$ are normally distributed with mean 0

The overall allele frequency should be the same in cases and controls, so $Z_{a} \sim N(0,1)$

$$
\binom{Z_{d}}{Z_{a}} \sim N\left(\binom{0}{0},\left(\begin{array}{ll}
\tau^{2} & 0 \\
0 & 1
\end{array}\right)\right)
$$

Group $3 \mu_{1} \neq \mu_{2}, \mu_{12} \neq \mu_{C}$ - Alternative hypothesis

If SNPs have different effect sizes between subgroups, and are associated with the phenotype as a whole, then we expect both $S D(Z a)>1$ and $S D(Z d)>1$.

They may also be correlated.

$$
\binom{Z_{d}}{Z_{a}} \sim\left\{\begin{array}{l}
N\left(\binom{0}{0},\left(\begin{array}{cc}
\tau^{2} & \rho \\
\rho & \sigma_{2}^{2}
\end{array}\right)\right) \\
N\left(\binom{0}{0},\left(\begin{array}{cc}
\tau^{2} & -\rho \\
-\rho & \sigma_{2}^{2}
\end{array}\right)\right)
\end{array}\right.
$$

Three-Gaussian model

Assume proportion of SNPs in each group is $\pi_{0}, \pi_{1}, \pi_{2}$.

Find MLE of $\Theta_{1}=\left(\pi_{0}, \pi_{1}, \pi_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$ using
E-M algorithm
Find MLE of $\Theta_{0}=\left(\pi_{0}, \pi_{1}, \pi_{2}\right.$,
$\sigma_{1}^{2} \mid \sigma_{2}^{2}=1, \rho=0$ (null model)
Compare likelihood under Θ_{1} and Θ_{0}

Pseudo likelihood ratio test - challenges

1. Observations are dependent due to linkage disequilibrium between SNPs. We weight individual contributions from individual SNPs using LDAK ${ }^{1}$, but some residual correlation remains.

Pseudo likelihood ratio test - challenges

1. Observations are dependent due to linkage disequilibrium between SNPs. We weight individual contributions from individual SNPs using LDAK ${ }^{1}$, but some residual correlation remains.
2. If there are no SNPs in group 3 and log OR not exactly normal, then H_{1} will always fit better.
We condition on Z_{a}

$$
\operatorname{PLR}=\frac{\prod_{i} w_{i} \times \operatorname{PDF}\left(Z_{d}^{(i)} \mid Z_{a}^{(i)} ; \Theta_{1}\right)}{\prod_{i} w_{i} \times \operatorname{PDF}\left(Z_{d}^{(i)} \mid Z_{a}^{(i)} ; \Theta_{0}\right)}
$$

Null distribution of PLR

Null parameter values are on a boundary, so PLR will have a mixture χ^{2} distribution
Non-independence between SNPs results in scaling of mixture χ^{2} distribution

Null distribution of PLR is a scaled and transposed χ^{2} distribution:

$$
P L R \sim \begin{cases}\gamma \chi_{1}^{2} & p=\kappa \\ \gamma \chi_{2}^{2} & p=1-\kappa\end{cases}
$$

γ depends on the covariance matrix (LD) between Z scores through the weights $\left\{w_{i}\right\}$
κ depends on probability $\rho=0$ - approximately 0.5 .
These parameters can be estimated by resampling.

Results for T1D/RA as subgroups of "autoimmune disease"

$$
p=3 \times 10^{12}
$$

Post-hoc single SNP analysis

Several options.

- Posterior probability of group 3 membership - can be large when $\left|Z_{a}\right|$ large but $\left|Z_{d}\right|$ small
- $\log P\left(Z_{a}, Z_{d} \mid \Theta_{1}\right)-\log P\left(Z_{a}, Z_{d} \mid \Theta_{0}\right)$ - sensitive to fitted Θ_{1}
- Conditional false discovery rate for related null hypothesis $H_{0}^{\prime}: \mu_{1}=\mu_{2}$

$$
\begin{array}{r}
P\left(H_{0}^{\prime} \mid \tilde{Z_{a}} \geq z_{a}, \tilde{Z_{d}} \geq z_{d}\right)=\frac{P\left(\tilde{Z_{a}} \geq z_{a}, \tilde{Z_{d}} \geq z_{d} \mid \mu_{1}=\mu_{2}\right) P\left(H_{0}^{\prime}\right)}{P\left(\tilde{Z_{a}} \geq z_{a}, \tilde{Z_{d}} \geq z_{d}\right)} \\
\leq \frac{P\left(\tilde{Z_{d}}>z_{d} \mid \tilde{Z_{d}} \sim N(0,1)\right) \times P\left(\tilde{Z_{a}} \geq z_{a}\right) \times 1}{P\left(\tilde{Z_{a}} \geq z_{a}, \tilde{Z_{d}} \geq z_{d}\right)}
\end{array}
$$

where $\tilde{Z}=|Z|$

Post-hoc single SNP analysis

Power of PLR vs single SNP significance

Auto-antibody specific type 1 diabetes subtyping

	Model	π_{0}	π_{1}	π_{2}	σ_{1}	σ_{2}	τ	ρ	p-value
TPO-Ab	Full	0.511	0.487	2.407×10^{-3}	0.994	6.545	1.552	0.991	$<1 \times 10^{-20}$
	Null	0.987	2.333×10^{-3}	0.011	6.634	-	1.308	-	
TPO-Ab	Full	0.997	2.898×10^{-4}	3.031×10^{-3}	4.698	2.291	1.497	0.338	1.5×10^{-4}
no MHC	Null	0.989	1.882×10^{-3}	9.087×10^{-3}	3.11	-	1.318	-	
GAD-Ab	Full	0.995	3.557×10^{-3}	1.057×10^{-3}	2.832	8.866	2.295	5.484	$<1 \times 10^{-20}$
	Null	0.997	2.328×10^{-3}	3.002×10^{-4}	6.639	-	2.153	-	
GAD-Ab	Full	0.997	2.9×10^{-3}	3.434×10^{-4}	2.279	4.531	1.055	3.424	0.002
no MHC	Null	0.792	1.883×10^{-3}	0.206	3.111	-	0.997	-	
IA2-Ab	Full	0.995	3.275×10^{-3}	1.244×10^{-3}	2.804	8.291	3.027	1.575	$<1 \times 10^{-20}$
	Null	0.997	2.287×10^{-3}	3.805×10^{-4}	6.674	-	3.852	-	
IA2-Ab	Full	0.998	1.362×10^{-3}	7.904×10^{-4}	3.318	2.212	2.145	0	0.008
no MHC	Null	0.998	1.88×10^{-3}	2.073×10^{-4}	3.112	-	2.889	-	
PCA-Ab	Full	0.997	2.336×10^{-3}	3.413×10^{-4}	6.631	0.37	2.097	0.422	>0.5
	Null	0.998	2.335×10^{-3}	1.276×10^{-4}	6.632	-	2.54	-	
PCA-Ab	Full	0.997	2.759×10^{-3}	1.303×10^{-4}	2.508	5.58	2.256	0	>0.5
no MHC	Null	0.998	1.884×10^{-3}	1.384×10^{-4}	3.111	-	2.5	-	

Relationship to genetic correlation

Genetic heritability, σ_{g}^{2}, can be estimated by partitioning the covariance matrix for a single trait X measured in n individuals with kinship matrix Φ

$$
\Omega=2 \Phi \sigma_{g}^{2}+I_{n} \sigma_{e}^{2}
$$

where $\Omega_{i, j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$.
Similarly, genetic correlation $r_{g}=\frac{\sigma_{g X Y}^{2}}{\sigma_{g_{X} \times} \sigma_{9 \gamma}}$ between two traits can be estimated from by partitioning the bivariate correlation matrix

$$
\Omega_{X Y}=2 \Phi \sigma_{g_{X Y}}^{2}+I_{n} \sigma_{e}^{2}
$$

where $\Omega_{X Y_{i, j}}=\operatorname{cov}\left(X_{i}, Y_{j}\right)$.

Relationship to genetic correlation

Genetic correlation can also be estimated directly from GWAS data for two traits from distinct datasets ${ }^{1}$.

Can subtypes be detected by testing r_{g} for specific GWAS comparisons?

$$
r_{g}\left(Z_{a}, Z_{d}\right)>0 \quad \text { or } \quad r_{g}(S 1 \text { vs } C, S 2 \text { vs } C)<1
$$

$r_{g}\left(Z_{a}, Z_{d}\right)>0$
 tests correlation of signed rather than absolute Z scores

Case vs Controls, Z_{a}

diabetes

$$
\text { type } 1
$$

Differentiate Subgroups

$$
Z_{d}
$$

$r_{g}(S 1$ vs $C, S 2$ vs C) <1 assumes no disease-independent variants distinguish subtypes

Subtype 2 vs controls S2 vs C

$r_{g}(S 1$ vs $C, S 2$ vs C) <1 assumes no disease-independent variants distinguish subtypes

Subtype 1 vs controls, S1 vs C

Subtype 2 vs controls
S2 vs C

Future Directions

Further inference of causes of heterogeneity

Applications to other diseases
JIA, vasculitis

Acknowledgements

숭․ UNIVERSITY OF CAMBRIDGE

wellcometrust

MRC
 Biostatistics Unit

WHS

National Institute for Health Research

TRF

Software: https://github.com/jamesliley/subtest Preprint: http://biorxiv.org/content/early/2016/08/02/037713

