

Retroviruses integrate into a shared, non-palindromic motif

Paul Kirk MASAMB 2016, Cambridge October 4, 2016

Central dogma of molecular biology (Crick, 1956)

General transfers of biological sequential information:

Central dogma of molecular biology (Crick, 1956)

General transfers of biological sequential information:

There are also **special** transfers of sequential information.

Retroviruses are *obligate parasites*: they require a host cell to complete their "life"-cycle.

Retroviruses are *obligate parasites*: they require a host cell to complete their "life"-cycle.

2 of 22

Examples: HIV, HTLV-1,

MRC | Medical Research Council

host DNA

host DNA

MRC | Medical Research Council

host DNA

HOST ...ATCCCGCTTA...

4 of 22

We would like to characterise the target integration site

- i.e. the regions flanking the provirus
- Is there a motif?

Aligning integration sites

Given a collection of integration sites, we can align them according to the position of the provirus...

Given a collection of integration sites, we can align them according to the position of the provirus...

... and then ignore/remove/mask

the provirus sequence, so that we just look at the target sites:

Summarising a collection of target sites

Sequences

Example (5 sequences)

...ATC... ...TTA... ...AAC... ...TTC... ...AGC...

Consensus sequence

Just take the most frequent letter at each position: ... ATC...

Position probability matrix (PPM), P

Estimate the probability of each letter at each position:

$$P = \begin{array}{cccc} A \\ T \\ C \\ G \end{array} \begin{pmatrix} \dots & 3/5 & 1/5 & 1/5 & \dots \\ \dots & 2/5 & 3/5 & 0 & \dots \\ \dots & 0 & 0 & 4/5 & \dots \\ \dots & 0 & 1/5 & 0 & \dots \end{array}$$

6

Summarising a collection of target sites

	Sequences	Complements	Reverse complements
Example (5 sequences)	ATC TTA AAC TTC AGC	TAG AAT TTG AAG TCG	GAT TAA GTT GAA GCT

Reverse complement PPM, $P^{(RC)}$

The PPM for the reverse complement sequences:

$$P^{(RC)} = \begin{array}{cccc} A \\ T \\ C \\ G \end{array} \begin{pmatrix} \dots & 0 & 3/5 & 2/5 & \dots \\ & 1/5 & 1/5 & 3/5 & \dots \\ \dots & 0 & 1/5 & 0 & \dots \\ \dots & 4/5 & 0 & 0 & \dots \end{array}$$

Note: we can get $P^{(RC)}$ from P (and vice versa) by swapping the rows A \leftrightarrow T and C \leftrightarrow G, and reversing the order of the columns.

From 4,521 HTLV-1 target integration sites, we find the consensus:

AAGTGGATATCCACTT

From 13,442 HIV-1 target integration sites, we find the consensus:

TTTGGTAACCAAA

From 4,521 HTLV-1 target integration sites, we find the consensus:

AAGTGGATATCCACTT

From 13,442 HIV-1 target integration sites, we find the consensus:

From 4,521 HTLV-1 target integration sites, we find the consensus:

From 13,442 HIV-1 target integration sites, we find the consensus:

From 4,521 HTLV-1 target integration sites, we find the consensus:

From 13,442 HIV-1 target integration sites, we find the consensus:

The target integration sites are palindromic (as already known!)

Palindromic PPMs for HTLV-1 and HIV-1 target integration sites

For both HTLV-1 and HIV-1, we have $P^{(RC)} \approx P$

MRC | Medical Research Council

Palindromic sequence logos

• There is an almost unbelievable amount of symmetry (!)

- There is an almost unbelievable amount of symmetry (!)
- Is this "real"? Do we see evidence of the symmetry within individual sequences, or just at the level of these summaries?

- There is an almost unbelievable amount of symmetry (!)
- Is this "real"? Do we see evidence of the symmetry within individual sequences, or just at the level of these summaries?

11 of 22

• We introduce a palindrome index to quantify "how palindromic" each sequence is

AAGTGGATATCCACTT

AAGTGGATATCCACTT
$$\mathbf{S} = s_{.8} s_{.7} s_{.6} s_{.5} s_{.4} s_{.3} s_{.2} s_{.1} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$$

AAGTGGATATCCACTT
S =
$$s_{.8} s_{.7} s_{.6} s_{.5} s_{.4} s_{.3} s_{.2} s_{.1} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$$

Define

$$\rho(\mathbf{S}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(s_i = c(s_{-i})),$$

where 2*n* is the sequence length, \mathbb{I} is the indicator function, and c(x) is the complement of *x* (e.g. c(T) = A).

AAGTGGATATCCACTT
S =
$$s_{.8} s_{.7} s_{.6} s_{.5} s_{.4} s_{.3} s_{.2} s_{.1} s_{1} s_{2} s_{3} s_{4} s_{5} s_{6} s_{7} s_{8}$$

Define

$$\rho(\mathbf{S}) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(s_i = c(s_{-i})),$$

where 2n is the sequence length, \mathbb{I} is the indicator function, and c(x) is the complement of x (e.g. c(T) = A).

(In practice, we use an "adjusted for chance" version, which is maximally 1, and is 0 if ${\bf S}$ is no more palindromic than expected by chance.)

Observed palindrome indices

MRC | Medical Research Council

The individual sequences are not palindromic

- The individual sequences are not palindromic
- So why do we see palindromes when we average over a large number of sequences?

• One possible explanation is that we have a mix of "forward" and "reverse complement" sequence orientations,

- One possible explanation is that we have a mix of "forward" and "reverse complement" sequence orientations,
 - e.g. in the noiseless case

S	equ	ence	e 1:	AA	TTT	AGT	GGAT	(F	(Forward)					
S	equ	ence	e 2:	ΓA		CTTA	AATI	(R	ever	se d	comp	leme	nt)	
S	equ	ence	e 3:	ΓA		CTTA	AATI	(R	ever	se d	comp	leme	nt)	
S	equ	ence	e 4:	AA	TTT	AGT	GGAT	(F	orwa	rd)				
S	equ	ence	e 5:	ΓA	CCA	CTTA	AATT	(F	orwa	rd)				
Sequence 6: AATTTAAGTGGAT (Reverse complement)														
A	/1	0.5	0	0	0.5	0.5	0.5	0	0.5	0.5	0.5	0.5	0)	
Т	0	0.5	0.5	0.5	0.5	0	0.5	0.5	0.5	0	0	0.5	1	$= P^{(RC)}$

Analogy

If we have a sample of many real numbers, and we take their mean and find it to be **exactly zero**, one possibility is that this mean is representative of the sample:

Analogy

If we have a sample of many real numbers, and we take their mean and find it to be **exactly zero**, one possibility is that this mean is representative of the sample:

Another possibility is that we have 2 symmetric components, one positive and one negative:

Mixture modelling

- We model the sequences as coming from two populations
 - one with PPM P; and
 - one with reverse complement PPM $P^{(RC)}$.

$$\pi(\boldsymbol{S}) = \omega \pi(\boldsymbol{S}|\boldsymbol{P}) + (1-\omega)\pi(\boldsymbol{S}|\boldsymbol{P}^{(RC)}).$$

Mixture modelling

- · We model the sequences as coming from two populations
 - one with PPM P; and
 - one with reverse complement PPM $P^{(RC)}$.

$$\pi(S) = \omega \pi(S|P) + (1 - \omega)\pi(S|P^{(RC)}).$$

17 of 22

• Here, ω is the proportion of sequences coming from the population with PPM *P*.

Mixture modelling

- We model the sequences as coming from two populations
 - one with PPM P; and
 - one with reverse complement PPM $P^{(RC)}$.

$$\pi(S) = \omega \pi(S|P) + (1 - \omega)\pi(S|P^{(RC)}).$$

- Here, ω is the proportion of sequences coming from the population with PPM *P*.
- The parameters, ω and P, can be estimated/inferred in numerous ways. I will show results from using an EM-algorithm, but identical results are obtained by: (i) maximum profile likelihood; (ii) Gibbs sampling; (iii) greedy Gibbs.

Unmixing the forward and reverse sequences

MRC | Medical Research Council

Unmixing the forward and reverse sequences

MRC | Medical Research Council

Unmixing the forward and reverse sequences

18 of 22

• The palindrome is not observed within individual sequences.

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

5'-T(N1/2)[C(N0/1)T|(W1/2)C]CW-3'

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

5'-T(N1/2)[C(N0/1)T|(W1/2)C]CW-3'

• Potential implications for understanding retroviral integration.

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

5'-T(N1/2)[C(N0/1)T|(W1/2)C]CW-3'

- Potential implications for understanding retroviral integration.
- True validation requires further structural information about retroviral intasomes.

Availability

- Accepted for publication in Nature Microbiology.
- Preprint:
 - Kirk, Huvet, Melamed, Maertens & Bangham (2015). Retroviruses integrate into a shared, non-palindromic motif. bioRxiv.

Matlab code (and the HTLV-1 dataset) are available online:

```
http://www.mrc-bsu.cam.ac.uk/software/
bioinformatics-and-statistical-genomics/
```

Just click on retroCode to download!

Charles Bangham

Maxime Huvet Anat Melamed Goedele Maertens

Sylvia Richardson MRC Biostatistics Unit

Michael Stumpf Imperial College Theoretical Systems Biology group

21 of 22

Thanks for listening!

@pauldwkirk

http://www.mrc-bsu.cam.ac.uk/people/paul-kirk/

22 of 22

SCIENCE SHOULD CHAOTIC SCIENCE COMEDY CABARET

with

STEVE CROSS SARAH BENNETTO

and loads of Cambridge science talent

SE ASONS

UNIVERSITY OF

CAMBRIDGE

elcome Trust - Medical Research Council

Cambridge Stem Cell Institute

week

MONDAY 10th OCTOBER Portland Arms, 'Doors 6.30 Tickets £5 from scienceshowoff.org or £7 on the door All ticket money will go to Parkinson's UK