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Central dogma of molecular biology (Crick, 1956)

General transfers of biological sequential information:

Protein

RNA

DNA

transcription

translation

replication

There are also special transfers of sequential information.
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For example: retroviruses

Integrase

Reverse transcriptase

Protease

viral RNA

A retrovirus:

Retroviruses are obligate parasites: they require a host cell to
complete their “life”-cycle.

Examples: HIV, HTLV-1, . . . .
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For example: retroviruses

host DNA

     
   H

OST CELL

MRC   |   Medical Research Council 3 of 22



For example: retroviruses

host DNA

     
   H

OST CELL

INFECTION

MRC   |   Medical Research Council 3 of 22



For example: retroviruses

viral RNA

host DNA

     
   H

OST CELL

MRC   |   Medical Research Council 3 of 22



For example: retroviruses

Reverse transcriptase

viral RNA

viral DNA

host DNA

     
   H

OST CELL

MRC   |   Medical Research Council 3 of 22



For example: retroviruses

Integrase

Reverse transcriptase

viral RNA

SNIP!

viral DNA

host DNA host DNA

     
   H

OST CELL

MRC   |   Medical Research Council 3 of 22



For example: retroviruses

Integrase

Reverse transcriptase

viral RNA

viral DNAhost DNA host DNA

provirus

     
   H

OST CELL

MRC   |   Medical Research Council 3 of 22



Characterising retroviral integration sites

...ATCCCGCTTA...HOST
DNA

We would like to characterise the target integration site
• i.e. the regions flanking the provirus
• Is there a motif?
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Characterising retroviral integration sites
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Aligning integration sites

Given a collection of integration sites, we can align them
according to the position of the provirus. . .

. . . and then ignore/remove/mask
the provirus sequence, so that we just look at the target sites:

...ATCCCG                    CTTA...INTEGRATION
SITE 1 TGAC...CGT

...TTAGAG                    GGTA...INTEGRATION
SITE 2 TGAC...CGT

...AACGAA                    CTTC...INTEGRATION
SITE 3 TGAC...CGT

...TTCTCC                    CGGA...INTEGRATION
SITE 4 TGAC...CGT

...AGCTTC                    CTGC...INTEGRATION
SITE 5 TGAC...CGT
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Summarising a collection of target sites

Example
(5 sequences)

Sequences

...ATC...

...TTA...

...AAC...

...TTC...

...AGC...

Complements

...TAG...

...AAT...

...TTG...

...AAG...

...TCG...

Reverse
complements

...GAT...

...TAA...

...GTT...

...GAA...

...GCT...

Consensus sequence
Just take the most frequent letter at each position: ...ATC...

Position probability matrix (PPM), P
Estimate the probability of each letter at each position:

P =


A . . . 3/5 1/5 1/5 . . .
T . . . 2/5 3/5 0 . . .
C . . . 0 0 4/5 . . .
G . . . 0 1/5 0 . . .


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Summarising a collection of target sites

Example
(5 sequences)

Sequences

...ATC...

...TTA...

...AAC...

...TTC...

...AGC...

Complements

...TAG...

...AAT...

...TTG...

...AAG...

...TCG...

Reverse
complements

...GAT...

...TAA...

...GTT...

...GAA...

...GCT...

Reverse complement PPM, P(RC)

The PPM for the reverse complement sequences:

P(RC) =


A . . . 0 3/5 2/5 . . .
T . . . 1/5 1/5 3/5 . . .
C . . . 0 1/5 0 . . .
G . . . 4/5 0 0 . . .


Note: we can get P(RC) from P (and vice versa) by swapping the
rows A↔ T and C↔ G, and reversing the order of the columns.
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Palindromic consensus sequences for HTLV-1 and
HIV-1 target integration sites

From 4,521 HTLV-1 target integration sites, we find the consensus:

AAGTGGATATCCACTT

From 13,442 HIV-1 target integration sites, we find the consensus:

TTTGGTAACCAAA

The target integration sites are palindromic (as already known!)
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Palindromic PPMs for HTLV-1 and HIV-1 target
integration sites

For both HTLV-1 and HIV-1, we have P(RC) ≈ P
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Palindromic sequence logos
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An attack of aibohphobia

• There is an almost unbelievable amount of symmetry (!)

• Is this “real”? Do we see evidence of the symmetry within
individual sequences, or just at the level of these summaries?

• We introduce a palindrome index to quantify “how
palindromic” each sequence is
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The palindrome index

AAGTGGATATCCACTT

Define

ρ(S) =
1
n

n∑
i=1

I(si = c(s−i)),

where 2n is the sequence length, I is the indicator function, and
c(x) is the complement of x (e.g. c(T ) = A).

(In practice, we use an “adjusted for chance” version, which is
maximally 1, and is 0 if S is no more palindromic than expected by
chance.)
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Observed palindrome indices
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Where do the palindromes come from?

• The individual sequences are not palindromic

• So why do we see palindromes when we average over a large
number of sequences?
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Where do the palindromes come from?

• One possible explanation is that we have a mix of “forward” and
“reverse complement” sequence orientations,

e.g. in the noiseless case

Sequence 1: AATTTAAGTGGAT (Forward)

Sequence 2: ATCCACTTAAATT (Reverse complement)

Sequence 3: ATCCACTTAAATT (Reverse complement)

Sequence 4: AATTTAAGTGGAT (Forward)

Sequence 5: ATCCACTTAAATT (Forward)

Sequence 6: AATTTAAGTGGAT (Reverse complement)

P =


A 1 0.5 0 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0.5 0
T 0 0.5 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0 0.5 1
C 0 0 0.5 0.5 0 0.5 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0.5 0 0.5 0.5 0 0

 = P(RC)
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Analogy

If we have a sample of many real numbers, and we take their
mean and find it to be exactly zero, one possibility is that this
mean is representative of the sample:

0

Another possibility is that we have 2 symmetric components, one
positive and one negative:

0
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Mixture modelling

• We model the sequences as coming from two populations
I one with PPM P; and
I one with reverse complement PPM P(RC).

π(S) = ωπ(S|P) + (1− ω)π(S|P(RC)).

• Here, ω is the proportion of sequences coming from the
population with PPM P.

• The parameters, ω and P, can be estimated/inferred in
numerous ways. I will show results from using an EM-algorithm,
but identical results are obtained by: (i) maximum profile
likelihood; (ii) Gibbs sampling; (iii) greedy Gibbs.
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Unmixing the forward and reverse sequences
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Summary

• The palindrome is not observed within individual sequences.

• Hypothesis: the palindrome results from a mixture of
sequences that contain a non-palindromic motif in
approximately equal proportions in “forward” and “reverse
complement” orientations

• Modelling this hypothesis revealed a common nucleotide motif
across 4 retroviruses:

5’-T(N1/2)[C(N0/1)T|(W1/2)C]CW-3’

• Potential implications for understanding retroviral integration.

• True validation requires further structural information about
retroviral intasomes.
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Availability

• Accepted for publication in Nature Microbiology.

• Preprint:
I Kirk, Huvet, Melamed, Maertens & Bangham (2015). Retroviruses

integrate into a shared, non-palindromic motif. bioRxiv.

Matlab code (and the HTLV-1 dataset) are available online:

http://www.mrc-bsu.cam.ac.uk/software/

bioinformatics-and-statistical-genomics/

Just click on retroCode to download!
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Thanks for listening!

@pauldwkirk

http://www.mrc-bsu.cam.ac.uk/people/paul-kirk/
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