Retroviruses integrate into a shared, non-palindromic motif

Paul Kirk

MASAMB 2016, Cambridge
October 4, 2016

Central dogma of molecular biology (Crick, 1956)

General transfers of biological sequential information:

Central dogma of molecular biology (Crick, 1956)

General transfers of biological sequential information:

There are also special transfers of sequential information.

For example: retroviruses

A retrovirus:
Reverse transcriptase
Integrase
viral RNA
าППППППГПППППГ
Protease

For example: retroviruses

A retrovirus:

Retroviruses are obligate parasites: they require a host cell to complete their "life"-cycle.

For example: retroviruses

A retrovirus:

Retroviruses are obligate parasites: they require a host cell to complete their "life"-cycle.

Examples: HIV, HTLV-1,

For example: retroviruses

host DNA

For example: retroviruses

host DNA

For example: retroviruses

viral RNA
ППППППППППППППГ

host DNA

For example: retroviruses

host DNA

For example: retroviruses

For example: retroviruses

viral RNA
 ППППППППППППППГ

Reverse transcriptase

3 of 22

Characterising retroviral integration sites

מ陉 ...ATCCCGCTTA...

Characterising retroviral integration sites

$$
\begin{aligned}
& \text { 㛖 ...ATCCCGCTTA... }
\end{aligned}
$$

Characterising retroviral integration sites

вя ...ATCCC|CTTA... ${ }_{3}$

Characterising retroviral integration sites

Characterising retroviral integration sites

$\underset{\text { HOST }}{\text { HNA }} \underset{\text { PROVIRUS }}{\text { PASTE. }}$

We would like to characterise the target integration site

- i.e. the regions flanking the provirus
- Is there a motif?

Aligning integration sites

Given a collection of integration sites, we can align them according to the position of the provirus...

Aligning integration sites

Given a collection of integration sites, we can align them according to the position of the provirus...
... and then ignore/remove/mask the provirus sequence, so that we just look at the target sites:

Summarising a collection of target sites

Sequences

Example
(5 sequences)
...ATC. .
\ldots..TTA.
\ldots..AAC.
\ldots. TTC.
\ldots. AGC.

Consensus sequence

Just take the most frequent letter at each position: ...atc...
Position probability matrix (PPM), P
Estimate the probability of each letter at each position:

$$
P=\begin{gathered}
A \\
T \\
C \\
G
\end{gathered}\left(\begin{array}{ccccc}
\ldots & 3 / 5 & 1 / 5 & 1 / 5 & \ldots \\
\ldots & 2 / 5 & 3 / 5 & 0 & \ldots \\
\ldots & 0 & 0 & 4 / 5 & \ldots \\
\ldots & 0 & 1 / 5 & 0 & \ldots
\end{array}\right)
$$

Summarising a collection of target sites

Sequences Complements

Example
(5 sequences)

Reverse complements
...GAT...
...TAA...
...GTT...
...GAA. . .
...GCT. . .

Reverse complement PPM, $P^{(R C)}$
The PPM for the reverse complement sequences:

$$
P^{(R C)}=\begin{gathered}
A \\
T \\
C \\
G
\end{gathered}\left(\begin{array}{ccccc}
\ldots & 0 & 3 / 5 & 2 / 5 & \ldots \\
\ldots & 1 / 5 & 1 / 5 & 3 / 5 & \ldots \\
\ldots & 0 & 1 / 5 & 0 & \ldots \\
\ldots & 4 / 5 & 0 & 0 & \ldots
\end{array}\right)
$$

Note: we can get $P^{(R C)}$ from P (and vice versa) by swapping the rows $A \leftrightarrow T$ and $C \leftrightarrow G$, and reversing the order of the columns.

Palindromic consensus sequences for HTLV-1 and HIV-1 target integration sites

From 4,521 HTLV-1 target integration sites, we find the consensus:

AAGTGGATATCCACTT

From 13,442 HIV-1 target integration sites, we find the consensus:
TTTGGTAACCAAA

Palindromic consensus sequences for HTLV-1 and HIV-1 target integration sites

From 4,521 HTLV-1 target integration sites, we find the consensus:

AAGTGGATATCCACTT

From 13,442 HIV-1 target integration sites, we find the consensus:
TTTGGTȦACCAAA

Palindromic consensus sequences for HTLV-1 and HIV-1 target integration sites

From 4,521 HTLV-1 target integration sites, we find the consensus:

$$
\begin{aligned}
& \text { ААGТGGATATCCACTT } \\
& \hline T C A C C T A T A G G G A A ~
\end{aligned}
$$

From 13,442 HIV-1 target integration sites, we find the consensus:

Palindromic consensus sequences for HTLV-1 and HIV-1 target integration sites

From 4,521 HTLV-1 target integration sites, we find the consensus:

$$
\begin{aligned}
& \text { AAGTGGATATCCACTT } \\
& \hline T C A C C T A T A G G G A A ~
\end{aligned}
$$

From 13,442 HIV-1 target integration sites, we find the consensus:

The target integration sites are palindromic (as already known!)

Palindromic PPMs for HTLV-1 and HIV-1 target integration sites

For both HTLV-1 and HIV-1, we have $P^{(R C)} \approx P$

HTLV-1

HIV-1

Palindromic sequence logos

HTLV-1:

HIV-1:

An attack of aibohphobia

- There is an almost unbelievable amount of symmetry (!)

An attack of aibohphobia

- There is an almost unbelievable amount of symmetry (!)
- Is this "real"? Do we see evidence of the symmetry within individual sequences, or just at the level of these summaries?

An attack of aibohphobia

- There is an almost unbelievable amount of symmetry (!)
- Is this "real"? Do we see evidence of the symmetry within individual sequences, or just at the level of these summaries?
- We introduce a palindrome index to quantify "how palindromic" each sequence is

The palindrome index

AAGTGGATATCCACTT

The palindrome index

$$
\begin{aligned}
& \text { AAGTGGATATCCACTT } \\
& S=S_{-8} S_{-7} S_{-6} S_{-5} S_{-4} S_{-3} S_{-2} S_{-1}^{-1} S_{1} S_{2} S_{3} S_{4} S_{5} S_{6} S_{7} S_{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AAGTGGATATCCACTT } \\
& \mathrm{S}=\mathrm{S}_{-8} \mathrm{~S}_{-7} \mathrm{~S}_{-6} \mathrm{~S}_{-5} \mathrm{~S}_{-4} \mathrm{~S}_{-3} \mathrm{~S}_{-2} \mathrm{~S}_{-1} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \mathrm{~S}_{5} \mathrm{~S}_{6} \mathrm{~S}_{7} \mathrm{~S}_{8}
\end{aligned}
$$

Define

$$
\rho(\mathbf{S})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(s_{i}=c\left(s_{-i}\right)\right)
$$

where $2 n$ is the sequence length, \mathbb{I} is the indicator function, and $c(x)$ is the complement of x (e.g. $c(T)=A$).

$$
\underset{s=s_{8} s_{7} s_{6} s_{5} s_{4} s_{3} s_{2} s_{2} s_{4} s_{1}, s_{2} s_{3} s_{4} s_{4} s_{5} s_{6} s_{7} s_{8}}{s_{8}}
$$

Define

$$
\rho(\mathbf{S})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(s_{i}=c\left(s_{-i}\right)\right)
$$

where $2 n$ is the sequence length, \mathbb{I} is the indicator function, and $c(x)$ is the complement of x (e.g. $c(T)=A$).
(In practice, we use an "adjusted for chance" version, which is maximally 1 , and is 0 if \mathbf{S} is no more palindromic than expected by chance.)

Observed palindrome indices

Where do the palindromes come from?

- The individual sequences are not palindromic

Where do the palindromes come from?

- The individual sequences are not palindromic
- So why do we see palindromes when we average over a large number of sequences?

Where do the palindromes come from?

- One possible explanation is that we have a mix of "forward" and "reverse complement" sequence orientations,

Where do the palindromes come from?

- One possible explanation is that we have a mix of "forward" and "reverse complement" sequence orientations, e.g. in the noiseless case

```
    Sequence 1: AATTTAAGTGGAT (Forward)
    Sequence 2: ATCCACTTAAATT (Reverse complement)
    Sequence 3: ATCCACTTAAATT (Reverse complement)
    Sequence 4: AATTTAAGTGGAT (Forward)
    Sequence 5: ATCCACTTAAATT (Forward)
    Sequence 6: AATTTAAGTGGAT (Reverse complement)
```


Analogy

If we have a sample of many real numbers, and we take their mean and find it to be exactly zero, one possibility is that this mean is representative of the sample:

Analogy

If we have a sample of many real numbers, and we take their mean and find it to be exactly zero, one possibility is that this mean is representative of the sample:

Another possibility is that we have 2 symmetric components, one positive and one negative:

Mixture modelling

- We model the sequences as coming from two populations
- one with PPM P; and
- one with reverse complement PPM $P^{(R C)}$.

$$
\pi(S)=\omega \pi(S \mid P)+(1-\omega) \pi\left(S \mid P^{(R C)}\right)
$$

Mixture modelling

- We model the sequences as coming from two populations
- one with PPM P; and
- one with reverse complement PPM $P^{(R C)}$.

$$
\pi(S)=\omega \pi(S \mid P)+(1-\omega) \pi\left(S \mid P^{(R C)}\right)
$$

- Here, ω is the proportion of sequences coming from the population with PPM P.

Mixture modelling

- We model the sequences as coming from two populations
- one with PPM P; and
- one with reverse complement PPM $P^{(R C)}$.

$$
\pi(S)=\omega \pi(S \mid P)+(1-\omega) \pi\left(S \mid P^{(R C)}\right)
$$

- Here, ω is the proportion of sequences coming from the population with PPM P.
- The parameters, ω and P, can be estimated/inferred in numerous ways. I will show results from using an EM-algorithm, but identical results are obtained by: (i) maximum profile likelihood; (ii) Gibbs sampling; (iii) greedy Gibbs.

Unmixing the forward and reverse sequences

Subpopulation 1

Subpopulation 2

Unmixing the forward and reverse sequences

Unmixing the forward and reverse sequences

Summary

- The palindrome is not observed within individual sequences.

Summary

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

$$
5^{\prime}-\mathrm{T}(\mathrm{~N} 1 / 2)[\mathrm{C}(\mathrm{~N} 0 / 1) \mathrm{T} \mid(\mathrm{W} 1 / 2) \mathrm{C}] \mathrm{CW}-3^{\prime}
$$

- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

$$
5^{\prime}-\mathrm{T}(\mathrm{~N} 1 / 2)[\mathrm{C}(\mathrm{~N} 0 / 1) \mathrm{T} \mid(\mathrm{W} 1 / 2) \mathrm{C}] \mathrm{CW}-3^{\prime}
$$

- Potential implications for understanding retroviral integration.
- The palindrome is not observed within individual sequences.
- Hypothesis: the palindrome results from a mixture of sequences that contain a non-palindromic motif in approximately equal proportions in "forward" and "reverse complement" orientations
- Modelling this hypothesis revealed a common nucleotide motif across 4 retroviruses:

$$
5^{\prime}-\mathrm{T}(\mathrm{~N} 1 / 2)[\mathrm{C}(\mathrm{~N} 0 / 1) \mathrm{T} \mid(\mathrm{W} 1 / 2) \mathrm{C}] \mathrm{CW}-3^{\prime}
$$

- Potential implications for understanding retroviral integration.
- True validation requires further structural information about retroviral intasomes.

Availability

- Accepted for publication in Nature Microbiology.
- Preprint:
- Kirk, Huvet, Melamed, Maertens \& Bangham (2015). Retroviruses integrate into a shared, non-palindromic motif. bioRxiv.

Matlab code (and the HTLV-1 dataset) are available online:

$$
\begin{aligned}
& \text { http://www.mrc-bsu.cam.ac.uk/software/ } \\
& \text { bioinformatics-and-statistical-genomics/ }
\end{aligned}
$$

Just click on retroCode to download!

Acknowledgements

Charles Bangham
Maxime Huvet
Anat Melamed
Goedele Maertens

Sylvia Richardson
MRC Biostatistics Unit

Michael Stumpf
Imperial College Theoretical Systems Biology group

Thanks for listening!

MRC Biostatistics Unit

@pauldwkirk

http://www.mrc-bsu.cam.ac.uk/people/paul-kirk/

squad Honded

