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discordance with transmission history [14–20, 22, 23]. The methods of Ypma and colleagues
[21], Didelot and colleagues [24], and Hall and colleagues [25] account for within-host diver-
sity, but assume that all hosts in the outbreak have been detected and sequenced, which may be
incorrect or uncertain in practical settings.

Fig 1. Examples of transmission complexities. Reconstruction of transmission can be hindered by
several complexities causing disagreement between the actual transmission history and the phylogeny of the
sampled pathogen. Here we show four examples of these complexities: A) Within-host evolution (similar to
incomplete lineage sorting, can happen even with strong transmission bottlenecks), B) Incomplete
transmission bottlenecks (or large transmission inocula) and within-host evolution, C) Non-sampled hosts
(such as unknown or asymptomatic hosts), D) Multiple infections of the same host (or mixed infections).
Different hosts (named H1, H2, and H3) are represented as black rectangles, and the rectangle with a
dashed border represents a non-sampled host (a host for which no pathogen sample has been collected and
sequenced, and for which there is no exposure time information). The top and bottom edge of each rectangle
indicate the introduction and removal times, that is, the beginning and the end of the time interval within
which a host is either infective or can be infected (e.g., arrival and departure time from the contaminated
ward). Red dots represent pathogen sequence samples (respectively S1, S2, and S3), and red lines are
lineages of the pathogen phylogeny. Blue tubes represent transmission/bottleneck events, where the
contained lineages are transferred between hosts. Below each “nested” tree plot (representing phylogeny
and transmission tree simultaneously, see Fig A in S1 Text), the corresponding transmission history is
represented with black “beanbags”, and, in red, the phylogenetic tree of the sequences.

doi:10.1371/journal.pcbi.1005130.g001
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Structured coalescent 
Coalescence events only within demes 
Migration moves single lineages between demes. 

We use a recent efficient approximation to the structured 
coalescent: BASTA (De Maio et al 2015 PLOS Genetics). 
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information, and different times of sampling (early, vs. late, vs. randomly within a host infec-
tion). We give further details on the simulation scenarios in the Materials and Methods.

While we simulate outbreak data under the multispecies model, to infer transmission we
propose a model based on the structured coalescent, SCOTTI. In the structured coalescent
multiple distinct populations are present at the same time, lineages in the same population can
coalesce (find a common ancestor), and lineages can migrate between populations at certain
rates. In SCOTTI, each host represents a distinct pathogen population, and migration of a line-
age represents a transmission event (Fig 2B). Lineages are only allowed to evolve within, and
migrate to, hosts that are exposed at a given time, and exposure times are informed by epidemi-
ological data. In SCOTTI, different lineages within the same host can migrate, backward in
time, into different hosts at different times; on the other hand, in the multispecies coalescent
model all extant lineages within a host have to move together (again backward in time) into the
donor host at a single point in time, so that each host can only be infected once. Under our new
model, we perform estimation using a new implementation of BASTA (BAyesian STructured
coalescent Approximation), an efficient approximation to the structured coalescent [27],
adapted to this epidemiological setting. The use of the approximations in BASTA substantially
reduces computational demand, in particular when many populations are considered. In all

Fig 2. Graphical representation of models of transmission and evolution. In the present work we consider three different
models of pathogen evolution within an outbreak: A) The multispecies coalescent model with transmission bottlenecks, used for
simulations, B) The structured coalescent (SCOTTI) model used for inference, C) The Outbreaker model also used for inference.
The pictures highlight some key parameters and features of the models. Different hosts (H1, H2, H3, and H4) are represented as
black rectangles. The top and bottom edge of each rectangle are the introduction and removal times of the respective hosts in A and
B. The hosts with a dashed border are non-sampled. Red dots represent samples (only one per host allowed by Outbreaker), red
vertical lines are lineages of the phylogeny. Smaller black dots represent coalescent events. Red arrows are transmissions/
migrations in B and C. Blue tubes are transmissions with bottlenecks in A, and transmitted lineages are contained within them. In A,
a transmission bottleneck from host H1 to H2 causes two lineages in H2 to coalesce (find a common ancestor backwards in time) at
the same time of transmission. This does not happen at the transmission from H3 to H4, where the two lineages in H4 do not
coalesce (incomplete bottleneck) and are both inherited from H3 to H4 at a single transmission event.

doi:10.1371/journal.pcbi.1005130.g002
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Abstract
Exploiting pathogen genomes to reconstruct transmission represents a powerful tool in the

fight against infectious disease. However, their interpretation rests on a number of simplify-

ing assumptions that regularly ignore important complexities of real data, in particular

within-host evolution and non-sampled patients. Here we propose a new approach to trans-

mission inference called SCOTTI (Structured COalescent Transmission Tree Inference).

This method is based on a statistical framework that models each host as a distinct popula-

tion, and transmissions between hosts as migration events. Our computationally efficient

implementation of this model enables the inference of host-to-host transmission while

accommodating within-host evolution and non-sampled hosts. SCOTTI is distributed as an

open source package for the phylogenetic software BEAST2. We show that SCOTTI can

generally infer transmission events even in the presence of considerable within-host varia-

tion, can account for the uncertainty associated with the possible presence of non-sampled

hosts, and can efficiently use data from multiple samples of the same host, although there

is some reduction in accuracy when samples are collected very close to the infection time.

We illustrate the features of our approach by investigating transmission from genetic and

epidemiological data in a Foot and Mouth Disease Virus (FMDV) veterinary outbreak in

England and a Klebsiella pneumoniae outbreak in a Nepali neonatal unit. Transmission his-

tories inferred with SCOTTI will be important in devising effective measures to prevent and

halt transmission.

Author Summary

We present a new tool, SCOTTI, to efficiently reconstruct transmission events within out-
breaks. Our approach combines genetic information from infection samples with epidemi-
ological information of patient exposure to infection. While epidemiological information
has been traditionally used to understand who infected whom in an outbreak, detailed
genetic information is increasingly becoming available with the steady progress of
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information, and different times of sampling (early, vs. late, vs. randomly within a host infec-
tion). We give further details on the simulation scenarios in the Materials and Methods.

While we simulate outbreak data under the multispecies model, to infer transmission we
propose a model based on the structured coalescent, SCOTTI. In the structured coalescent
multiple distinct populations are present at the same time, lineages in the same population can
coalesce (find a common ancestor), and lineages can migrate between populations at certain
rates. In SCOTTI, each host represents a distinct pathogen population, and migration of a line-
age represents a transmission event (Fig 2B). Lineages are only allowed to evolve within, and
migrate to, hosts that are exposed at a given time, and exposure times are informed by epidemi-
ological data. In SCOTTI, different lineages within the same host can migrate, backward in
time, into different hosts at different times; on the other hand, in the multispecies coalescent
model all extant lineages within a host have to move together (again backward in time) into the
donor host at a single point in time, so that each host can only be infected once. Under our new
model, we perform estimation using a new implementation of BASTA (BAyesian STructured
coalescent Approximation), an efficient approximation to the structured coalescent [27],
adapted to this epidemiological setting. The use of the approximations in BASTA substantially
reduces computational demand, in particular when many populations are considered. In all

Fig 2. Graphical representation of models of transmission and evolution. In the present work we consider three different
models of pathogen evolution within an outbreak: A) The multispecies coalescent model with transmission bottlenecks, used for
simulations, B) The structured coalescent (SCOTTI) model used for inference, C) The Outbreaker model also used for inference.
The pictures highlight some key parameters and features of the models. Different hosts (H1, H2, H3, and H4) are represented as
black rectangles. The top and bottom edge of each rectangle are the introduction and removal times of the respective hosts in A and
B. The hosts with a dashed border are non-sampled. Red dots represent samples (only one per host allowed by Outbreaker), red
vertical lines are lineages of the phylogeny. Smaller black dots represent coalescent events. Red arrows are transmissions/
migrations in B and C. Blue tubes are transmissions with bottlenecks in A, and transmitted lineages are contained within them. In A,
a transmission bottleneck from host H1 to H2 causes two lineages in H2 to coalesce (find a common ancestor backwards in time) at
the same time of transmission. This does not happen at the transmission from H3 to H4, where the two lineages in H4 do not
coalesce (incomplete bottleneck) and are both inherited from H3 to H4 at a single transmission event.

doi:10.1371/journal.pcbi.1005130.g002
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information, and different times of sampling (early, vs. late, vs. randomly within a host infec-
tion). We give further details on the simulation scenarios in the Materials and Methods.

While we simulate outbreak data under the multispecies model, to infer transmission we
propose a model based on the structured coalescent, SCOTTI. In the structured coalescent
multiple distinct populations are present at the same time, lineages in the same population can
coalesce (find a common ancestor), and lineages can migrate between populations at certain
rates. In SCOTTI, each host represents a distinct pathogen population, and migration of a line-
age represents a transmission event (Fig 2B). Lineages are only allowed to evolve within, and
migrate to, hosts that are exposed at a given time, and exposure times are informed by epidemi-
ological data. In SCOTTI, different lineages within the same host can migrate, backward in
time, into different hosts at different times; on the other hand, in the multispecies coalescent
model all extant lineages within a host have to move together (again backward in time) into the
donor host at a single point in time, so that each host can only be infected once. Under our new
model, we perform estimation using a new implementation of BASTA (BAyesian STructured
coalescent Approximation), an efficient approximation to the structured coalescent [27],
adapted to this epidemiological setting. The use of the approximations in BASTA substantially
reduces computational demand, in particular when many populations are considered. In all

Fig 2. Graphical representation of models of transmission and evolution. In the present work we consider three different
models of pathogen evolution within an outbreak: A) The multispecies coalescent model with transmission bottlenecks, used for
simulations, B) The structured coalescent (SCOTTI) model used for inference, C) The Outbreaker model also used for inference.
The pictures highlight some key parameters and features of the models. Different hosts (H1, H2, H3, and H4) are represented as
black rectangles. The top and bottom edge of each rectangle are the introduction and removal times of the respective hosts in A and
B. The hosts with a dashed border are non-sampled. Red dots represent samples (only one per host allowed by Outbreaker), red
vertical lines are lineages of the phylogeny. Smaller black dots represent coalescent events. Red arrows are transmissions/
migrations in B and C. Blue tubes are transmissions with bottlenecks in A, and transmitted lineages are contained within them. In A,
a transmission bottleneck from host H1 to H2 causes two lineages in H2 to coalesce (find a common ancestor backwards in time) at
the same time of transmission. This does not happen at the transmission from H3 to H4, where the two lineages in H4 do not
coalesce (incomplete bottleneck) and are both inherited from H3 to H4 at a single transmission event.

doi:10.1371/journal.pcbi.1005130.g002
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information, and different times of sampling (early, vs. late, vs. randomly within a host infec-
tion). We give further details on the simulation scenarios in the Materials and Methods.

While we simulate outbreak data under the multispecies model, to infer transmission we
propose a model based on the structured coalescent, SCOTTI. In the structured coalescent
multiple distinct populations are present at the same time, lineages in the same population can
coalesce (find a common ancestor), and lineages can migrate between populations at certain
rates. In SCOTTI, each host represents a distinct pathogen population, and migration of a line-
age represents a transmission event (Fig 2B). Lineages are only allowed to evolve within, and
migrate to, hosts that are exposed at a given time, and exposure times are informed by epidemi-
ological data. In SCOTTI, different lineages within the same host can migrate, backward in
time, into different hosts at different times; on the other hand, in the multispecies coalescent
model all extant lineages within a host have to move together (again backward in time) into the
donor host at a single point in time, so that each host can only be infected once. Under our new
model, we perform estimation using a new implementation of BASTA (BAyesian STructured
coalescent Approximation), an efficient approximation to the structured coalescent [27],
adapted to this epidemiological setting. The use of the approximations in BASTA substantially
reduces computational demand, in particular when many populations are considered. In all

Fig 2. Graphical representation of models of transmission and evolution. In the present work we consider three different
models of pathogen evolution within an outbreak: A) The multispecies coalescent model with transmission bottlenecks, used for
simulations, B) The structured coalescent (SCOTTI) model used for inference, C) The Outbreaker model also used for inference.
The pictures highlight some key parameters and features of the models. Different hosts (H1, H2, H3, and H4) are represented as
black rectangles. The top and bottom edge of each rectangle are the introduction and removal times of the respective hosts in A and
B. The hosts with a dashed border are non-sampled. Red dots represent samples (only one per host allowed by Outbreaker), red
vertical lines are lineages of the phylogeny. Smaller black dots represent coalescent events. Red arrows are transmissions/
migrations in B and C. Blue tubes are transmissions with bottlenecks in A, and transmitted lineages are contained within them. In A,
a transmission bottleneck from host H1 to H2 causes two lineages in H2 to coalesce (find a common ancestor backwards in time) at
the same time of transmission. This does not happen at the transmission from H3 to H4, where the two lineages in H4 do not
coalesce (incomplete bottleneck) and are both inherited from H3 to H4 at a single transmission event.

doi:10.1371/journal.pcbi.1005130.g002
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information, and different times of sampling (early, vs. late, vs. randomly within a host infec-
tion). We give further details on the simulation scenarios in the Materials and Methods.

While we simulate outbreak data under the multispecies model, to infer transmission we
propose a model based on the structured coalescent, SCOTTI. In the structured coalescent
multiple distinct populations are present at the same time, lineages in the same population can
coalesce (find a common ancestor), and lineages can migrate between populations at certain
rates. In SCOTTI, each host represents a distinct pathogen population, and migration of a line-
age represents a transmission event (Fig 2B). Lineages are only allowed to evolve within, and
migrate to, hosts that are exposed at a given time, and exposure times are informed by epidemi-
ological data. In SCOTTI, different lineages within the same host can migrate, backward in
time, into different hosts at different times; on the other hand, in the multispecies coalescent
model all extant lineages within a host have to move together (again backward in time) into the
donor host at a single point in time, so that each host can only be infected once. Under our new
model, we perform estimation using a new implementation of BASTA (BAyesian STructured
coalescent Approximation), an efficient approximation to the structured coalescent [27],
adapted to this epidemiological setting. The use of the approximations in BASTA substantially
reduces computational demand, in particular when many populations are considered. In all

Fig 2. Graphical representation of models of transmission and evolution. In the present work we consider three different
models of pathogen evolution within an outbreak: A) The multispecies coalescent model with transmission bottlenecks, used for
simulations, B) The structured coalescent (SCOTTI) model used for inference, C) The Outbreaker model also used for inference.
The pictures highlight some key parameters and features of the models. Different hosts (H1, H2, H3, and H4) are represented as
black rectangles. The top and bottom edge of each rectangle are the introduction and removal times of the respective hosts in A and
B. The hosts with a dashed border are non-sampled. Red dots represent samples (only one per host allowed by Outbreaker), red
vertical lines are lineages of the phylogeny. Smaller black dots represent coalescent events. Red arrows are transmissions/
migrations in B and C. Blue tubes are transmissions with bottlenecks in A, and transmitted lineages are contained within them. In A,
a transmission bottleneck from host H1 to H2 causes two lineages in H2 to coalesce (find a common ancestor backwards in time) at
the same time of transmission. This does not happen at the transmission from H3 to H4, where the two lineages in H4 do not
coalesce (incomplete bottleneck) and are both inherited from H3 to H4 at a single transmission event.

doi:10.1371/journal.pcbi.1005130.g002
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Simulations – Running time 
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K. Pneumoniae data 
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Summary SCOTTI 

Different models result in different inferences. 
 
 
 
New inference of transmission in BEAST2: SCOTTI. 
 
 
 
Future work: transmission bottlenecks, introductions, 
epidemiological models. 
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