SCOTTI: Inferring transmission with the Structured Coalescent

Nicola De Maio, Chieh-Hsi Wu, Daniel Wilson

Aodernisinc Nicrobioloav

xford Radcliffe Hospitals

medical Research Centre

OXFORD

MRC

England

Funded by

Animal & National Institute for Plant Health Health Research Agency

Host information

Time

Complications: within-host coalescent

Structured coalescent

Coalescence events only within demes Migration moves single lineages between demes.

We use a recent efficient approximation to the structured coalescent: BASTA (De Maio et al 2015 PLOS Genetics).

Phylogeography with BASTA

fast but inaccurate.

accurate but slow.

accurate and fast.

SCOTTI

Time

SCOTTI: Efficient Reconstruction of Transmission within Outbreaks with the Structured Coalescent

Nicola De Maio^{1,2}*, Chieh-Hsi Wu², Daniel J Wilson^{1,2,3}

- Hosts (demes) have same population size.
- Hosts have limited lifespan.
- No bottlenecks at transmission.
- Lineages do not migrate together at transmission.

Simulated model

Time

Extension of:

Didelot et al 2014 MBE.

Hall et al 2015 PLOS Comput Biol.

- Bottlenecks at transmission.

- Lineages migrate together at transmission.

- Only one transmission per host.

Benchmark model

Jombart et al 2014 PLOS Comput Biol

- No within-host population.
- No within-host evolution.
- Mutations accumulate at transmission.
- Only one sample per host.
- Generations of same lengths.

Outbreaker

Hall et al 2015 PLOS Comput Biol

PLOS Comput Biol

Outbreaker

Simulations

FMDV data

K. Pneumoniae data

Antimicrobial agents and chemotherapy

K. Pneumoniae data

Summary SCOTTI

Different models result in different inferences.

New inference of transmission in BEAST2: SCOTTI.

Future work: transmission bottlenecks, introductions, epidemiological models.

Thanks for listening!

Daniel J Wilson

Chieh-Hsi Wu

Crook group (NDM Microbiology)

Oxford Biomedical Research Centre

OXFORD

Oxford Radcliffe Hospitals

tos

England

Researc

MRC

National Institute for

Health Research

Funded b National Institute for Health Research