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Single cell pseudotime inference

High throughput single cell protocols typically provide
snapshot view of gene expression.

Pseudotime methods place cells on a continuous path
reflecting the similarity and rate of change of their gene
expression.

Biological processes such as differentiation also exhibit distinct
cell fates across a common lineage.
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Single cell non-linear branching models

Using probabilistic models, ensures a logical and consistent
way of including relevant prior information such as cell
capture times in synchronised populations.

Using the GPLVM framework allows us to infer pseudotime
including such prior information [Reid].

A non-linear mapping increases the accuracy of pseudotime
estimation [TopSlam, DPT].

Missing information (dropout) is relatively straightforward to
handle in a probabilistic model [ZIFA].
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Branching approaches

Diffusion pseudotime → transition matrix between cells, then
branching.

Wishbone → k-nn from root cell, then identify branching.

Slicer → LLE+entropy criterion.

Scuba → if capture times available, models non-linear
dynamics.
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Our two stage approach

Infer pseudotime

Use capture time if available.

Initialisation: Use overlapping mixture of GPs (OMGP) to
infer K trajectories. No branching.

Create branching model using OMGP to initialise allocation
probabilities Φ and kernel hyperparameters θ.

Use Bayesian optimisation (GPyOpt) to learn θ and branching
locations B.

Local optimization for allocation probabilities Φ.
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Running example

Mouse early embryonic development

We apply our approach on a published dataset of mouse
developmenta

aGuo, Guoji, et al. ‘Resolution of cell fate decisions revealed by single-cell
gene expression analysis from zygote to blastocyst.’Developmental cell, 2010.

RT-PCR to quantify expression of 48 genes including 27
development transcription factors.

438 cells extracted at seven time points corresponding to
cell-doubling events.

Two branching points at 32-cell stage, differentiation to
trophectoderm (TE) and inner cell mass (ICM) and at 64-cell
state, ICM branch differentiates to primitive endoderm (PE)
and epiblast (EPI).
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Using capture times

DeLorean

In Reid et al, 2016a a Gaussian process latent variable model
was used to infer pseudotime when an informative
experimental capture time is available.

Consistent way of incorporating prior information.

Generic approach leveraging the STAN probabilistic language.

aJohn E. Reid and Lorenz Wernisch ‘Pseudotime estimation: deconfounding
single cell time series’, Bioinformatics (2016) 32 (19): 2973-2980
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Using capture times

Improvements

Extend the variational Bayesian GPLVMa for a non-standard
Gaussian.

Allows for an analytic lower bound calculation whereas the
generic STAN bound is numerically estimated.

Bound is calculated via a reduced set of auxiliary variables
that allows the method to scale up as the number of cells is
increased.

In Reid et al, a second approximation is performed to reduce
the computational complexity (FITC kernel).

Implemented in scalable architectureb

aBayesian Gaussian Process Latent Variable Model. MK Titsias, ND
Lawrence, AISTATS, 2010

bGPflow by James Hensman, Alex G Matthews, . . .
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Computational results

Elapsed time in seconds.

Data Genes Cell DeLorean Bayesian GPLVM

Windram 100 24 120 14
Guo1 48 440 1191∼20 mins 74

1Using 40 inducing points.
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Learning pseudotime without capture times via Topslam
(Max Zwiessele)

Density in Bayesian GPLVM

Probabilistic dimensionality reduction technique allows for
estimating the density of the landscape, depicted in gray shading
of the background of the two dimensional image of the landscape.
Light areas are preferred by the algorithm, whereas dark areas
increase the between cells distance in the landscape.

Minimum spanning tree

The extraction of time is done by shortest paths along the
extracted graph, depicted in the blue shading of edges, starting
from the red circled starting cell.
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Learning pseudotime via Topslam (Max Zwiessele)

Key assumptions

Bayesian Gaussian process latent variable model to reduce
dimensionality.

Minimum spanning tree to infer pseudotime: temporal order from
snapshot view of gene expression.
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Our two stage approach

Infer pseudotime

Use capture time if available.

Initialisation : Use overlapping mixture of GPs (OMGP) to
infer K trajectories. No branching.

Create branching model using OMGP to initialise.

Use Bayesian optimisation (GPyOpt) to learn θ and branching
locations B.

Local optimization for allocation probabilities Φ.
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Initialisation in latent space: Overlapping mixture of GPs

Data association

The OMGPa seeks to label observations according to the sources
that generated them.

aLázaro-Gredilla, Miguel, Steven Van Vaerenbergh, and Neil D. Lawrence.
‘Overlapping mixtures of Gaussian processes for the data association
problem.’Pattern Recognition 45.4, 2012.

Flexible non-linear model based on a set of independent GPs.

The number of sources can be specified or inferred. The latter
tends to overestimate the number of functions.

Fast variational approach using natural gradients available.
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Initialisation in latent space: Overlapping mixture of GPs

Working on the pseudotime and principal GPLVM direction.
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Our two stage approach

Infer pseudotime

Use capture time if available.

Initialisation: Use overlapping mixture of GPs (OMGP) to
infer K trajectories. No branching.

Create branching model using OMGP to initialise .

Use Bayesian optimisation (GPyOpt) to learn θ and branching
locations B.

Local optimization for allocation probabilities Φ.
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Inferring perturbation time

Perturbation time

Yang et ala developed a tractable GP model for the
identification of a single perturbation point.

Define a novel kernel that constrains two functions f and g to
cross at a single point.

Bifurcation point is identified by numerically approximating
the posterior and selecting a point estimate. This is a model
selection approach.

aYang, et al. ‘Inferring the perturbation time from biological time course
data.’Bioinformatics, 2016
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Inferring perturbation time II

Hyperparameters are estimated by assuming the two functions
are independent, that is they do not cross.

Model used ‘to identify at which time point a gene becomes
differentially expressed in time course gene expression data
under two various conditions.’

Both GPy and R implementations are available

Key assumptions

All data points have been labelled as to which function (f /g)
they belong to.

The ordering of time points is assumed known and fixed.
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Branching Gaussian processes

Extend the kernel to multiple branching points assuming a
tree structure.

Infer the function labels.

Perform efficient inference via optimisation of a variational
lower bound.

Efficient implementation using GPflow.
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Tree prior

Notional prior

Sample from the model
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Learning the branching structure
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Individual gene branch reconstruction

In SCUBA also found to be have high relative weight for branching.
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Summary

Infer pseudotime which allows an unsynchronised or partly
synchronised cell population to be placed on a developmental
continuum.

Branching model to identify the earliest developmental point
where cell fate decisions are evident and rank genes in terms
of earliest divergence.

Quantification of uncertainty of branching location.

Easy to extend to multiple branching points: harder
optimization problem using same objective function on higher
dimensions.

Sparse GP approach (Sparse GP) to improve performance,
e.g. Drop-seq=50k cells.
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Extensions

Compare to Diffusion pseudotime, Waterfall and Slicer and
other approaches.

Pseudotime inference; jointly identify labels and time order.

Constrain derivatives to be the same at crossing points so
transitions are smooth at branching points.

Different kernels in tree structure via model selection; e.g.
periodic vs non-periodic kernels.

Stochastic process prior on trees. Place non-parametric prior
on tree structure and perform inference on tree structure as
well as branching GP.
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