A Categorical Semantics of Fuzzy Concepts in Conceptual Spaces

Sean Tull

Cambridge Quantum

sean.tull@cambridgequantum.com

ACT 2021

Outline

Application': We formalise G\u00e4rdenfors' conceptual spaces, including fuzzy concepts and fuzzy conceptual processes, for AI and cognitive science.

Category theory': We introduce a new Markov category via the category LCon of convex spaces and log-concave channels.

Conceptual Spaces

Conceptual Spaces

Framework for human and artificial cognition due to Gärdenfors.

Cognitive spaces composed of **domains** e.g. colours, sounds ...

Concepts described geometrically, as regions of the space.

THE GEOMETRY OF MEANING

SEMANTICS BASED ON CONCEPTUAL SPACES

Related work

Bolt, Coecke, Genovese, Lewis, Marsden and Piedeleu, *Interacting Conceptual Spaces* (2016): formalisation via the compact category **ConvRel** of convex relations.

See also: Vincent Wang. Concept Functionals (SEMSPACE 2019).

Convex Spaces

A **convex space** *X* is an algebra for the finite distribution monad:

$$\sum_{i=1}^{n} p_i x_i \in X \qquad (x_i \in X, \sum_i p_i = 1)$$

which is also a **measurable space**, with σ -algebra of measurable subsets

 $\Sigma_X \subseteq \mathbb{P}(X)$.

A crisp concept of *X* is a measurable subset $C \subseteq X$ which is convex: $x_1, ..., x_n \in C \implies \sum p_i x_i \in C.$

Examples of Convex Spaces

- $X = \mathbb{R}^n$ with Borel or Lebesgue σ -algebras.
- ► Normed space $(X, \| \|)$, with Borel σ -algebra.
- ► Any convex measurable subset *C* of a convex space.
- Join semi-lattice *L* with $px + (1 p)y := x \lor y, \Sigma_L = \mathbb{P}(L)$.
- The **product** of convex spaces $X \otimes Y = X \times Y$ with

$$\sum p_i(x_i, y_i) = \left(\sum p_i x_i, \sum p_i y_i\right).$$

Fuzzy Concepts

Crisp vs Fuzzy

So far concepts were 'crisp': $x \in C$ or $x \notin C$.

Evidence suggests 'real' concepts should be **fuzzy**, given as maps:

 $C\colon X\to [0,1]$

C(x) := "extent to which x is an instance of C."

Fuzziness also helps learning via gradient descent in neural networks.

Quasi-Concavity

A natural condition is the following.

Criterion Fuzzy concepts $C: X \to [0,1]$ should be **quasi-concave**: $C(px + (1-p)y) \ge \min\{C(x), C(y)\}$ $(\forall x, y \in X, p \in [0,1])$

Equivalently, each set $C^t := \{x \in X \mid C(x) \ge t\}$ is convex.

Quasi-concavity is not **compositional**: $(x, y) \mapsto C(x)D(y)$ need not be quasi-concave, even if C, D are.

e.g. $C(x) = (1 - x)/2, D(y) = (y^2 + 1)/2$ on [0,1].

Log-Concavity

Luckily, there is a class of 'nice' quasi-concave maps.

A function $f: X \to \mathbb{R}$ is **log-concave** (LC) if $f(px + (1 - p)y) \ge f(x)^p f(y)^{1-p}$ ($\forall x, y \in X, p \in [0,1]$) Equivalently, $\log \circ f$ is concave.

LC functions and their associated measures are:

- well-studied in statistics and economics;
- well-behaved (e.g. under products, marginals, convolutions);
- a functional analogue of convex subsets (Klartag and Milman, 2005).

Geometry of log-concave functions and measures (Klartag and Milman, 2005).

Log-concavity and strong log-concavity: a review. (Saumard, Wellner 2014).

Fuzzy Concepts

A fuzzy concept on a convex space X is a measurable log-concave map $C: X \rightarrow [0,1]$.

Examples

- Any crisp concept $M \subseteq X$, via its indicator $C = 1_M$.
- Measurable affine maps: $C(\Sigma p_i x_i) = \Sigma p_i C(x_i)$.
- Statistical functions on ℝⁿ, e.g. densities of normal, exponential, logistic... distributions.
- For any crisp $P \subseteq \mathbb{R}^n$ the 'fuzzification'

$$C(x) = e^{-\frac{1}{2\sigma^2}d_H(x,P)^2}$$

where $\sigma \ge 0$, d_H is Hausdorff distance.

Log-Concavity is Canonical

Theorem

 $C(X) := \{ \text{log-concave maps} \}$ forms the largest choice of a set C(X) of quasi-concave maps $X \rightarrow [0,1]$ on each convex space X such that:

• $(x, y) \mapsto C(x)D(y) \in C(X \otimes Y) \quad \forall C \in C(X), D \in C(Y);$

• C([0,1]) contains all affine maps.

That is, for any such choice, every function in every C(X) is log-concave.

Quasi-concave + compositional \implies Log-concave

Fuzzy Processes

Categorical Probability

Categorical probability gives a standard notion of fuzzy map between spaces.

A probabilistic **channel**, or **Markov kernel**, $f: X \rightarrow Y$ is a map sending each $x \in X$ to a sub-probability measure

$$f(x, -) \colon \Sigma_Y \to [0, 1]$$

over Y, in a 'measurable' way.

Convex spaces and channels form a symmetric monoidal category Prob.

Abstractly, the Kleisli category of the (sub-)Giry Monad.

The Category Prob

of probabilistic channels

Log-Concave Channels

We now generalise fuzzy concepts to conceptual channels.

We call a channel $f: X \to Y$ log-concave (or a conceptual channel) when

 $f(x +_p y, A +_p B) \ge f(x, A)^p f(y, B)^{1-p}$

for crisp A, B, where $x +_p y := px + (1 - p)y$, $A +_p B := \{pa + (1 - p)b \mid a \in A, b \in B\}$.

Our main result:

 $\begin{array}{l} \textbf{Theorem}\\ Log-concave \ channels \ form \ a \ symmetric \ monoidal \ subcategory \\ LCon \ \hookrightarrow \ Prob \ . \end{array}$

The Proof

The proof that **LCon** is a well-defined category is non-trivial, requiring an extension of the *Prékopa-Leindler inequality*.

Proposition

Let X be a convex space with σ -finite measures and measurable $f, g, h: X \to \mathbb{R}$ s.t. $\mu(pA + (1-p)B) \ge \nu(A)^p \omega(B)^{1-p}$ $f(px + (1-p)y) \ge g(x)^p h(y)^{1-p}.$ Then $\left(\int_X fd\mu\right) \ge \left(\int_X gd\nu\right)^p \left(\int_X hd\omega\right)^{1-p}.$

PL is when $X = \mathbb{R}^n$, $\mu = \nu = \omega$ the Lebesgue measure.

LCon is Canonical

Assume *Y* is *well-behaved*: each set

 $\{(pa + (1 - p)b, p) \mid a \in A, b \in B, p \in [0,1]\} \subseteq Y \otimes [0,1]$

is measurable when A, B are crisp concepts (conjecture: normed spaces are).

Proposition A channel $f: X \to Y$ is log-concave iff

is again a fuzzy concept, whenever C is.

It suffices to take Z = [0,1] and C crisp.

LCon is Canonical

Theorem

Let C be a sub-SMC of Prob of well-behaved spaces such that

{ Crisp concepts } $\subseteq \mathbb{C}(X, I) \subseteq \{$ Quasi-concave maps } $\forall X \in ob\mathbb{C}$

and C([0,1],I) contains all affine maps.

Then there are monoidal embeddings

 $C \hookrightarrow LCon \hookrightarrow Prob$.

So, up to measurability considerations:

The Category LCon

The Category LCon

Summary so far: we propose the category **LCon** of log-concave channels $f: X \rightarrow Y$ between convex spaces as our category of 'fuzzy conceptual processes'.

Let's meet some examples (typically in \mathbb{R}^n).

Morphisms in LCon

Log-concave measures on \mathbb{R}^n include:

- Point measures δ_x ;
- Uniform measures over convex regions;
- Gaussian, logistic, extreme value, Laplace...distributions;
- Lebesgue measure (Brunn-Minkowski inequality).

Morphisms in LCon

- Scalars (*p*) are probabilities, with $\begin{bmatrix} C \\ X \end{bmatrix} = \int_X C d\omega$.
- Any affine map $f: X \to Y$ forms a morphism via $x \mapsto \delta_{f(x)}$.
- Copy-delete maps, inherited from Prob :

Morphisms in LCon

• **Convolutions** of I.c. channels into \mathbb{R}^n are again I.c.:

 $x \mapsto$ 'sum of the random variables f(x), g(x)'.

• For example, Gaussian noise ν added to a linear map f:

$$f = v \quad :: (x, A) \mapsto \nu(A - f(x))$$

This gives the subcategory of 'Gaussian probability' (Fritz 2019):

 $Gauss \hookrightarrow LCon$

Toy Conceptual Reasoning

Toy Conceptual Reasoning

Following (Bolt et al.) we define a simple 'food space'

Can 'learn' a crisp concept from crisp exemplars:

where Yellow $\subseteq C$ etc.

Toy Conceptual Reasoning

We can 'fuzzify' any of these crisp concepts e.g.

and combine them using copy/update maps:

Toy Conceptual Reasoning

A simple 'metaphor' channel:

This transforms colour concepts to taste concepts.

Future: Explore more sophisticated conceptual 'reasoning' channels.

Outlook

Outlook

- Proposed LCon as a model of 'fuzzy reasoning in conceptual spaces'.
- More broadly, an interesting new Markov/copy-delete category.
- Categorical view generalises known results LC measures, e.g. closure under

Future work:

- Applications of fuzzy concepts in AI and NLP.
- More sophisticated channel examples e.g. 'reasoning', 'metaphor'.
- Categorical properties of LCon.

Thanks!