Characterizing Double Categories of Relations

Michael Lambert

16 July 2021

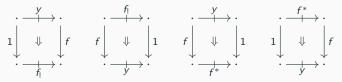
UMass-Boston

- A relation in a category is a monomorphism $R \rightarrow A \times B$. $\mathscr{C} = \text{regular category}$
 - 1. $\mathscr{C} \rightsquigarrow \mathsf{Rel}(\mathscr{C})$ ordinary category/locally discrete 2-category
 - 2. $\mathscr{C} \rightsquigarrow \mathfrak{Rel}(\mathscr{C})$ a bicategory
 - 3. $\mathscr{C} \rightsquigarrow \mathbb{R}el(\mathscr{C})$ a double category.

- An allegory [FS90] is a locally-ordered 2-category equipped with an anti-involution (−)° satisfying a modularity law; every tabular allegory is equivalent to a category Rel(𝒞).
- A bicategory of relations [CW87] is a cartesian bicategory in which every object is discrete. Every functionally complete bicategory of relations is biequivalent to one of the form Rel(C).
- Which double categories $\mathbb D$ are equivalent to those of the form $\mathbb R el(\mathscr C)?$

Double Categories

- A double category is a pseudo-category object in Cat.
- A double category D is an equipment [Shu08] if every arrow *f* has a companion and a conjoint: proarrows *f*₁ and *f** and cells



satisfying some equations [GP04].

- \mathbb{D} has **tabulators** if $y : \mathbb{D}_0 \to \mathbb{D}_1$ has a right adjoint.
- [Ale18] A double category \mathbb{D} is cartesian if $\Delta \colon \mathbb{D} \to \mathbb{D} \times \mathbb{D}$ and $\mathbb{D} \to 1$ have right adjoints in Dbl.
- Cartesian equipments Span(%) characterized in [Ale18]
- Goal: characterize cartesian equipments of the form $\mathbb{R}el(\mathscr{C})$.

An **oplax/lax adjunction** is a conjoint pair in the strict double category of double categories with oplax and lax functors.

Theorem (§5 of [Nie12]) Let \mathbb{D} denote a double category with pullbacks. The following are equivalent:

- 1. The identity functor $1: \mathbb{D}_0 \to \mathbb{D}_0$ extends to an oplax/lax adjunction $F: \mathbb{S}pan(\mathbb{D}_0) \rightleftharpoons \mathbb{D}: G$.
- 2. \mathbb{D} is an equipment with tabulators.

The oplax/lax adjunction is a strong (both functors are pseudo!) equivalence under some further completeness conditions:

Theorem (§5 of [Ale18])

For a double category \mathbb{D} the following are equivalent:

- 1. \mathbb{D} is equivalent to $\operatorname{Span}(\mathscr{C})$ for finitely-complete \mathscr{C} .
- D is a unit-pure cartesian equipment admitting certain Eilenberg-Moore objects.
- D₀ has pullbacks satisfying a Beck-Chevalley condition and the canonical functor Span(D₀) → D is an equivalence of double categories.

- Let \$\mathcal{F} = (\mathcal{E}, \mathcal{M})\$ be a proper and stable factorization system on a finitely complete category \$\mathcal{C}\$.
- The double category $\mathbb{R}el(\mathscr{C}; \mathcal{F})$ is a cartesian equipment.
- "Local products" [Ale18] in $\mathbb{R}el(C; \mathcal{F})$ satisfy a Frobenius law:

 $R \wedge f^* \otimes S \cong f^* \otimes (f_! \otimes R \wedge S)$

- $\mathbb{R}el(\mathscr{C}; \mathcal{F})$ is "unit-pure" i.e. $y : \mathbb{D}_0 \to \mathbb{D}_1$ is fully faithful.
- $\mathbb{R}el(\mathscr{C};\mathcal{F})$ has tabulators.
- Eilenberg-Moore implies tabulators for spans. But tabulators are basic for allegories and bicategories of relations.

Tabulators

- An allegory is **tabular** if every arrow *R* has a tabulator: a pair of arrows *f* and *g* such that
 - 1. $gf^{\circ} = R$ "tabulators are strong"
 - 2. $f^{\circ}f \wedge g^{\circ}g = 1$ "tabulators are monic."
- A double category D has tabulators if y: D₀ → D₁ has a right adjoint T: D₁ → D₀ in Dbl. The tabulator of m: A → B is the object Tm together with a counit cell Tm ⇒ m.
- tabulators in $\mathbb{R}el(\mathscr{C}; \mathcal{F})$ satisfy:
 - 1. $\langle I, r \rangle : \top m \to A \times B$ is in \mathcal{M} and $I^* \otimes I_! \wedge r^* \otimes r_! \cong y$ holds (tabulators are monic)
 - 2. and $m \cong l^* \otimes r_1$ holds (strong).

For a double category \mathbb{D} with a stable and proper factorization system $\mathcal{F} = (\mathcal{E}, \mathcal{M})$ on \mathbb{D}_0 , the identity functor $\mathbb{D}_0 \to \mathbb{D}_0$ extends to a normalized oplax/lax adjunction $F : \mathbb{R}el(\mathbb{D}_0; \mathcal{F}) \rightleftharpoons \mathbb{D} : G$ if, and only if,

- 1. \mathbb{D} is a unit-pure equipment;
- 2. has *M*-monic tabulators;
- 3. the unit cell y_e is an extension for each $e \in \mathcal{E}$.

The identity functor $1\colon\mathbb{D}_0\to\mathbb{D}_0$ extends to an adjoint equivalence of pseudo-functors

$$F : \mathbb{R}el(\mathbb{D}_0; \mathcal{F})
ightarrow \mathbb{D} : G$$

if, and only if,

- 1. \mathbb{D} is a unit-pure equipment;
- 2. y_e is an extension cell for each cover e;
- 3. \mathbb{D} has strong, \mathcal{M} -monic and externally functorial tabulators;
- 4. every \mathcal{F} -relation $R \to A \times B$ is a tabulator of its canonical extension.

Definition (Cf. [Sch15]) The **kernel** of a morphism $f: A \to B$ is the restriction ρ of the unit on *B* along *f*. Dually, the **cokernel** of *f* is the extension cell ξ

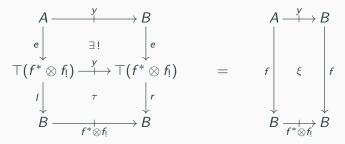
A morphism $e: A \to E$ in an equipment is a **cover** if the canonical globular cell is an iso $e^* \otimes e_! \cong y_E$. Dually, a morphims $m: E \to B$ is an **inclusion** if the canonical globular cell is an iso $m_! \otimes m^* \cong y_E$.

A Factorization System

Theorem

Suppose that \mathbb{D} is a unit-pure cartesian equipment with strong and \mathcal{M} -monic tabulators. If local products satisfy Frobenius and every relation is a tabulator, then with $\mathcal{E} = \text{covers}$ and $\mathcal{M} = \text{inclusions}$, $\mathcal{F} = (\mathcal{E}, \mathcal{M})$ is a proper, stable factorization system on \mathbb{D}_0 .

Given $f: A \rightarrow B$, a factorization arises as in the diagram:



using the universal property of the tabulator.

If $\mathbb D$ is a unit-pure, cartesian equipment such that

- 1. tabulators exist and are strong, *M*-monic and functorial,
- 2. every relation is a tabulator, and finally
- 3. local products satsify Frobenius

then the identity functor $1\colon \mathbb{D}_0\to \mathbb{D}_0$ extends to an adjoint equivalence

 $\mathbb{R}el(\mathbb{D}_0;\mathcal{F})\simeq\mathbb{D}$

where \mathcal{F} is the orthogonal factorization system given by inclusions and covers.

A double category \mathbb{D} is equivalent to one $\mathbb{R}el(\mathscr{C}; \mathcal{F})$ for some proper and stable factorization system on a finitely-complete category \mathscr{C} if, and only if, \mathbb{D} is

- 1. a unit-pure cartesian equipment;
- 2. with strong, *M*-monic and functorial tabulators;
- 3. in which every relation is the tabulator of its cokernel;
- 4. and for which local products satisfy Frobenius.

For more see [Lam21].

THANK YOU!

Evangelia Aleiferi.

Cartesian Double Categories with an Emphasis on Characterizing Spans.

arXiv e-prints, page arXiv:1809.06940, September 2018.

🔒 A. Carboni and R.F.C. Walters.

Cartesian bicategories I.

Journal of Pure and Applied Algebra, 49:11–32, 1987.

Peter J. Freyd and Andre Scedrov.

Categories, Allegories.

North Holland, 1990.

Marco Grandis and Robert Paré.

Adjoints for double categories.

Cahiers de Topologie et Géom. Diff. Catégoriques, 45:193–240, 2004.

Double Categories of Relations.

arXiv e-prints, page arXiv:2107.07621, July 2021.

Span, cospan, and other double categories.

Theory and Applications of Categories, 26(26):729–742, 2012.

Patrick Schultz.

Regular and exact (virtual) double categories. *arXiv e-prints*, page arXiv:1505.00712, May 2015.

Michael Shulman.

Framed bicategories and monoidal fibrations.

Theory and Applications of Categories, 20:650–738, 2008.